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Abstract---Radiologists frequently struggle to define mammography 
mass lesions, resulting in unneeded breast biopsies to eliminate 

suspicions, which adds exorbitant costs to an already overburdened 

patient and medical system..Existing models have limited capability 

for feature extraction and representation, as well as cancer 

classification. Therefore, we built deep Convolution neural networks 

based Computer-aided Diagnosis system to assist radiologists in 
classifying mammography mass lesions. Here, Two-view LASSO 

regression feature fusion and fine-tuned transfer learning network 

model VGG16 were applied for identification of mammogram cancer.  

First, two independent CNN branches are utilized to extract 

mammography characteristics from two different perspectives. Feature 

Extraction is performed by fine-tuning pre-trained deep network 
models VGG16 which extracts deep convolutional features. Second, 

the features of the VGG16 models are serially fused using LASSO 

regression. Lastly, the fused features are entered into the Fully 

Connected Layer for mammogram classification. The high accuracy of 

95.24, senstitivity of 96.11% and AUC score of 97.95% of the 
proposed approach revealed that it should be used to enhance clinical 

decision-making. 
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Introduction 

 

In recent years, artificial intelligence has significantly improved pathologists' 

diagnostic efficiency and accuracy, as well as reduced misdiagnoses due to 
human fatigue and a lack of clinical experience in the field of medical [1]. Breast 

cancer can be cured in 40% to 90% of cases if detected and treated early [2]. The 

most common diagnostic procedure for identifying the breast cancer is 

Mammography which is the X-ray image of a breast [3,4]. The mammography is 

used by doctors to find the signs of breast cancer. It may identify calcifications, 

lumps, dimpling, and so on. These are the most prevalent symptoms of breast 
cancer in its early stages [5]. Mammographic images are a cost-effective way for 

detecting breast cancer, and radiologists can use these images to diagnosis. On 

the other side, radiologists are having more pressure because of producing the 

vast number of mammographic images every day.  In addition the rate of 

misdiagnosis rate has been gradually increased. As a result, putting together a 
CAD) system can minimize radiologists' burden while also enhancing diagnosis 

accuracy. Radiologists can use the CAD to distinguish between normal and 

diseased tissues and diagnose clinical phases. 

 

In recent years, deep learning [6,7] specifically Convolution Neural Networks 

(CNNs) [8] has been demonstrated to perform well  and produced promising 
results in mammogram classification [9,10]. Deep learning CADs have been 

applied to a variety of medical domains, including Interstitial lung disease,  

Cervical cancer classification, pulmonary Peri-fissural nodule classification [9], 

and  Thoraco-abdominal lymph node classification [10]. The works on breast 

lesions [11,12] piqued our curiosity in particular. Convolution Neural Networks 
automatically discover discriminative features and its design is specifically 

transformed to take use of the input image's 2D structure [10,13]. We require 

huge annotated datasets to train deep CNNs, which are missing in the medical 

arena, particularly for breast cancer. Furthermore, training a CNN takes a lot of 

computing power, memory, and time. We can easily overfit the model with the 

limited data. One method is to use transfer learning [14] from medical images and 
then fine-tune the results as stated in [10]. 

 

In deep learning applications, transfer learning is often used. When the amount of 

data is generally limited, it has proven to be particularly useful in the medical 

arena [10,15]. The applicability of transfer learning to mammography images has 
not yet thoroughly investigated. Scholars have recently become interested in fine-

tuned transfer learning networks for performing cancer classification tasks with 

substantial classification performance. The goal of this research is to find and 

classify breast cancer at an early stage into benign, malignant masses, and 

normal in order to reduce cancer risk and improve treatment effectiveness. In this 

proposed work, we built a two-view feature fusion network to monitor and 
discover mammograms. The following is a summary of our contributions: First, 

identify the Cranio-Caudal (CC) and Medio-Lateral (MLO) views of mammograms 

for the same breast. We suggested two independent CNN branches make up the 

two-view feature fusion network, which are utilised to extract mammography 

characteristics from two different perspectives. Fine-tuning pre-trained deep 
network models VGG16 extracts deep convolutional features. Second, the features 

of the VGG16 models are serially fused using LASSO regression. Lastly, the fused 
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features are entered into the Fully Connected Layer for mammogram 

classification. The Curated Breast Imaging Subset of the Digital Database for 

Screening Mammography is used in all of the tests in this study (CBIS-DDSM) 
 

Related Work 

 

Rakhlin et al. (2018)  [16] offered a deep learning-based method in which the 

features were extracted using VGG16, Inception V3 and Resnet-50. The 

classification is driven by LightGBM classifier with ten-fold cross-validation. Their 
approach had an average accuracy of 87.2% across the board. Chougrad et al. 

(2018) [17] developed a mammogram-diagnosing deep convolutional neural 

network. The impact of transfer learning was investigated in training CNN model 

to find optimum fine-tuning approach. While picture patches can improve feature 

extraction efficiency to some extent, they also miss some global diagnostic 
information. On the DDSM database, they achieved 97.35% accuracy and 0.98 

AUC; and on the INbreast database, they achieved 95.50% accuracy and 0.97 

AUC. 

 

Wang et al. (2016) [18] used stacked auto-encoder which is a deep learning model 

to diagnose breast lesions. The combined study of microcalcifications and breast 
masses resulted in satisfactory accuracy. Li et al. (2018) [19] used CNN to detect 

anomalies and found that they had a high sensitivity for determining whether the 

anomalies were benign or malignant. Huynh et al. (2016) [20] employed transfer 

learning to obtain deep features automatically for breast lesions and found that 

they performed well when compared to characteristics extracted analytically. V. 
Sridevi et al (2020) [21] used the KMC-GF feature extraction. The KMC-GF 

approach has the advantage of obtaining fine texture data from the clustered 

region and providing shape and orientation features. When compared to GLCM 

features, the KMC-GF feature performs well in terms of early breast cancer 

identification 

 
To diagnose breast microcalcification, Cai et al. (2019) [22] suggested a CNN 

model. Furthermore, in order to fully exploit the benefits of handcrafted features, 

they combined handcrafted and deep features in that study to increase the 

model's performance. Carneiro et al. (2015) [23] demonstrated the benefits of pre-

trained deep learning models in medical images. With datasets INBreast and 
DDSM, an AUC of 0.90 was achieved in multiple mammography. V. Sridevi et al 

[24] used gray-scale based FCM clustering for segmentation which performs well, 

as it can expose pixels in terms of grey value level, allowing it to reveal 

hierarchical position of linked defects by grey value. Wang et al. (2019) [25] 

investigated a breast cancer based on feature fusion and CNN deep features 

which includes both texture features and density features. He et al. (2018)  [26] 
developed a classification model for testing diagnostic performance on 

discriminating malignant tumours based on deep CNN features. They 

demonstrated that a deep learning classification model based on picture texture 

characteristics can successfully distinguish benign and malignant masses.   
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Research Aim and Scope 

 

The goal of this research is to develop an effective automated deep learning 

approach to assist radiologists in accurately and quickly classifying lesions into 
benign, malignant and normal image. The workflow of the method is shown in 

Algorithm 1. The schematic representation of workflow is depicted in Figure 1. 

 

(1) Input:  MLO view mammography mass image  and CC View 

mammographic mass image  

(2) Output: Diagnosis resultant matrix  

(3)  Initially, pre-processing techniques are applied to remove artefacts and noise 
in raw mammograms, and then improve the quality of image and  followed by 

data enhancement methods to highlighting the breast lesion. 

(4) To deal with overfitting difficulties, data augmentation approaches are used to 

increase the number of mammograms, and the dataset is spitted into train, 

validation, and test sets. 
(5) Computation of deep feature matrix using pre-trained model from each view of 

image   and   

(6) Calculate Fusion feature matrix using LASSO regression with L1 – penalty loss 

function  

  

(7) Train softmax classifier with fully connected layer and classify the input image 

as benign, malignant and normal  and predict  and  

(8) Return resultant matrix Y 
 

Algorithm 1. Workflow of Proposed Model 

 

 
Figure 1. Diagrammatic Representation of workflow 

 
Materials and Methods 

 

Data sets 

 

Our proposed model is trained and assessed with the Curated Breast Imaging 
Subset of DDSM (CBIS-DDSM) [27].  The dataset is divided into three categories: 

normal, benign and malignant. It contains mediolateral oblique and craniocaudal 

views of 861 mass lesion images which includes 912 benign and 784 malignant 

lesions 
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Data Distribution 

 

We retrieve 1146 normal, 713 benign, and 743 malignant lesion images from the 
database. Our dataset has totally 5204 mammogram images which consist of CC 

and MLO view of 2602 breast. All data is divided into two sets: training and 

testing. There are 890 normal breasts and 1200 abnormal breasts in the training 

set (585 benign and 615 malignant). There are 256 normal, and 128 abnormal 

mammograms in the testing set (128 benign and 128 malignant). We 

proportionally partition the training data into ten subsets so that we may test the 
model's performance using ten-fold cross-validation. The summary of distribution 

of the data is shown in Table 1. 

 

Table 1 

Dataset Description 
 

Type Normal Abnormal                        Total 

Benign Malignant 

Train 890 585 615 2090 

Test 256 128 128 512 

Total 1146 713 743 2602 

 

Methodology 

 

Pre-processing 

 
Original mammograms are not able to achieve high accuracy in classification 

performance when used directly as the input of a convolutional neural network 

due to their high noise and poor contrast. As a result, some well-known pre-

processing steps, such as contrast enhancement, bilateral filtering, and image 

normalisation, must be performed on the original mammograms. Pre-processing 

is employed to improve the quality and quantity of mammograms. Artefact 
removal, image improvement, and verification are the major steps in pre-

processing. To obtain a more accurate result, artefacts are first removed from 

mammograms and then binary masking, morphological opening [28], and largest 

contour detection [29] algorithms are applied to determine edge detection and 

noise reduction. Second, image enhancement is used to make the malignant 
lesion more noticeable by enhancing the brightness and contrast of the original 

images. Gamma correction [30] and CLAHE [31] are the sub processes of this 

stage. There is a noticeable improvement in visibility after using CLAHE. Finally, 

assessment techniques such as MSE, PSNR, SSIM, RMSE, and Histogram 

Analysis are performed to processed images in the verification step to evaluate the 

obtained output. 
 

Data Augmentation 

 

When we have vast datasets [32], deep learning models perform better. Data 

augmentation, often known as jittering, is a popular method for increasing the 
size of our datasets. When training on very little data, data augmentation can 

raise the dataset's size to ten times or more than the original. This helps minimize 

overfitting. The method aids in the development of simpler and more robust 
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models that are more generalizable [33]. In order to augment the images, a 

sequence of random transformations is performed on the image. We employed 

random rotation range of 0–40 degrees, a shear range of 0.5, a zoom range of 

[0.5–1.5] and 0.25 shifts of width and height.  
 

Fine-Tuned Transfer Learning 

 

Transfer learning is the process of applying a previously trained model to a new 

situation. Transfer learning offers the advantage of reducing neural network 

model training time and resulting in decreased generalisation error. The following 
are the two basic techniques of adopting transfer learning: Weight Initialization 

and Feature Extraction. The following step is the transfer learning of deep 

learning. 

 

• Create a base model and fill it with pre-trained weights. 

• Run your new dataset through it, and make a note of the output of one (or 

more) layers from the base model. Feature extraction is the term for this 
process. 

• Use that output as the input for a new, more compact model. 

• Replace the last completely connected layer with the layer based on the 
number of classes in the target dataset. 

• Initialize the weights in the new fully connected layer at random. 

• The layers of the pre-trained network should be unfrozen, and the pre-

trained weights should be used to initialize the rest of the weights. 

• Retrain the neural network as a whole. 

• Perform Fine-tuning that entails unfreezing the entire model and retraining 

it one new data with suitable learning rate.  This has the ability to produce 

significant improvements by slowly changing the pre-trained features to the 

new data. 

 
The transfer learning of pre-trained VGG16 models are used in this paper.  The 

deep feature matrix was computed using pre-trained VGG16 model from each 

MLO and CC view of image. The VGG16 is divided into five blocks, each having 

two or three convolution layers and a Maxpooling layer, and has a depth size of 

23 and 16 layers. By multiplying a set of weights with an input, the convolution 
layer achieves a linear process. 

 

 
 

The input and kernel functions are x() and y(), respectively, and (x*y) signifies the 
dot product of input and kernel functions on number of variables n. After 

obtaining the feature matrix from the convolution layer, the maxpooling layer 

lowers the size of the feature maps by adding filters or kernels. After applying the 

filter to an input matrix of size (m X m) and a filter size of (y X y), the output size 

is: 
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The input size of an RGB image is  and the first convolutional 

layer's input dimension is . The first block has two convolutional 

layers with 64 channels and followed by a   Maxpooling layer with stride 

. The second block has two convolution layers with 128 channels and a 

kernel size of 3 , followed by a Maxpooling layer with stride . Three 

convolutional layers are followed by a Maxpooling layer in the last three blocks. 

The three convolutional layers in blocks 3, 4, and 5 have channel sizes of 256, 

512, and 512, respectively, with the same kernel size of 3 . In each Maxpooling 

layer, the initial input image is shrunk to half its original size. The outputted 

feature map from the last Maxpooling layer is 7  pixels after the stack of 

convolutional and Maxpooling layers.  A flatten layer is added to get  

feature vector. 

  

Feature Fusion using LASSO regression 

 

In image recognition, feature fusion approaches are commonly employed to 

provide feature reduction and overcome the inadequacies of a single feature vector 
[34]. LASSO regression fusion strategies are being developed to combine two-

feature vector as single-feature vector. The LASSO (Least Absolute Shrinkage and 

Selection Operator) regression is the most straightforward approach to merge two 

sets of feature vectors.  The lasso regression does continuous shrinking as well as 

automatic variable selection. The benefits of backwards-stepwise selection are 
included into the lasso.  The lasso predicted that many coefficients would be zero 

and just a tiny percentage would be nonzero [35]. Consider the standard linear 

regression model. 

 

 

 

Where 

 

 for j = 1,....p are the regressors, is the constant 

parameter,  are the associated coefficients and  is the 

response for the kth  observation.  Let be the predictor matrix and 

let  the response vector. Some coefficients can be shrunk or set to 

0 in order to enhance prediction accuracy. By doing so, we sacrifice a small 

amount of loss function in order to lower the variance of the projected values and, 

as a result, enhance overall prediction accuracy. In Lasso Regression, the 

coefficient's absolute value of magnitude is introduced to the loss function as a 

penalty term. To provide a sparse solution to the optimization problem, the lasso 
problem employs the L1 -penalised least squares criterion. 

 

 

 

Where  is  a non-negative regularization parameter.  
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L1-penaly is  in equation. 

 

The Lasso continuously reduces the coefficients toward 0 as   increases, and 

some coefficients are reduced to exact 0 if  is sufficiently large.  Again, if lambda 

is 0, we will get OLS (Ordinary Least Square), but very large values will result in 

zero coefficients, resulting in under-fitting. Lasso reduces the coefficient of the 

less significant feature to zero, thus deleting it. This works effectively for feature 
selection if we have a large number of features.. 

 

Classification 

 

The classifier is used to anticipate the probable attribution results by determining 

the link between the sets of attributes [36]. The test data is supplied into the 
network after the classifier has been trained to forecast the category and evaluate 

the algorithm's performance. After the weights were transferred, the retraining of 

the model was carried out with mammography dataset.Next concatenate the 

features getting from two view image. Finally, the 'Softmax' activation function 

computes the probability for each of the classes and generates the projected 
result. The softmax classifier is utilised as the input for direct fusion, and the 

fused feature is used as the output. The addition of dropout in classification layer 

is performed which improves the network’s robustness. The cross-entropy cost 

function is minimised via stochastic gradient descent.  

 

Training parameters of the pre-trained model 
 

The parameters of optimizer design, learning rate, loss function, batch size and 

methods of preventing overfit were used to improve the accuracy. Table 2 gives an 

overview of the training parameters of the proposed model. 

 
Table 2 

Training Parameters of the pre-trained model 

 

Training Options Value 

Learning rate 1.0000e-04  

Mini-Batch Size 32 

Loss Function Cross-Entropy Loss 

Optimizer SGD 

Activation Function Softmax 

Dropout 0.5 

Cross-validation 10 

Max-Epochs 90 

Momentum 0.9 

 

We chosen a learning rate of 1e-4 as the starting point, and divided it by 10 each 

time to stop the validation error. The early stopping method was used to monitor 
validation loss for every 90 epochs. Cross-entropy loss is used for modifying the 

weights in training which reduce the loss.  If lower the loss, the model is the better 

one to identify cancer accurately [37]. The cross-entropy loss of a perfect model is 

zero. The cross-entropy is defined as 



 

 

3041 

(y) 

 
where y indicates the input, n is the expected  number of classifications, xi is the  

true label, and fi(x) is the softmax probability of ith class. The optimizer decides 

the actual output accurately. Stochastic-gradient descent (SGD) algorithm is 

employed in this research to determine the model parameters that decides the 

best fit between expected and actual outputs [38]. 
 

 
 

Where wt is the weight to be updated at t time, learning rate α, and the gradient 
of loss function is ∂L/∂w. Overfitting is common in transfer learning and has a 
significant impact on training outcomes. Data augmentation is the most common 

way to avoid overfitting. After the fully connected, the batch normalization and 

dropout layer [39] were added.  In that, the convolution kernel was regularized in 

order to increase accuracy. The probability of 0.5 dropout layer switches off the 

activations during training time [40]. The zero setting of subset of units for the 
randomly chosen activation units is preventing one layer from relying too heavily 

on single unit in the preceding layer. We employed L2 regularisation which is 

equal to the square of the magnitude of coefficients. It combats overfitting by 

forcing weights to be small but not exactly 0. 

 

 
 

Results and Discussion 

 

Evaluation Metrics 

 
The metrics of precision, We employed numerous metrics to assess the transfer 

learning models, including precision, recall, F1-score, accuracy, sensitivity, and 

specificity. The true positive (TP) , true negative (TN), false positive (FP) and false 

negative (FN) were calculated using each model of confusion matrix. For statistical 

examination of the models, the false positive rate, false negative rate, and false 

discovery rate were determined. Another essential metric for evaluating the 
performance of diagnostic results is the area under the receiver operating 

characteristic curve (ROC) (i.e., AUC score). The receiver operating characteristic 

(ROC) curve is used to compare the true positive rate (TPR) against the false 

positive rate (FPR) at various threshold levels which yields the AUC value. The 

following formula is used to calculate metrics: 
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Comparative experiment 
 

Usually radiologists combine CC view and MLO view mammograms in order to 

find accurate decisions. When compared to single-view mammograms, two-view 

mammograms provide more complementary information which helps to increase 

the classification performance of the model. As a result, we put up a set of 

comparative studies to check the performance of feature fusion of two-view 
features with single view feature only. Figure 2 depicts their accuracy, sensitivity, 

specificity and AUC in three tasks.  

 

 
Figure 2. Performance Comparison between single-view and two-view network (a) 

Accuracy, (b) Sensitivity (c) Specificity (d) AUC 
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The model is visualised in the normal and pathological classification test to show 

that it can more precisely focus on the lesion area. The accuracy, sensitivity, and 

AUC of the suggested two-view feature fusion module are higher than those of 
existing modules, as demonstrated by the experimental findings. Table 3 

summarizes the classification results.  

 

Table 3 

 Comparison of CC View features, MLO View features, and Two View Feature 

Fusion with CBIS-DDSM 
 

Data Set Methods Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC (%) 

CBIS - 

DDSM 

CC View 

Features 

94.03 93.6 94.5 95.67 

CBIS - 

DDSM 

MLO View 

Features 

93.53 92.91 94.3 94.45 

CBIS - 

DDSM 

Two View 

Feature 
Fusion 

95.24 96.11 97.2 97.59 

 

The two-view feature fusion's ROC curve is shown in Figure 3. The area under the 

green ROC curve, which indicates the classification result utilising fusion 

characteristics, is the largest, as shown by the three different colour curves. The 

curves also show that two-view feature fusion may successfully integrate the 
benefits of the two features, and addition features selected from two-view help in 

benign and malignant classification 

 

 
Figure 3. ROC curves of Feature Fusion 
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Experimental Discussions 

 

The proposed model has a high degree of accuracy when it comes to detecting 

complicated breast masses or calcification, as well as breast density 
diversification. Transfer learning has been used to address the shortcomings of 

previous systems in detecting and categorising breast cancer masses in the 

framework provided here. Detecting and correctly labelling specific breast masses, 

such as spiculated and ill-defined lesions, is difficult. The proposed models have 

appropriately categorised these breast masses, which include a variety of types, 

edges, and diameters. The proposed technique eliminates the requirement for 
manual mass segmentation. Recognized masses or calcification are directly 

entered into the classifier, reducing complexity, decreasing computing time and 

increasing efficiency. The greatest test accuracy of 95.24, senstitivity of 96.11% 

and AUC score of 97.95% of the proposed approach revealed that it should be 

used to enhance clinical decision-making. The provided models were trained and 
tested using datasets obtained, producing consistent results, and proving the 

robustness of grading under various imaging settings. Another contribution to 

achieving the best configuration for the suggested model is parameter 

optimization. Various hyperparameters were manually tuned to arrive at the 

optimal classification model for this purpose. 

 
Conclusion 

 

Transfer learning is proposed in this research for the automatic detection of 

mammography breast masses or calcification. Our technique uses deep networks, 

which have more complex structures but fewer limitations, requiring less 
computer resources but providing more consistency. Image pre-processing 

techniques were employed to remove noise and artefacts from the images utilised 

in this investigation. To increase the quality of the raw mammograms, 

background removal and picture enhancement techniques were used. Data 

augmentation methods were used to overcome overfitting difficulties in 

mammography image processing, which occur when data is insufficient. The 
model's robustness and effectiveness were tested through a series of experiments. 

The experiments demonstrated its efficacy. Our study revealed that fine-tuned 

transdfer learning and feature fusion provides the best rate of correct 

classification.  We will adjust and fine-tune other pre-trained models in the 

detection stage in the future to improve the system's classification performance. 
Furthermore, the classification accuracy will be improved by combining hand-

crafted and CNN characteristics. 
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