How to Cite:

Soni, J., & Patel, M. (2022). Various methods to assess knee proprioception: A review. *International Journal of Health Sciences*, 6(S6), 3906–3919. https://doi.org/10.53730/ijhs.v6nS6.10211

Various methods to assess Knee proprioception: A review

Dr. Jaykumar Soni (P.T.)

Assistant Professor, College of Physiotherapy, Sumandeep Vidyapeeth deemed to be University, waghodia, Vadodara, India *Corresponding author email: <u>jds_1soni@yahoo.com</u>

Dr. Mansi Patel (P.T.)

PG student, College of Physiotherapy, Sumandeep Vidyapeeth deemed to be University, waghodia, Vadodara, India

Abstract---Introduction: Proprioception is a vital aspect of motor control and when degraded or lost can have a profound impact on function in diverse clinical populations. This systematic review aimed to identify clinically related tools to measure proprioceptive acuity. The major purpose of this systematic review was to identify and categorise the methods that have been developed and utilised to test proprioceptive accuracy in a comprehensive manner. Methods: The pub med, Scopus, Web of Science and the other search engine/databases used: Cochrane database / SCIRE / PEDro / CINAHL/ EMBASE, ERIC were systematically searched. Conclusions: The TTDPM method has less relative ecological validity, but has high conceptual purity, Although JPR tests may have less relative test validity, but more clinically feasible, The AMEDA method appears to have better ecological validity and relatively better test validity and data validity.

Keywords---various methods, Knee, proprioception.

Introduction

Proprioception means perception of our-selves, or in other words it means, perception of the relative positions of the parts of our body. Therefor perception is defined as "The ability of an individuals to determine body segment positions and movements in space, and is based on sensory signals provided to the brain from muscles, joint and skin receptors".¹ Proprioception can be elaborated as the sensory feedback contributing to muscle sense, postural equilibrium, and joint stability. Proprioceptors are mechanoreceptors that are located in the skin, muscles, tendons, ligaments, and joint capsules.²

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022. Manuscript submitted: 9 March 2022, Manuscript revised: 27 May 2022, Accepted for publication: 18 June 2022 3906 Most studies have tested knee proprioception in the sagittal plane and nonweight-bearing (NWB) position. To examine proprioceptive mechanisms, different techniques have been reported in the literature. There are three main testing techniques for assessing proprioception – threshold to detection of passive motion (TTDPM), joint position reproduction (JPR), also known as joint position matching, and active movement extent discrimination assessment (AMEDA). These tests have been developed from different concepts, are conducted under different testing conditions, and arguably assess different aspects of proprioceptive modalities.³ The major purpose of this systematic review was to identify and categorise the methods that have been developed and utilised to test proprioceptive accuracy in a comprehensive manner, that is, taking into account all key components of proprioception (i.e. sense of joint position and movement, force and heaviness). As a result, the publication may be able to assist practitioners and researchers in determining the method that best meets their goals for assessing proprioceptive accuracy.

Method

Provide sufficient details to allow the work to be reproduced by an independent The Database used were- pub med, Scopus, Web of Science and the other search engine/databases used: Cochrane database / SCIRE / PEDro / CINAHL/ EMBASE, ERIC. The University library and research centre were also approached for e-copy and possible hand search of articles. The criteria for inclusion of articles were all research designs like Systematic review, Meta-analysis, Randomized Control trials, Cohort studies, Case Report, Case Series, Narrative Reviews and editor's notes published in English language and full articles providing data on proprioception, various methods to assess knee proprioception. The key words used were – joint position sense, knee proprioception, methods of assess knee proprioception

Inclusion criteria

- Studies with lower limb proprioception, knee proprioception and emphasizing on knee proprioception measurement.
- Clinical Trials
- Case Control Studies
- Full text articles available
- The criteria for inclusion of articles were all research designs like Systematic review, Meta-analysis, Randomized Control trials, Cohort studies, Case Report, Case Series, Narrative Reviews and editor's notes published in English language and full articles providing data on sports related overuse injuries and physiotherapy and/or physical rehabilitation as the primary management.
- The articles included in the study were then appraised and reviewed

Exclusion criteria

- Studies not specifying the methodology for measuring knee proprioception
- Only abstract

3908

Result

SR.	YEAR &	STUDY TITLE	METHOD USED	CONCLUSION
NO.	AUTHOUR			
1.	Partha Ranjan Das, Sunita Yadav, Ankita, Mottar Raja Rijwi, Preeti Saini, Deepti Sharma. January- December 2020.4	"Gender specific effect of obesity on knee proprioception in weight bearing and non-weight bearing position."	Variable such as age, gender, height, body weight and BMI were evaluated. Subjects with BMI 30 or more were taken for further joint position test of knee joint. Subjects were positioned in single limb standing and high sitting position and asked to replicate the target angle. Performed angle was recorded and compared with actual angle.	Obese females subject has reduced proprioception than obese male subjects in which responsible factor are additive effect of both ligament laxity and excessive weight in female lead us to such a result. Irrespective of the gender specific result it is well recommended for undergoing close chain kinematics protocol exercises which can help in developing lower limb joint proprioception.
2.	Nihat Sarıalioğlu. August 2019. ⁵	"Analysis Of The Relationship Between Proprioceptive Sensory Functions And Body Mass Index Parameters Of Football And Volleyball Players."	16 male football players and 16 male volleyball players, whose average age was 21,40 years, voluntarily participated in this research. CSMI TecnoBody PK-252 isokinetic balance system measuring instrument was used to determine proprioceptive	It could be said that there was a correlation between some anthropometric data (BW, BMI) and proprioceptive sense functions. However, it is considered that the number of similar studies should be increased in order to reach a final judgement.

			sensory values.	
			Measurements were performed in 30 seconds with difficulty level 10 by multiaxial proprioceptive assessment module as both feet. Balance parameters were recorded as stability indicator (SI), average force variance (AFV) and average tracking error (ATE).	
3.	Hajar Moravveji, Ali Ghanbari & Fahimeh Kamali. 2017. ²	"Proprioception of Knee Joint in Athletes and Non-Athletes Obese."	In this case control study, we had 60 participants, aged 18 to 35 in four groups (15 athletes obese; 15 athletes with normal weight; 15 non-athletes obese; 15 non- athletes with normal weight). The average Body Mass Index for the obese groups was 33.50± (3.10) kg/m ² and for the normal weight groups was 23.77± (2.94) kg/m ² . We used a Biodex Multi- Joint System 4 Isokinetic Dynamometer to examine proprioception acuity as the	The obese groups showed a deficit in the proprioception function in knee extension movement. Furthermore, the findings suggest that doing regular weight bearing training is associated with better proprioceptive function, even in obese groups. It could manifest that the deleterious effect of obesity on the knee joint proprioception might be stronger than the beneficial influence of exercise training.

-			-	
4.	Rania N. Karkousha.	"Sex differences of	amount of a subject's error when trying to reproduce a test knee extension angle (a measure of the joint position sense). We tested proprioception actively (active reproduction test; AAR) and passively (passive reproduction test; PAR) in the right leg. A total of 64 healthy	Sex-based difference in the
	March 2016. ⁶	differences of knee joint repositioning accuracy in healthy adolescents."	adolescents (32 males, 32 females) aging from 15 to 18 years participated in this study. Active angle repositioning test was used to assess the proprioceptive accuracy of the right knee joint at 45° knee flexion by using a Biodex system 3 pro- isokinetic dynamometer.	difference in the accuracy of knee joint proprioception may imply that knee proprioceptive sensitivity might potentially contribute to the high incidence of knee injury in females compared with males, particularly during adolescence.
5.	Peeyoosha Nitsure, Shruti Prabhu. January 2015. ⁷	"Study of Differences in Proprioception of Knee Joint with Age, Gender and Lower Limb Dominance in Healthy Asymptomatic Individuals: An Observational	90 healthy asymptomatic individuals were allocated to 3 groups by age as 21-40 yrs, 41-60 yrs and 61-80 years. Proprioception was assessed for bilateral knee joint using digital	There was steady decline observed in proprioception with increasing age. There was no significant difference in gender at younger age but proprioception declined in females more

-				
		Study."	goniometer. The individuals were also assessed for lower limb dominance. Average of 3 readings was considered for analysis.	than their male counterparts at older age group and there was no difference observed with dominance of lower limbs.
6.	Noel Macwan, Lata D Parmar. May 2015. ⁸	"Proprioceptive Impairments in OA Knee Patients."	94 Normal and 54 OA Knee patients were assessed to test Joint Position sense using Universal Goniometer. JPS was measured for Test angles 30°, 45° and 60° toward extension. At all angles test was performed three times in sequence. Radiologist gave K L scores.	Caution need to be exercised before concluding on proprioception impairment in OA knee patients.
7.	Lin Li, Zhong- Qiu Ji, Yan-Xia Li, Wei-Tong Liu. Oct. 2015. ⁹	"Correlation study of knee joint proprioception test results using common test methods."	Different proprioception test methods, the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method were used to test the knees of 30 healthy young men.	No correlation was found among the results obtained using the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method. Therefore, no correlation was found among the position sense, the motion sense and the force sense represented by

				these methods.
				Using the results
				of only one of the
				test methods to
				represent
				proprioception is
				one-sided. Force
				sensation
				depends more on
				the sensory
				input of
				information from
				the Golgi tendon
				organs, motion
				sense depends
				more on the
				input information of
				the muscle
				spindles, and
				position sense
				relies on the
				double input
				information of
				the muscle
				spindles and the
				Golgi tendon
				organs.
8.	Seyed Mohsen	"Assessment of	Thirty healthy	
	Mir, Saeed	Knee	male athletes	position sense in
	Talebian,	Proprioception	participated in	non-contact
	Nasrin Naseri,	in the Anterior	the study. Joint	anterior cruciate
	Mohammad- Reza Hadian.	Cruciate	position sense	ligament injury risk position
	Jan. 2014. ¹⁰	Ligament Injury Risk	was evaluated by active	risk position compared with
	Jan. 2017.10	Position in	reproduction of	the normal
		Healthy	the anterior	condition may
			cruciate ligament	
		Cross-sectional	injury risk	increased
		Study."	position and	incidence of
		-	normal condition.	anterior cruciate
			The dominant	ligament injury.
			knees of subjects	
			were tested.	
			Biometrics' "SG"	
			series twin axis	
			electrogoniometer	
			(Biometrics Ltd,	
			UK) was used to	
1		1	measure JPS.	

	1			
9.	Ashish Kumar.	"Joint	Fifty-six patients	Our method of
	July 2012.11	Proprioception	were approached	measuring
		in Normal and	with the proposal	proprioception is
		Osteoarthritic	of the study. Out	easily
		Knees."	of which forty-	reproducible.
			four were	Proprioception
			included. The	deteriorates with
			ability to	aging and more
			replicate target	deterioration
			knee-joint angles	with
			was assessed	degenerative
			using an	disease in elder.
			electronic	
			goniometer	
			(Tracker Freedom	
			Wireless	
			Goniometer). A	
			trial was allowed	
			at each angle	
			before testing.	
			The knee was	
			positioned in full	
			extension. The	
			subject was then	
			asked to flex the	
			knee joint to a	
			pre-determined	
			target angle of	
			30°, 45° and 60°.	
			Auditory	
			feedback was	
			constantly	
			provided by the	
			therapist during	
			trial. Hold time	
			was 5 seconds at	
			each targeted	
			angle. After	
			returning to the	
			starting position	
			and having	
			remained there	
			for 10 seconds,	
			the subject was	
			asked to flex the	
			knee again to	
			reach the target	
			angle. At every	
			angle $(30^\circ, 45^\circ)$	
			and 60°) three	
L	1	1	and obj thice	l

			readings were taken, mean was calculated and recorded as the patient's joint position sense.	
10	Dayanand Kiran, Mary Carlson, Daniel Medrano, Darla R. Smith. June 2010. ¹²	"Correlation of three different knee joint position sense measures."	Isokinetic dynamometer, electrogoniometer , and two dimensional (2D) video analysis were used for measuring knee JPS. The JPS was measured both in sitting and standing positions. All three measures were employed concurrently to measure knee JPS in sitting position; however, only the electrogoniometer and 2D video analysis were concurrently used in the standing position. The knee JPS was recorded in sitting position at 15°, 30°, and 45° and in standing at high, mid and low knee flexion positions.	Either 2D video or an electrogoniomete r may be used to measure JPS in standing position; however, in sitting position 2D video should not be used if the camera is required to be placed at 10 from the plane of motion.
11.	A.L. Boerboom, M.R. Huizinga, W.A. Kaan b, R.E. Stewart, A.L. Hof, S.K. Bulstra, R.L. Diercks. April 2008. ¹³	"Validation of a method to measure the proprioception of the knee."	Sixteen healthy persons from the Orthopaedic department of the UMCG were recruited as volunteers. To compare our data	he method used is an accurate and valid way to measure the TTDPM and thereby to indicate proprioception in

			with the data from Roberts and Fride'n, the standard testing protocol of Lund was followed (validation). First the right leg was tested in the starting position of 20 ^o flexion, secondly at 40 ^o . Thirdly the left leg was tested at 20 ^o and finally at 40 ^o . In each test 10 measurements towards flexion (TF) and 10 towards extension (TE) were done at random. The leg was moved with an angular velocity of 0.58/s. After each measurement the leg was repositioned and the starting position was automatically checked or	healthy persons. As most research in clinical settings is done in ACL deficient subjects, the following step will be to assess if patients with an ACLrupture have a different TTDPM compared to healthy persons.
10	I OLSSON DT	"Test retest	corrected.	Based upon the
12.	L. OLSSON, PT MSc-student1, H. LUND, PT, PhD1, M. HENRIKSEN, PT, MSc- student1, H. ROGIND, MD, PhD-student2, H. BLIDDAL, MD, DMSc, and B. DANNESKIOLD	"Test-retest Reliability of a Knee Joint Position Sense Measurement Method in Sitting and Prone Position."	Thirty-nine healthy volunteers (17 women, 18-50 years old) participated. The JPS was measured as the participant's ability to reproduce the same position in the right knee	Based upon the fair to good reliability of the applied method for measuring JPS over the knee, we suggest the following procedures for determination of JPS over the knee: (i) the JPS should be

		44 4	1 1 4 1 41
-SAMSØE, MD, DMSc. 2004. ¹⁴		(target vs. estimated angle). The result was	calculated as the AE between target and
		expressed as the difference between target and estimated angle. Measurements were repeated three times with three different target angles (prone position: 408, 708, 1008 flexion; sitting position: 308, 508, 708 flexion), and for single leg and both legs. Three test sessions were performed with 1- h and 1-week interval.	estimate position; (ii) sitting should be preferred to prone; (iii) ipsilateral should be preferred to counter-lateral; (iv) test angle should be in the middle (suggested from 408 to 808 flexion) of the knee joint's range of motion. With these precautions, the test seems to be a reliable measure of JPS
13. Danny M. Pincivero, Brad Bachmeier, And Alan J. Coelho. October 2000. ¹⁵	"The effects of joint angle and reliability on knee proprioception."	Twenty college- aged male and 20 female volunteers were evaluated for proprioception by a newly developed perturbation test. Subjects were in a prone position on an isokinetic chair with their right lower leg attached to a freely moving resistance adapter. The knee was placed in a starting position of 15, 30, or 60 degrees of flexion. While relaxed, the knee	in healthy controls. The major findings of this study suggest that the detection of passive knee movement, and the subsequent voluntary response, may be dependent on joint angle. Considerations of the present method for proprioception assessment are warranted to enhance test- retest reliability.

was dropped into
extension, and
the subjects were
instructed to
"catch their leg"
when movement
was perceived.
Five trials were
completed at
each angle, in a
random order. An
electrogoniometer
was secured to
the lateral
portion of the
knee in order to
measure angular
displacement
after perturbation
in two specific
phases: detection
(displacement
from leg release
to movement
cessation) and
response
(displacement
from movement
cessation to peak
knee flexion). A
three-factor
ANOVA (two
repeated factors
(knee angle and
proprioception
phase) and one
between factor
(gender)) was
performed on the
average and
standard
deviation of the
five trials for
significant main
effects and
interactions.

Discussion

Proprioception plays a crucial role in human movement control, which is fundamental for daily activities, exercise, and sports. To explore proprioceptive mechanisms, many techniques have been widely used in the literature, such as single limb standing or high sitting position, CSMI technobody PK-252 isokinetic balance system, isokinetic dynamometer, active angle repositioning test, digital goniometer, universal goniometer, electrogoniometer, 2D video analysis, threshold to detection of passive motion (TTDPM), joint position reproduction (JPR), active movement extent discrimination apparatus (AMEDA), but their applicability, ecological validity, test validity, and data validity differ. The TTDPM method has less relative ecological validity, but has high conceptual purity, given the prior relaxation of the stimulated musculature, and the control of other information sources. This method has been widely used in neurophysiology studies, when differentiating between the contribution of different mechanoreceptors to proprioception. Although JPR tests may have less relative test validity, the method is efficient and enables exploration of hemispheric asymmetries in sensorimotor abilities. The AMEDA method appears to have better ecological validity and relatively better test validity and data validity.

Acknowledgments

I acknowledge PG students and other collegues for guiding and helping in drafting this manuscript. In addition to this, i also thank to reviewers for their valuable comments on the earlier version of this paper.

References

- Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Physical therapy. 2010 Aug 1;90(8):1176-84.
- Moravveji H, Ghanbari A, Kamali F. Proprioception of knee joint in atheletes and non atheletes obese. Global J Health Sci. 2017;9:286-93.
- Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: a critical review of methods. Journal of Sport and Health Science. 2016 Mar 1;5(1):80-90.
- Das PR, Yadav S, Ankita MR. There is a significant difference between joint position sense among male and female obese individuals in which female obese subjects have performed more Joint Position Sense Error than male obese subjects. JK-Practitioner. 2020 Jan;25(1-4):21.
- SARIALİOĞLU N. Analysis of the Relationship between Proprioceptive Sensory Functions and Body Mass Index Parameters of Football and Volleyball Players. Uluslararası Anadolu Spor Bilimleri Dergisi. 2019 Aug;4(2):12-6.
- Karkousha RN. Sex differences of knee joint repositioning accuracy in healthy adolescents. Bulletin of Faculty of Physical Therapy. 2016 Jun;21(1):56-60.
- Nitsure P, Prabhu S. Study of differences in proprioception of knee joint with age, gender and lower limb dominance in healthy asymptomatic individuals: an observational study. Sports Med. 2015;2015:1-5.
- Macwan N, Parmar LD. Proprioceptive Impairments in OA Knee Patients.

3918

- Li L, Ji ZQ, Li YX, Liu WT. Correlation study of knee joint proprioception test results using common test methods. Journal of physical therapy science. 2016;28(2):478-82.
- Mir SM, Talebian S, Naseri N, Hadian MR. Assessment of knee proprioception in the anterior cruciate ligament injury risk position in healthy subjects: a cross-sectional study. Journal of physical therapy science. 2014;26(10):1515-8.
- Kumar A. Joint proprioception in normal and osteoarthritic knees. Journal of Yoga & Physical Therapy. 2012;2(4):1-4.
- Kiran D, Carlson M, Medrano D, Smith DR. Correlation of three different knee joint position sense measures. Physical Therapy in Sport. 2010 Aug 1;11(3):81-5.
- Boerboom AL, Huizinga MR, Kaan WA, Stewart RE, Hof AL, Bulstra SK, Diercks RL. Validation of a method to measure the proprioception of the knee. Gait & Posture. 2008 Nov 1;28(4):610-4.
- Olsson L, Lund H, Henriksen M, Rogind H, Bliddal H, Danneskiold-Samsøe B. Test-retest reliability of a knee joint position sense measurement method in sitting and prone position. Advances in Physiotherapy. 2004 Mar 1;6(1):37-47.
- Pincivero DM, Bachmeier BR, Coelho AJ. The effects of joint angle and reliability on knee proprioception. Medicine and science in sports and exercise. 2001 Oct 1;33(10):1708-12.
- Suryasa, W., Sudipa, I. N., Puspani, I. A. M., & Netra, I. (2019). Towards a Change of Emotion in Translation of Kṛṣṇa Text. *Journal of Advanced Research in Dynamical and Control Systems*, *11*(2), 1221-1231.
- Yarmukhamedova, N. F., Matkarimova, D. S., Bakieva, S. K., & Salomova, F. I. (2021). Features of the frequency of distribution of alleles and genotypes of polymorphisms of the gene Tnf-A (G-308a) in patients with rhinosinusitis and the assessment of their role in the development of this pathology. International Journal of Health & Medical Sciences, 4(1), 164-168. https://doi.org/10.31295/ijhms.v4n1.1671