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Abstract---The government hospitals in India influenced by multiple 

factors causing longer waiting time of patients in comparison to 

private hospitals, which worsen the threat to healthcare facilities. The 

optimization of available resources considering the arrival rate of 
patients and the availability of facilities for the minimization of 

queuing is the utmost requirement. The current study has been 

carried out within the outpatient's department to minimize queue 
length of one of the largest and busiest hospital, AIIMS in Delhi, 

represent a struggling health care delivery system with high waiting 

times of patients. The primary queuing data was collected for total 
samples of 1200 patients during the four-week study period (1st July 

to 30th July 2020), (Monday-Friday) and working hours of general OPD 

(08:30 am to 01:00 pm). The detailed queuing secondary data was 
collected from AIIMS for three years (1st January 2015 to 31st July 

2017). Data has been analyzed by queuing models, M/M/1: Poisson-

exponential, single server model-infinite population and up to M/M/8: 

Poisson-exponential, multiple server model-infinite populations. 
 

Keywords---Queuing model, Optimization of Queues, AIIMS, single 

server model and multiple server model. 
 

 

1 Introduction 
 

A significant criterion for efficiency measurement within the service industry is 

the waiting time (Tadj, 1996; Sharma et. al. 2010, 2011). The issue of waiting 
times of patients and queue length assessment has been widely researched in 
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healthcare (Barlow, 2002; Obulor and Eke, 2016; Ibrahim, 2017; Mittal and 

Sharma, 2020b); however, maximum studies have been conducted in the 
developed world, and very few studies have analyzed the queuing systems in 

India. The queuing problem is immensely crucial in the healthcare services, due 

to the involvement of high morbidity and mortality rate of patients.  
 

When contemplating changes in infrastructure, the healthcare manager balances 

the costs of offering a specific level of service against the future costs of waiting 

for treatment. The two core costs referred to here are the costs associated with 
waiting time for patients who may be unable to wait for the service and choose to 

go to some other hospitals, costs associated with the delay in care and value of 

the amount of time spent for patients and the reduction in patients satisfaction. 
Service costs include staff salaries and employee benefits or servers waiting to be 

served on other servers. By using the cost estimate, decision-makers can 

determine the optimal server number, reducing the total costs, including the cost 
of the service and the cost of waiting. The waiting costs for each person depending 

on what the person earns each hour. A.K Erlang first analyzed the queuing theory 

in 1913. The theory has been used in many fields of industry and public service 
since the Second World War (Kalashnikov, 1990; Lee et al., 1997). Queuing 

literature notes that waiting in line or queue creates economic costs to individuals 

and organizations. Healthcare, airlines, banks, manufacturing firms and other 

businesses are seeking to reduce the overall waiting costs and customer support 
costs. The researcher worked on the modelling of impact on the use, the waiting 

time, and the likelihood of refraining patient bed assignment policies. Several 

studies are carried out to investigate customer satisfaction using Queuing theory.  
Excessive waiting and service times worsen the patient demand, increases the 

cost of health care, constitute a barrier to effective treatment, and causes 

dissatisfaction among the patients (Thomas, 2013) where they might leave the 
system without receiving the service. Due to increasing competition, private 

players in healthcare services strive to provide fast and efficient health services to 

attract more patients. All India institute of medical science (AIIMS), Delhi also 
teamed up with Indian Statistical Institute (ISI) to intelligently and accurately 

predict the patient turn up the rate to every department by scientifically analyzing 

the historical turn-up data from e-hospital (AIIMS, 2020). In the queuing system, 

by considering a stream of arrivals, arriving at a service node, within which they 
are processed, and then exiting from the system shows in Figure 1. The node can 

only take a certain number of arrivals and process them at the same time.  

 

 
Figure 1: Schematic representation of Queuing system in AIIMS, Delhi 
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2 Literature Review 

 

The analysis of waiting time in healthcare systems can be approached 

mathematically using queuing theory (Rotich, 2016). Queuing theory is a classical 
approach that has been employed to gain insight into hospital processes since the 

1950s (Lee et al., 1997; Titovtsev, 2016). An ineffective and inefficient 

appointment system is one of the main issues for the long waiting time of patients 
in an outpatients department. Therefore, various studies have been conducted 

which aim at improving the appointment scheduling in an outpatients' 

department. Nuyens (2004) investigated the average as well as the maximum 
length of the queue in an outpatients' department, and assessed their 

relationship with other queuing factors such as average wait time, an average 

number of patients served and maximum idle and busy time for doctors.  The 
author considered the queue length for one particular examination room and 

evaluated its relationship with the arrival rate of patients (Mittal and Sharma, 

2022b). They concluded that although queue length increases as arrival rate 

escalate, it is not overwhelming. Akilan (2011) proposed changes to the existing 
appointment schedule by investigating the effect of overtime, no-show rate and 

overbooking on congestion and increased length of stay. Lefeber et al. (2011) 

developed several appointment systems by incorporating different combinations of 
various appointment rules and patient sequences. These appointment systems 

were tested for punctual patients as well as for no-shows. Kirpichnikov and 

Titovtsev (2016) provide particularly focused on identifying multiple elements 
which led to long queues and testing different appointment systems to identify an 

optimal system. 

 
Bako et al. (2017) developed a model of determining optimal rules for an 

outpatient appointment system. These factors included the uneven distribution of 

appointment slots, late start of sessions, unused sessions when no patients are 

seen and irregular calling sequence of appointment patients for consultation. The 
length of the queue has explicitly been included as a significant queuing variable 

in some studies. Setiawan and Nugraheny (2019) specifically considered routine 

and urgent patients in order to analyze and improve the current outpatient 
appointment scheduling, by assessing the queue length, wait time, and 

physician's idle time and overtime. Yaduvanshi et al. (2019) stated that if this 

property does not obtain, or cannot be approximated within a fair degree of 
accurateness, then queuing theory is unable to provide a systematic solution to 

the waiting-time problem unless priorities do not play an essential role in the 

service mechanism. Joseph (2020) included length of the queue as a measure of 
congestion in an emergency department, particularly considering those patients 

who left without being seen due to excessive waits. They evaluated the queue 

length and wait times for two types of queues, including the queue for treatment 

and queue for bed in the ward. 
 

2.1 Motivation and objective of the study  

 
In this current study, data has been collected from the outpatients' department of 

one of the largest and busiest government hospitals in India, i.e. AIIMS, Delhi, a 

representative of struggling health care delivery systems with high waiting times 
of patients. Appointment system and overcrowding was another major issue faced 
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by AIIMS OPD. The large number of patients arrive daily along with the care 

takers/relatives make the place over crowded (AIIMS, 2020) and affects the 
functioning of the system. The minimization of queues in AIIMS, Delhi health 

facilities affected by several factors causing higher waiting time of patients, and 

several studies reflect that waiting time in AIIMS, Delhi is relatively longer in 
comparison to private hospitals. The various waiting times are also experienced in 

different service categories in health facilities, with studies indicating that an 

emergency section tends to have short waiting times. Analytic solution of the 

model relies on the Poisson nature of the arrival process. If this property does not 
obtain, or cannot be approximated within a fair degree of accurateness, then 

queuing theory is unable to provide an analytic solution to the waiting-time 

problem unless priorities do not play an essential role in the service mechanism 
(Mittal and Sharma, 2020a). 

 

Queuing is an essential criterion of efficiency assessment which represents the 
operational capability of large busy government hospitals, with excessive queuing 

causing inconvenience for the patients. However, besides continuously striving to 

achieve this goal, there is a dire need to construct a framework which could guide 
the management of the busy hospital to minimize the excessive waiting by 

patients, in the absence of prior appointments, given the current meagre 

conditions. The study carried out to minimize the queue length of AIIMS, Delhi, 

with the optimization of resources.  
 

2.2 The rationale of the study 
 

The problem of prescribing waiting times of patients was studied where the 

patient's long waiting time is described by a state space, X. In practice, X may 
consist of a set of vectors whose components correspond to various measures of 

prolonged wait times (high patient load, time of arrival, age, few doctors, day of 

arrival, treatment-related diagnosis, providers, record clerks and clinicians, etc.).  

In this case, to trace the problem, we need to assume an ordering of these states 
(vectors). In doing so, we lose no generality in also assuming that states can be 

represented by natural (scalar) numbers. For simplicity, we model X: = {1, 2, ..., n} 

for some positive integer n ≥ 2. Here we take state 1 to be the best state of health 
and state n to be the worst. The practitioner (e.g. a physician) has a finite 

number, k, of possible treatments to prescribe to the patient during each 

appointment. Let A: = {1, ..., k} denote the set of treatments. Associated with each 

treatment a ∈ A is a waiting time w(a), and two rates λ(a) and µ(a) where(λ): Mean 
arrival rate, (µ): Service Rate. The treatment queue function w: A ›→ R+ is 

assumed to be independent of the patient's state of the queue, and represents the 

entire queue of a particular treatment incurred from the time of prescription until 

the next appointment. The rate functions λ: A ›→ R+ and µ: A ›→ R+ are also 
assumed to be independent of the patient's waiting time and represent treatment 

response.  

 
More specifically, λ(a) can be thought of as the rate at which the patient is 

waiting time worsen to the next highest state when undergoing treatment 

'a'. Similarly, µ(a) is interpreted as the rate at which the patient's service 
rate improves to the next lowest state while using treatment 'a'. We assume 
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that the treatments are ordered by (increasing) Service Rate and effectiveness. 

That is, the author assumes 

𝑤(1) ≤  𝑤(2) ≤  …  ≤  𝑤(𝑘) 
 

𝜆(1)  ≥  𝜆(2)  ≥ . . . ≥  𝜆(𝑘) 
 

                     µ(1)  ≤  µ(2)  ≤ . . . ≤  µ(𝑘)                    (1) 
 

Given the dynamics of this queuing model, there is an immediate tradeoff 
between the patient's overall state of service rate (µ) and mean arrival rate (λ). 

 

3 Method and Methodology 

 
The current study has addressed a significant issue by highlighting the suffering 

of patients in terms of long wait times at a typical overcrowded government 

hospital (AIIMS, Delhi) in India. Queuing theory have real applications to reduce 
wait-time of a queue, emergency department service system, etc. (Thomas, 2013; 

Mittal and Sharma, 2022a). In Kendall's notation 

A/S/c(Arrival/Service/Channel), inter-arrival times that are exponentially 
distributed are defined by an M (referring to the Markovian property of the 

distribution) (Kalashnikov, 1990). Thus, we write M/M/c, which in short yields 

the distribution between first the arrivals, then the finished services, and last the 
number of parallel servers (Zhang et al., 2014). In this paper, a single server 

model is used the notation M /M /1 to characterize the priority queuing system in 

the queuing model. 

Table1: Model formulation criteria 
 

S.No. Model Factors Parameters 

1 Set up Hospital 

2 Input Arrival of Patients 

3 Output Relieving of Patients  

4 Mechanism Services 

5 Queue Discipline First-Come-First-Serve (FCFS) 

 
3.1 Markov Processes 

 

A random current state on how it arrived in the current state is said to be a 
Markovian process. The mean inter-arrival times and mean arrival rates may be 

deterministic or probabilistic. Either of these measures suffices in describing the 

arrival pattern. 
 

Arrival: Mean arrival rate and is denoted by A(t). Where 𝐴(t)=Prob 
[the time between arrivals ≤t] (Chang, 2019).   
 

Service: Service patterns may be deterministic or stochastic. In case these are 

stochastic, the service time distribution, like the inter-arrival distribution, also 

follows some type of probability distribution denoted by B (t), that is B (t)=Prob 

[service time ≤ t] (Chang, 2019). 
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Markovian Property: One of the unique features of the exponential distribution 

is the 'memoryless' or 'forgetfulness' or 'Markovian' or property. 
 

A(t)=λe-λt   , t ≥ 0                        (2) 
The conditional probability of arrival during the time interval (t, t + dt) given 

that arrival has not taken place in [0,𝑡0]   is defined as  

Prob {t<T<t+
at

T
≥t0}=

P{t<T<t+dt}

P{T≥t0}
 

                                                        
𝑎(𝑡)𝑑𝑡

1−𝐴(𝑡0)
 = 

𝜆𝑒−𝜆𝑡𝑑𝑡

𝑒−𝜆𝑡0
 = λ𝑒−𝜆(𝑡−𝑡0)dt            (3) 

 
Which shows that the entire inter-arrival time and the residues inter-arrival time 

after time  𝑡0 have the same exponential distribution. Taking 𝑡 = 𝑡0 , we see that 

the probability of arrival during (𝑡, 𝑡 + 𝑑𝑡)does not depend upon the time since the 
last arrival. That is why Poisson arrivals are also called random arrivals. 
According to the basic structure, queues can either be Markovian or non-

Markovian . 

 
Arrival and Server: In order to model the arriving patients, we must consider the 

process that generates them.  In this paper, arrivals are always stochastic and 

generated according to a Poisson process. Thus, by letting k∈𝑵𝟎 define the 

number of arrivals in a time-interval of size 𝒕 ∈ 𝑹 ≥ 𝟎 we have that  
 

𝑃𝑟𝑜𝑏{𝑘 within 𝑡}  =  𝑝𝑘 (𝑡)  =  𝑒−𝜆𝑡  
(𝜆𝑡)𝑘

𝐾!
              (4) 

𝜆𝜖ℝ > 0 is the constant rate at which patients are arriving at the system.  
 

Distributions 

 
A queue of the type M/M/c can be viewed as a birth-death process. That is, a 

continuous-time Markov chain where the system can only change to the state 

s∈{0,1,2,...,∞} through, the state of the process is either s = s + 1 (a single birth) 
or s = s – 1 (a single death) . 
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Figure 2:  Infinite M/M/s model  

 

 
Figure 3: Finite M/M/s model  

 
The time being considered in the process depicted in Figure 4, where s denotes 

the no. of patients in the system. This number increases with a rate 

corresponding to the arrival rate λ and decreases with the rate µs = sµ, where 

µR>0 is the rate at which patients are treated at each server (i.e. the reciprocal of 

the mean inter-service time). However, this only applies as long as s ≤ c; 

otherwise, the rate is bounded at µs = cµ. 
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Figure 4: The state transitions associated with the M/M/c queue. 

 

A system is considered that has capacity-limit such that patients are lost from the 

system if all servers are occupied on arrival. That is, a queue of the type 
M/M/c/c, where the last c indicates capacity is equal to the no. of 

doctors/servers. In practice, this type of system occurs whenever patients do not 

wait for a resource (e.g. a nurse or a physician), but instead are relocated to a 
location where capacity is still available. Thus, the total no. of patients in the 

system is defined as s ∈ {0,1,...,c−1,c}, so the associated birth-death process 
comprises a finite number of states (Prasad, and Koka, 2015).  

 

3.2 Queuing Models 
 

Methodologically author mainly focus on evaluating the different instances of 

patient flow based on Markov chain modelling and using queue models. Design of 
queuing systems deals with determining the optimum system parameters such as 

the service rate, number of server's, number of service facilities, desirable waiting 

space or the appropriate queue discipline. In service operations management, it is 
always recommended to use a standard methodology that enables to understand 

the current processes, determine the desired changes and improve them. The 

present paper aims at optimizing queues in OPD department of AIIMS. Using in-
depth analysis of OPDs from different dimensions, the objectives involved in the 

study is to do a study on different departments/ OPDs at AIIMS, Delhi. The input 

parameters for queuing models M/M/1 and up to M/M/8: Poisson-exponential, 

multiple server model-infinite populations are calculated using number of 
patients in the system denoted by n, average arrival rate denoted by λ and 

average service rate per server denoted by μ. 

 
Markov chains are stochastic processes that are based on the notion that a 

system can be defined by a set of states referred to as the state space, S. The 

process can only attain a single state S at a time, but in return change (or 
transition) between the states as the process evolves. Further, the name Markov is 

derived from the Markovian property of the process, meaning that if at time tk the 

process is in state sk , then a transition at time tk+1 to a new state sk+1 is only 

dependent on sk , and not on the history of the system (Suganthi, C. and S., 

2020). Say we let X(t) ∈  S define a stochastic process that evolves t ≥ 0, and 
further that this process attains the states in a sequence t0 < t1 <--------< tk−1 < tk  
< tk+1, where k є N0 is the index of the sequence, then for a Markov chain(Taha, 

2017) 

 

𝑃𝑟𝑜𝑏{𝑋(𝑡𝑘+1) = 𝑠𝑘+1    |𝑋(𝑡𝑘) = 𝑠𝑘 
𝑋(𝑡𝑘−1) = 𝑠𝑘−1  ,…𝑋(𝑡0) = 𝑠0} = 𝑃𝑟𝑜𝑏{𝑋(𝑡𝑘+1) = 𝑠𝑘+1     |𝑋(𝑡𝑘) = 𝑠𝑘}       (5) 

 
Consider, for instance, the birth-death process for the aforementioned M/M/c 

queue in Figure 4. The number of patients when looking at the health care system 
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is either due to a recent arrival or discharge. Furthermore, because the inter-

arrival and inter-service times follow a continuous distribution, a transition can 

occur at any point in time; hence t ∈ R0.   
 

3.3 Optimization  
 

Minimizing this function will ultimately lead to an increased patient waiting time 

since fewer resources will be available to serve the patients. For this reason, the 
department has identified a set of nodes in the patient's path, denoted J, where 

the waiting time should not exceed a specific limit for a fraction of the patients. 

The department has additionally identified a relationship between the number of 
each employed staff type and the fraction of patients that exceed this limit, which 

can be modelled by a waiting time function Wj (x) for all j∈ J. Additionally, 

function Wj (x) is constrained by a lower bound denoted bj for all j∈ J . Further, 
assume that all staff types are subject to several departmental rules, union 

settlements, and practical limitations which can be modelled by the system of 

linear inequalities Ax≥ β, where β is a vector of length  |K|, A is a |K|×|I|  
matrix. K is a set that comprises all necessary staff-constraints. For the 

convenience of this example, we assume that these constraints can be expressed 

by employing x directly without introducing any further dimensions to the vector, 
with this finally yielding the optimization problem. 

 

Minimize cx 

Subject to, Wj (x) ≥ bj where, ∀j ∈J, Ax ≥ β and xϵN0  

 

Due to the complexity of the waiting time functions, Wj (x)j∈J, we assume that 
optimality cannot be proven for all the constraints by employing any known 

solution approach (Taylor and Karlin, 2014). 

 
3.4 Model Formulation 

 

The M/M/1 model was designed considering a single-server system that sees K 
classes of patients. Their arrival rates differentiate the patients, processing 

requirements, mean arrival rate (λ), Service rate (µ) and (potentially) long waiting 

times. The long waiting times can alternatively be viewed as weights (high 

patient load, time of arrival, age, few doctors, day of arrival, treatment 
related diagnosis, providers, record clerks and clinicians, etc.) of importance 

among patient classes, where a patient class with a higher weight is more critical 

in comparison to lower weight. We consider multiple settings in which some 
Patient classes are of higher priority than others. Here, the holding long waiting 

times among the less urgent patients allows flexibility in modelling the relative 

importance of the less urgent patients, while maintaining that they are lower 

priority than the high-priority patients. The state space is 𝕩 ∶= 𝕫+
𝐾  , where the 

kth component (𝑘𝜖[𝐾] ∶= {1, . . . , 𝑘} ) of a state x∈ X.  For each state x, the action 
space is A(x):= {k ∈ [K]: xk  > 0}:   the server may be allocated to work on any 

class that is present in the system.     In the particular case that 𝑥 = 0𝜖ℝ𝐾 , we 
set A(x) = {−1}, where −1 denotes a “dummy” action to represent (forced) 

idling. Note that with this definition of the action space𝐴 ∶= 𝑈𝑥𝜖𝑋 A(𝑥), we 
restrict ourselves to non-idling policies. 
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Letting 𝑒𝑘𝜖ℝ
𝐾   (𝑘𝜖[𝐾]) , we describe the transition dynamics of the system by 

the generator  

 

𝐺(𝑦|𝑥, 𝑎)

=

{
 

 
𝜆𝑘                                                                                       𝑦 = 𝑥 + 𝑒𝑘                                                         

𝜇𝑎                                                                                   𝑦 =  𝑥 − 1{𝑥𝑎  > 0} 𝑒𝑎                                        

−∑ 𝜆𝑘−   𝜇𝑎  1{𝑥𝑎  > 0}
𝐾

𝑘=1
                                       𝑦 = 𝑥                                                                 

 

 

Where 1{·} denotes the indicator function. Waiting-Time function Wk: X → R+ 

is 𝑊𝑘(𝑥) = ℎ𝑘𝑥𝑘 .In this setting class, we can restrict our search for an optimal 

policy to the class of stationary policies (Fiems & De Vuyst, 2018). A stationary 

policy assigns actions based only on the current state of the system, 

regardless of the point in time at which the decision is being made. More 
formally, a stationary policy σ is a collection of probability distributions (σx) 

x∈X, such that Markov chain Xσ = {Xσ(t): t ≥ 0} on the state space 𝕩 (Taylor 

and Karlin, 2014). The order of Patient service given is based on their priority and 

within each priority class FCFS. In this entire paper, the patient service time is 

assumed to be exponential and is class dependent, and there is a single server (1) 
& multiple servers (8) in the system. The single server and multi-server variables 

are defined as: 

 
I-Poisson-exponential, M/M/1 model (single server queuing model) 

 

Lq = Expected number of patients waiting in the queue 

Lq = 
ρ2

1-ρ
    Where ρ= λ/ μ, λ = arrival rate, μ = service rate  

Ls = Expected number of patients in the system (waiting + being served)  

Ls = 
ρ

1-ρ
 

Wq  = Expected waiting time in the queue 

Wq  = 
ρ

μ-ρ
 

Ws   = Expected time a patient spends in the system  

Ws   =
1

μ-λ
 

 

II-Poisson-exponential, M/M/s model (multi server queuing system) 
 

Lq = The average number of patients in line waiting for service is 

Lq = 
(

λ

µ
)
K

K!(1-ρ)
2 P0 where K=Number of servers, ρ= λ/Kμ 

Ls = Expected number of patients in the system (waiting + being served)  

Ls = Lq+
λ

µ
 

Wq = Expected waiting time of a patient in the queue waiting for service 

is 
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Wq  = 
Lq

λ
 

Ws   = Expected time a patient spends in the system  

Ws   = Wq+1/µ 
 

4 Study Area 

 
There are 19 single window operational counters in AIIMS, where patients could 

seek their next appointments and dates for the various tests that were necessary. 

A total of 52 counters are operational in public reception center for the 
registration of patients. The AIIMS runs general medical clinics daily and 

specialized clinics from Monday to Friday (AIIMS, 2020). Most patients are seen 

on a walk-in basis without scheduled appointments with few patients admitted 
for day observation and minor procedures. There are 22 counters for current 

booking and 18 are the fast tract counter which took less than a minute for the 

registration of patients. 

 
4.1 Data collection 

 

Detailed queuing secondary data was collected at the designated AIIMS Hospital 
departments in Delhi over three years (1st January 2015 to 31st July 2017), a few 

specialist OPDs and pharmacy. The primary queuing data was collected for a total 

sample of 1200 patients per doctor (1st July to 30th July 2020) (AIIMS, 2020). 
Some of the forms depicting incomplete information are not considered in the 

study. Therefore, the data of 1200 patients were considered for queuing analysis. 

The data was collected during the working days (Monday-Friday) and period: 8:30 
am to 01:00 pm. 

 

4.2 Study population 
 

The study population included all patients seeking outpatient care services at the 

AIIMS, Delhi health services during the four weeks of study. 

 
Sample size: In total, 1200 respondents were recruited during the four-week 

study period. 

 
Variables: A fundamental principle of queuing theory is: L = λW (Little's law. 

(Little, 1961). Average queue size/ No. of patients in the queue (L) = Mean arrival 

rate x the average patient waiting time (W). 
 

The dependent variable: patient waiting time while the  

Independent variables: were the demographic factors like age, sex, patient 
condition (employee, employee dependent and student) and patient arrival time 

 

Waiting time: The difference between when a patient arrived and when service 

started 
 

Service Time: Difference between the time a patient entered until when he/she 

exited the system/mean time in the system 
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Length of Queue: The length of the queue at a particular point in time (Prasad, 

V.H and Koka, 2015) 
 

5 Results and Discussion 

 
The study has been carried out at AIIMS, Delhi to minimize the queue length.  

The three years of data collected from various departments of the hospital are 

shown in figure 5. The bar graph shows the comparison between the number of 

patients who visited the hospital. In the year 2016, the maximum numbers of 
patients arrived at the hospital in all the departments (AIIMS, 2020). The 

comparison between the mean patients and new patients shows that new patients 

turn up is significantly large in comparison mean no. of patients (as shown in 
figure 5). The number of New Appointment Attended (NAA) at AIIMS found to be 

approximately 2200, 3300, 2100 in 2015, 2016 and 2017 respectively average 

daily flow. The significant increase in the arrival of the patient definitely would 
lead to the generation of a long queue. The efforts for the minimization of queue 

length for the best treatment in minimum time is the urgent requirement for all 

the hospitals.  
 

Table 2: Mean weekly data of AIIMS general OPD at each server 

 

Days No. of 

patients 

Average waiting 

time in queue 
(mins) 

Average 

service time 
(min) 

Total time in 

system (min) 

Monday 45 162 23 185 

Tuesday 41 155 18 173 

Wednesday 39 160 16 176 

Thursday 41 158 20 178 

Friday 35 145 22 167 

Average 40 156 20 176 

 

 
Figure 5: AIIMS Department wise visited/NAA patients (2015-2017) 
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AIIMS caters to a patient load of about 40- 50 patients per day in general OPD 

only, and the patients may be admitted in medical or surgical emergency (AIIMS, 

2020). This strategy paid off for 14 per cent of patients who started arriving early 

at 6:00 am in the hospital. For the majority of patients in every department, then, 
the strategy of coming early did not pay off; in fact, it had the opposite effect of 

lengthening queues and increasing waiting time (Ryan, 1963). The patients in 

hospitals are managed by distributing of 8-10 according to the number of doctor's 
available. It was observed that out of the total people waiting outside the gates at 

6 am, the patient count is approximately 50% of that, and the rest of the people 

are accompanied/escort to patients. All the patients are served on first come first 
served basis. However, it was found that maximum patients arrive in between 

7:00am to 10:00am. It further noted that patients were not seen until 8.30 am. 

After adjusting for all the other factors, a fascinating phenomenon is seen for 
patients who arrived after 11:00. This may be due to breaking off times of some 

doctors. The distribution on patients on weekly basis is shown in table 2. The 

distribution shows that maximum patients arrive on Monday and least number of 

patient approach on Friday. The Figure 6 and 7 shows the average waiting time in 
queue and total time spent in system by the patients.  

 

 
Figure 6: Average waiting time in queue of patients (in mins) 
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Figure 7: Total time spent by patient in hospital (in mins) 

 
Queuing model analysis shows that the optimal service level where the waiting 

time is minimized, as shown in table 3. The assessment of the results 

demonstrates that some general relationships are underlying the waiting times. 
Research data analysis revealed an average of 200 minutes (i.e. 3.38 hours) of 

waiting time at AIIMS, Delhi, with the increase in the service levels/servers, 

average waiting times will be reduced while decreasing in the service 

level//servers induces increasing average waiting times.  As expected, the waiting 
time of patient demands is directly proportional to the condition of the patients 

for whom a server/doctor/service provider is responsible for the change. Also, as 

the patient's load on the service provider decreases, the supplementary decrease 
in service delay is inversely proportional to the demand priority-that is, the higher 

the priority, the smaller the possible decrease in the delay of service. A study as a 

result of this noted that most doctors take their breaks between 1 pm-2 pm, 
resulting in a one-hour interval of minimal service. A similar application of the 

methodology also draws attention to several shortcomings of this type of models 

(Yaduvanshi et al., 2019). The author observed that online appointment system at 
AIIMS ends long queues, patients were able to take appointments over the phone 

(through the call center), IVRS (toll-free), on-site (Registration counters) and on 

the web (e-hospital), (AIIMS, 2020). Similarly, Queuing models M/M/1 to M/M/8: 

Poisson-exponential, multiple server model-infinite preemptive repeat-different 
and non-preemptive priority queues with thresholds on the maximum number of 

patients allowed to be in service and the queuing system (Wagner, 1997). In this 

paper, waiting for time distribution of a queuing process was obtained as similar 
the waiting time distribution of a set of particular events or patterns of an 

imbedded Markov chain which portrays the original queuing process (Chang, 

2011). The author identified the research gap of queuing factors specifically for a 
queue system with no appointments in AIIMS Hospital. Most important here is 

the fact that the analytic solution of the model relies on the poison arrivals see 

time averages and Poisson similar nature of the arrival process.  
 

155

160

165

170

175

180

185

190

Monday Tuesday Wednesday Thursday Friday

Ti
m

e 
(m

in
s)

Days



 

 

7051 

Table 3: Estimation using Queuing Models 

 

Characteristics M/M/2 M/M/4 M/M/6 M/M/8 

L 5.63 3.92 1.66 1.23 

Lq  3.78 0.07 0.03 0.01 

W (hr) 3.38 2.35 1.01 0.18 

Wq (hr) 2.38 1.35 0.18 0.01 

ρ 0.83 0.42 0.28 0.21 

 

6 Conclusions 
 

The present study specifically targeted the evaluation of a queue system with 

prior appointments in an outpatients' department of a busy Government. Hospital 
(AIIMS Delhi) in India, and has identified the operational characteristics of 

different queuing variables particularly within this context. Evaluated the queue 

system of an outpatients' department in a busy AIIMS hospital. In this paper, the 

author considers only queue models having Patients arrive at the AIIMS as 
Poisson processes and the service- time distribution being exponential. Research 

data analysis revealed an average of 4 hours of waiting time at AIIMS. Open 

Waiting time include the queue model of time-dependent demand-side rates, 
increases patient load as waiting times increases, high degree of variability in 

service times. 

 
AIIMS hospital often uses flexible working schedules for overtime, variable 

server/doctor capacity. In this paper, fundamental quantities, such as the 

(effective) mean AIIMS hospitalization time and the patient's load, become 
functions of the queuing model's primitives. The author, therefore, begins by 

characterizing Lq, Ls and Wq, Ws maximal throughput. Waiting time may be 

reduced by increasing more server/ doctors. On the demand side/arrival rates as 

a response to queue lengths/Waiting timeless than service side time spent by the 
servers or doctors= high levels of Patients satisfaction. On the demand side or 

waiting time greater than service side time spent by the servers or doctors that 

means high levels of patient's dissatisfaction. Tradeoffs: demand-side or waiting 
time is equal to service side time spent by the servers or doctors. Future research 

may construct to find out all the problems of queuing and minimization of 

queues, maximize operational efficiency and maximize patient's service 
productivity of queuing system of the outpatient service at AIIMS, Delhi.  
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