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Abstract--- Several alternative approaches have been proposed for 

supply chain modeling majority of which steady-state models. These 
models cannot adequately deal with dynamic characteristics of supply 

chain system affected by lead time, demand fluctuation, sale 

prediction and so forth. Static models in particular cannot describe, 
analyze and provide solutions for a key issue in supply chains called 

bullwhip effect. The bullwhip effect is information deviation from one 

end of the supply chain to the other which intensifies fluctuation and 
change in demand from downstream to upstream. This issue leads to 

major deficiencies. One of the approaches used to cope with dynamic 

issues is control systems approach. In present study, a predicting 

model controller was developed to minimize the bullwhip effect in 
supply chain. In addition, a prediction methodology is integrated into 

predicting model control framework to predict uncertainty in 

distorting demand behavior. Integration of a prediction methodology in 
predicting model control framework improved the controlling system's 

performance. The main feature of demand signal used in model design 

is its fluctuation and distortion. One of the main factors behind 
bullwhip effect is demand signals processing and in fact, the 

predicting model used. The prevailing predicting model in present 

models is the exponential smoothing model which is proved to be 
diagonal, particularly in predicting distorted demand prediction. 

Based on non-linear and fluctuating behavior of distorted demand, 

instead of classical predicting models such as exponential smoothing, 

neural networks were used to model and predict distorted demand 
behavior. 
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1. Introduction  

 

Arrangement of a supply chain is in a way that suppliers provide raw materials to 

the manufacturer and the manufacturer produces final products which are 
delivered to wholesalers. Then, wholesalers deliver products to retailers for sale 

and retailers provide consumers with final products. In this arrangement, along 

with physical downstream flow of products, there is an upstream flow of 
information in which only retailers have accurate information on consumers' 

demand. Demands observed by wholesalers, manufacturers and suppliers are not 

real demands for products. This is due to the fact that the orders they receive are 
moderated by some predicting techniques or ordering policies used by the next 

direct node downstream. In most supply chains, it is observed that changes in 

ordering patterns increase in upstream flow, i.e., toward the manufacturers and 
suppliers. Lee, Padmanabhan, & Whang (1997) called this phenomenon bullwhip 

effect. Effective supply chain management leads to lower production, stock and 

transportation costs and increased level of customer services at every stage of 

supply chain (Hoseini SA, et. al., 2020; Jaghoubi S, 2019: Wahba AA., 2021). 
There have been many alternative approaches proposed to model supply chains. 

According to Beamon (1998), these approaches can be classified into four 

categories:  

- Definitive models in which all parameters are known  

- Random models with at least one unknown parameter while the 

parameters follow a probability distribution  

- Game theory based economic models  

- Simulation based models which assess different performance strategies for 

supply chain (Beamon, 1998). 
 

Most of these models are steady-state models and are based on stable situations 

or average performance while static models fail in coping with dynamic features of 
supply chain systems due to lead time, demand fluctuations, sales prediction and 

so on. These models fail in explaining and analyzing the bullwhip effects and 

providing solutions (Sarimveis, Patrinos, Tarantilis, & Kiranoudis, 2008). 
Obviously, dynamic features consideration in supply chain systems modeling 

proposes a competitive advantage which concentrate on alternatives for supply 

chain dynamicity modeling. These models are classified as: continuous time 

differential equations modeling, discrete time differential modeling, discrete event 
modeling and classical operational research modeling. One of the main 

approaches to solve dynamic problems is control system engineering. The control 

theory provides sufficient mathematical tools for designing and simulating supply 
chain management systems based on dynamic models.  Control theory, in 

particular, can be used in assessment and finding a solution for bullwhip 

phenomenon (Sarimveis et al, 2008). Demand processes, stock policies, time 
intervals for delivery and predictive techniques have a significant impact on 

bullwhip effect. Among these models, the predicting models, stock policies and, to 

some extent, the lead times are controllable; therefore, it is desirable to make 
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decisions to minimize bullwhip effects using these models (Agrawal, Sengupta, & 

Shanker, 2009). Lee et al. (1997) introduced five main factors in bullwhip effects:  

- Non-zero lead time 

- Demand signals processing (demand prediction)  

- Price change  

- Supply insufficiency  

- Orders categorization 

 
Among different bullwhip creators, predicting models are the most important ones 

because the stock system of supply chain is directly affected by predicting 

models. That is why many researchers have worked on the effects of predicting 
models on bullwhip effect (Duc, Luong, & Kim, 2009). They observed that Control 

Theory is one of the main approaches to solve dynamic problems. Employing 

classical controlling techniques in supply chain dates back to early 1950s when 
Simon (1952) applied Continuous Time Servomechanism Theory to manipulate 

production rate in a simple system. The idea of using control theory was 

developed by Vassian (1955) in discrete time models. Vassian proposed a stock 

control framework based on Z transformation methodology. Forster (1961) created 
a revolution by proposing industrial dynamicity, but the need for a new 

framework development which can be used as a basis for controlling rules search 

or new feedback methods in production/stock system. Towill (1982) proposed a 
production control system based on stock and order as a block diagram. This 

system developed by Coil was based on new control rules and feedback models in 

production/stock systems.  Some improvements and some moderations in the 
systems such as its development to discrete time systems led to creation of a 

group of production control systems model based on order and stock (Sarimveis 

et al., 2008).  
 

Present study aims to model and analyze the optimization problem in supply 

chain and minimize bullwhip effect using control engineering approach. The 

proposed model is based on production control system model according to the 
stock and order. In this context, comparing several predicting models, the best 

system, namely the non-diagonal estimator, was used. Also, based on novel 

approaches in control theory, especially predicting model control approach, the 
desirable controller was designed for stock systems. It is claimed that modeling 

approach proposed in this study is novel and the designed controller can 

determine the optimal order rate in response to demand change, particularly 
customers' distorted demand behavior which in turn minimizes the bullwhip 

effect. 

 
Rest of paper organized as follows: In the second part of this study the model is 

introduced and formulated. In the third part the proposed controlling models are 

addressed. Next, the simulation results are presented and finally, the concluding 

remarks are provided.  
 

2. Proposed model  

 
The conceptual model of this study is presented in the following figure as a block 

diagram of node j in supply chain: 
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Figure 1. Block diagram of the proposed model 

 
First, it is necessary to describe the block diagram’s controlling symbols. Each 

arrow means transmission of an imperative signal transmitted in a block in one 

direction. Each rectangle indicates a conversion function which will be explained 
later. Moreover, in some cases it is observed that signal values are summed up or 

deducted.  In the diagram, the downstream node demand determines the system 

regulation points and controlling signal, i.e. the order rate in each time period. 

The upstream node demand is exogenous and has to be estimated optimally. F1 
and F2 represent equations for the first and second processes and NN1 and NN2 
show two neural networks which will be designed for the first and second 

dynamic learning. The system performing logic will be detailed below. The indices 
used in modeling are:  

𝑁𝑆𝑗(𝑘): Real net stock of node j at time k and 𝑗 ∈ {𝑃,𝑊, 𝐷, 𝑅} 

𝑇𝑁𝑆𝑗(𝑘): Target Net Stock for node j at time k 

𝑇𝑊𝐼𝑃𝑗(𝑘): Target work in progress during the target production at time k 

𝑊𝐼𝑃𝑗(𝑘): Work in progress during the real production at time k 

𝐸𝑁𝑆𝑗(𝑘): Error in the net volume of node j at time k 

𝐸𝑊𝐼𝑃𝑗(𝑘): Error in work in progress at time k 

𝑗(𝑘): Order rate or volume of node j at time k 

𝑇𝑃: Physical production delay  
G: Controlling interest  

𝑅𝑗(𝑘): Received or completion rate of commodity at time k 

𝑌𝑗𝑘(𝑘): The amount of commodity delivered at time k by upstream node j to 

downstream node k.  

𝑗𝑘 ∈ {𝑃𝑊,𝑊𝐷,𝐷𝑅, 𝑅𝐶} 
𝐷𝑘𝑗(𝑘): The order supplied by downstream node k at time k to upstream node j 

𝑗𝑘 ∈ {℘, 𝐷𝑊,𝑅𝐷, 𝐶𝑅} 
�̂�𝑘𝑗(𝑘): Estimation of 𝐷𝑘𝑗(𝑘) approximated by a non-diagonal predicting system  

𝐵𝑂𝑗(𝑘): The amount of bullwhip effect of node j at time k 
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𝐼𝑗(𝑘): Available stock of node j at time k 

 

Objective functions: Broadly speaking two objectives are followed simultaneously. 
First, minimizing production matching costs, and second, minimizing the stock 

maintenance costs along the chain. Therefore, the system would be designed to 

minimize the matching costs due to increase or decline in production to meet the 
system needs as well as to minimize stock maintenance costs. The matching costs 

may be due to bullwhip behavior and production order rate costs are varying. 

Maintenance costs are due to reduction of hits and their effects through stock 

position. Maintained stock plays the role of impact absorber against the demand 
fluctuations. The production matching costs may include employment, firing, 

overwork, maintaining additional raw material, loss of capacity and obsolete 

stock.  
 

The objective is simultaneous minimization of the stock and orders (bullwhip) 

variance. It is desirable to suppose that there is interaction between stock and 
demand fluctuations. For example, there is a spectrum of designs which, at one 

end, the demand is considered precisely with minimum stock information 

available and pass on orders, or, at the other end, absorb demand fluctuations at 
stock and maintain the order rate level (as surface plan). Due to lead time, this 

interaction assessment is difficult. Moreover, in order issuance, the best policy 

may be attracting a part of fluctuations and work on a part of demand change.  

 
2-1- Bullwhip measure 

As mentioned earlier, several measures are provided for bullwhip effect and the 

following equation has been proved:  
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As discussed earlier, this destructive effect in supply chain system in control 

sciences is recognized as a disturbing input. So, this effect has to be 

mathematically formulated. Equation (2-3) indicates that bullwhip effect consists 
of output variance/input variance ratio whose discrete function would be 

obtained by mapping it into the frequency space by Fourier transformation.   

2-2- Differential equations of the system for node j: 
 

𝐸𝑁𝑆𝑗(𝑘) = 𝑇𝑁𝑆𝑗(𝑘) − 𝑁𝑆𝑗(𝑘)(2) 

𝐸𝑊𝐼𝑃𝑗(𝑘) = 𝑇𝑊𝐼𝑃𝑗(𝑘) −𝑊𝐼𝑃𝑗(𝑘)(3) 

𝑊𝐼𝑃𝑗(𝑘) = 𝑊𝐼𝑃𝑗(𝑘 − 1) + 𝑗(𝑘 − 1) − 𝑅𝑗(𝑘)(4) 

𝑗(𝑘) = �̂�𝑘𝑗(𝑘)(5) 

𝑁𝑆𝑗(𝑘) = 𝑁𝑆𝑗(𝑘 − 1) + 𝑅𝑗(𝑘) − 𝑌𝑗𝑘(𝑘)(6) 

𝑇𝑁𝑆𝑗(𝑘) = 𝐺 ∗ �̂�𝑘𝑗(𝑘)(7) 

𝑇𝑊𝐼𝑃𝑗(𝑘) = 𝑇𝑝 ∗ �̂�𝑘𝑗(𝑘)(8) 

𝑅𝑗(𝑘) = (𝑘 − 𝑇𝑝 − 1)(9) 

𝑁𝑆𝑗(𝑘) = 𝐼𝑗(𝑘) − 𝐵𝑂𝑗(𝑘)(10) 

𝐵𝑂𝑗(𝑘) = 𝐷𝑘𝑗(𝑘 − 1) − 𝑌𝑗𝑘(𝑘)(11) 
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This dynamic model explains the supply chain systems accurately. This model 

takes demand 𝐷𝑘𝑗(𝑘) as input and calculates it based on controlling works and 

lead time, order rate and supply or production. The unreliability factor is 

prediction of demand in upstream node at time k which has to be estimated in 

some way.  
 

2-3- Target stock determination  

After estimating the demand through a suitable predictive system, the value of 
target stock has to be determined. Target stock is the inventory playing the role of 

impact absorber against demand fluctuations. In this model, target net stock at 

each time is a function of average estimated demand for that time; that 

is𝑇𝑁𝑆𝑗(𝑘) = 𝐺 ∗ �̂�𝑘𝑗(𝑘). This value is a function of time. It means the target is 

mobile and this is a distinctive aspect of the proposed model.  

 
2-4- Determining order in progress value  

In this system, the feedback loops of work in progress in production (order in 

progress) are active. The order in progress value, like production control system 

model, is based on order and stock which is obtained from estimated demand 

coefficient at lead time, i.e. 𝑇𝑁𝑆𝑗(𝑘) = 𝐺 ∗ �̂�𝑘𝑗(𝑘). 

 
2-5- Received rate at each time period  

The order issued by node j at time k is received at time 𝑘 + 𝑇𝑝 + 1due to 𝑇𝑝 units of 

physical delay in production and one unit of order processing and administrative 

works delay; therefore, received or produced level at time k equals order rate at𝑘 −
𝑇𝑝 − 1, i.e. 𝑅𝑗(𝑘) = (𝑘 − 𝑇𝑝 − 1).  

 

2-6- Real net stock at each time period  

Real net stock at time k in node j is 𝑁𝑆𝑗(𝑘) = 𝑁𝑆𝑗(𝑘 − 1) + 𝑅𝑗(𝑘) − 𝑌𝑗𝑘(𝑘)   that 

means at each time period k after receiving or production the value is 𝑅𝑗(𝑘) and it 

is 𝑌𝑗𝑘(𝑘) after meeting the downstream node demand in a period before and 

delivery to it. The residual value is added to the previous period's net stock.  

 
2-7- Real order in progress at each time period  

The order in progress at period k in node j is:  

𝑊𝐼𝑃𝑗(𝑘) = 𝑊𝐼𝑃𝑗(𝑘 − 1) + 𝑗(𝑘 − 1) − 𝑅𝑗(𝑘)(12) 

It means that at each time period k the value of 𝑅𝑗(𝑘) units are received; therefore 

this is output of the order cycle. On the other hand, an order issued at previous 

time period 𝑗(𝑘 − 1), would be added to the previous time period order in 

progress 𝑊𝐼𝑃𝑗(𝑘 − 1)based on lead time of order processing and administrative 

works of the order in progress loop.  
 

2-8- Order rate at period k 

In designed model, it is aimed to find an optimal input signal to the system as the 

controlling signal or order rate. The optimal signal is one for which the system 
error is minimized. This signal is generated following the logic in production 

control system model family which is based on order and stock. At each k, first 

the net stock error (the difference between real net stock and target net stock) and 
error of order in progress (the difference between real order in progress and target 

order in progress) is calculated and these errors are inputs of optimizer. Instead 
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of error values, error generating singles are inputs of optimizer. The optimizer 

output is summed up with estimated demand at k and generates the order rate 

signal.   

 
Equation 𝐵𝑂𝑗(𝑘) = 𝐷𝑘𝑗(𝑘 − 1) − 𝑌𝑗𝑘(𝑘) means the delay value at k in node j is equal 

to value of demand in downstream node k from upstream node j at period k-1 that 

cannot be supplied by j at time k and is passed to the next period. These 
equations are not introduced to the system dynamic generator equations directly 

and are merely referred to for defining the net stock.  

 
3. Proposed models 

 

3-1- Predicting controller design   
 

In these controllers at sampling time k, a control horizon ch of future manipulated 

variable changes is selected such that the predicted respond during the predicting 

horizon  would be of desirable and certain features. This process is fulfilled by 
minimizing an objective function which includes future controlled variables 

deviation from desirable reference path along ph and controlling energy along the 

ch. Optimizing predicting model control for an assumed horizon is conducted by 
control replacing and only the first replacement is accomplished. The problem is 

solved again at time it+1 with measured output as a new start point. In 

production/stock planning problem, present and future order rates(𝑘 + 𝑗|𝑡), 𝑗 =
0,… , 𝑐ℎ, are manipulated variables.  
 

Of course, order rate is obtained from sum of optimizer output signal and demand 

estimation. While the net stock predicted value 𝑁𝑆(𝑘 + 𝑗|𝑡), 𝑗 = 1, … , 𝑝ℎ and working 

levels during the production or predicted order in progress 𝑊𝐼𝑃(𝑘 + 𝑗|𝑡), 𝑗 = 1,… , 𝑝ℎ 
are controlled variables. Net stock value predictions and order in progress value 

predictions are calculated by the following equations:  

𝑁𝑆𝑗(𝑘) = 𝑁𝑆𝑗(𝑘 − 1) + 𝑅𝑗(𝑘) − 𝑌𝑗𝑘(𝑘)(13) 

𝑊𝐼𝑃𝑗(𝑘) = 𝑊𝐼𝑃𝑗(𝑘 − 1) + 𝑗(𝑘 − 1) − 𝑅𝑗(𝑘)(14) 

 

Prediction model’s control limitations are  

- Balance equation of net stock and order in progress along prediction 
horizon  

- Up and down bounds on manipulated variables and control movements 
along control horizon  

- Zero control movement along ch 

- Continuous excitation condition along ch 
 

Prediction model’s control elements are:  

Prediction model: The process or system output is predicted by this model for 
time T. This is an exogenous model which runs parallel to the real model which is 

assumed to be unknown to some extent.  

Target path: The control aims to move the output vector along a desirable path 

which is r(k) toward the final desirable point d(k). This path, r(k), is called the 
reference path. In most of cases, it is assumed that future desirable output of the 

process is unknown. If future target point was unknown, a predictor can be used 

to predict the desirable path which has to be traced by system output. This is an 
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important future feature for complex goals management which may vary in 

response to some unpredicted events dynamically. Controlling rule organization: 

The predicted output 𝑌𝑝(𝑘 + 𝑗), 𝑗 = 1,… , 𝑇 depends on assumed control input 

𝑢(𝑘 + 𝑗), 𝑗 = 0,1… , 𝑇. A major objective of prediction process is calculating 
prediction errors. The algorithm attempts to minimize the difference between 

𝑌𝑝(𝑘 + 𝑗) and 𝑟(𝑘 + 𝑗).  

 

3-2- Neural Networks application in proposed model  
 

This is important to note that it is proved that multilayer perceptron networks 

(MLP) with a latent layer and sigmoid conversion functions in the middle layer 
and linear conversion functions in the output layer can approximate all functions 

(functions with integral square) with any approximation degree provided that they 

have sufficient neurons in latent layer. Accordingly, the approximated functions 
have to be piece-wise continuous and the number of middle layers cannot be 

selected as infinite. This is called global approximation theorem. Following, how 

the network architecture is designed will be explained.  
 

Number of layers: A bilayer perceptron network with a latent layer was selected.  

Number of neurons in each layer: In layer zero, neurons are equal to inputs. The 
number of neurons in the output layer is equal to network outputs. The number 

of neurons in the middle layer had to be calculated. The more complicated the 

system, the more neurons are needed for its nonlinear writing. As a rule of 

thumb, if the neurons are more than 40, one more layer has to be added.  
 

Actuator function:  Actuator function f can be linear or non-linear. An actuator 

function is selected based on the particular need for solving a problem which is 
supposed to be solved by neural network. In practice, limited number of actuator 

functions can be used. For this research prediction problem, in the latent layer, 

the sigmoid non-linear layer was used and in the output layer, the linear 
function.  

 

Network learning: It means regulating parameters or weight matrices and bias 

vectors. The network is ready to learn after initiation of weights and network 
biases. In present study, the network has to be trained for prediction of distorted 

demands. Learning process needs a set of sound network behaviors such as 

inputs p and target outputs t. During the learning process, weight matrices and 
bias vectors of the network are iteratively regulated so that network performance 

function is minimized. The general performance function for forerunning 

networks is the mean square error (mean square error between network outputs a 
and target outputs t). Here, the post-propagation learning model was used 

(Levenberg-Marquardt algorithm). First, an initial value was assigned to network 

parameters. These values were selected randomly. Obviously, a sound selection 

can provide the algorithm rapid convergence and incorrect selection leads to 
trapping into the local minima in vector space for the network parameters at the 

start point of the network. Therefore, different random start points were selected. 

Second, new weights and biases are reselected, and this is iterated until the end 
condition is satisfied.  
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Classification of data to test and learning: There have to be three subsets in 

development of neural networks:  

Training: Data which belong to problem domain and are used in training level for 

neurons updating.  
Test: This data is used during learning process to assess the network response to 

unlearned data.  

These two sets of data should be separated but both considered as learning data. 
Credit data: After selecting the best network, before system running, there have to 

be examples of two different subsets to measure system accuracy. In this study, 

test and credit data is similar. There are no particular rules for measurement of 
subsets size.  

Data normalization: Data has to be normalized in a particular interval like [0,1]. A 

technique for making the input/output zi non-scaled is to use the following 

function:  
min

max min
2 1i i

i

i i

z z
zn

z z

 
  

 
               (15) 

zin  is the normalized value. Using this transmission, all data are normalized at [-
1,1].  

 

Learning rate determination (



) in post-propagation error: High learning rate 

increases the training speed since from one iteration to the other, the weights 
vector changes, but it may fluctuate at error level and never converge. In contrast, 

lower rates reach absolute minimum, but at a lower speed. Learning rate is a 

value between 0 and 1. Here, the value is 0.01.  
 

End condition and momentum term: Momentum means weights updating in line 

with escaping the local optima and reducing the instability. High momentum 
increases local minima while low momentum reduces the learning speed. 

Momentum can be considered constant or adaptive and the value of momentum 

can be determined based on the problem type. Momentum term was considered 
0.7. In the network designed in this study, the end command is issued after 

certain epoch or when the error tolerance reaches 0.01. Learning error for 

learning data is calculated from the MSE and at each period for test data it was 
calculated from mean absolute precipitance error (MAPE).  

 

3-3- Minimization algorithm for Asexual Reproduction Optimization (ARO) 

 
There are diverse techniques inspired by asexual reproduction. ARO algorithm is 

inspired from the Budding technique in asexual reproduction. In ARO, in the first 

version, each individual is indicated with a binary strand. This is exactly the same 
as binary reflection in evolutional algorithms. A decision variable vector x is an 

individual in optimization problem 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) as 𝑋 ∈ 𝑅𝑛 and each decision 
variable xi is a chromosome consisting of some bits called genes. A chromosome 

with length of L is considered. In this chromosome first bit indicated the variable 

sign. L1 of the first bit indicates the decision variable while L2 of the last bit 
indicates the decimal part of decision variable. It is obvious that the larger the 

bits of the L2 decimal part, the more accurate the decision variable would. 

Consequently, each chromosome's length is 𝑙 = 𝑙1 + 𝑙2 + 1and length of each 
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individual is 𝑛 ∗ 𝐿 (Hiller …..., 2011). It is assumed that each response in search 
space (S) is a creature in its natural environment and in fact, if we consider the 

search space (S), this space is comparable to the environment in which the 
creature lives, grows and reproduces. For example, search space R2 for variable 

𝑋 = (𝑥1, 𝑥2) is an environment in which the individual (like a particular worm 
which reproduces) lives. Also, there are limited resources in the environment and 

only most capable individuals can survive and live. First, the algorithm starts 

with a random individual in a specific domain S. Then, this individual reproduces 
a child with particular operator called reproduction mechanism. The parent and 

child compete based on a performance index or fitness for survival function. If the 

child called wind wins the competition, its parent is excluded. Therefore, the 
parent is substituted by the child who will be a new parent. If the parent wins, 

then wind is excluded. The algorithm iterates this process to meet the end 

condition. The pseudo-code of algorithm is:  

 
Pseudo code of ARO 

 

Begin 

t = 1; 
P = Initialize (L,U); % Parent Initialization between lower and upper bound 

Fitness_P = fit(P); % Fitness of P is calculated 

While stopping conditions are not met % Stopping Criteria 

Bud(t) = Reproduce(P); % P reproduces a Bud 
Fitness_Bud(t) = fit(Bud(t)); % Fitness of Bud(t) is calculated 

If Fitness_Bud(t) is better than Fitness_P 

P = Bud(t); % Bud(t) is replaced with P 
Else 

clear Bud(t); % Bud(t) is discarded 

end 
t = t + 1; 

End 

End 

 

Actually, the above pseudo-code will be placed as ARO algorithm in figure 1 as 
optimizer block. Selecting a suitable reproduction operator is crucial. In ARO, the 

reproduction operator is only the change operator while most of evolutionary 

algorithms use different operators to conduct the search in space and use 
previous information based on traditional control theory. In ARO, in each 

chromosome, there is a randomly selected gene for reproducing a sub-strand with 

g bits. It is necessary to note that g has uniform distribution in [1, L]. L is the 

maximum number of bits (genes) of a chromosome. Therefore, bits of each sub-
strand are mutated such that 1 replaces 0 in each selected gene and vice versa. In 

fact, the strand which is called larvae is a mutated form of its parent. A larva 

desirably searches in the space but not for the previous generation information 
employment; whereas based on optimization theory, both search and application 

operators are needed. Therefore, to increase the algorithm’s optimization power, 

an application mechanism is also added to it such that larvae and its parent can 
integrate their information. As a result, child would be reproduced similar to its 

biological model. Using this instrument, one can make sure that both 
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mechanisms of search and application are used. The mutation occurs in cross-

section.  

 

ARO steps  
 

Reflection: Reflection in ARO is binary.  

Primary response: An integer number is generated in the intended interval as a 
parent.  

The fitness of this parent is measured by objective function.  

The parent reproduces a wind using reproduction operator.  
Before fitness, justification of the wind is tested. If it was not justified, it is 

repaired by a mechanism and then justification is measured. Comparing objective 

function value for the parent and the wind, the one with higher fitness is selected 
for next generation production. This is iterated until reaching the end condition.  

 

4. Simulation  

 
In order to investigate and compare the effectiveness of different prediction 

models, a real dataset consisting of 1000 supply chains of Food&Drug Company 

was collected. The data shows daily demand for a particular Drug part. The 
particular feature of this dataset is its distortion and fluctuating behavior which 

complicates prediction and increases unreliability. About 10% of demand data is 

zero and changes in demand values in different periods are high. The data is 
demonstrated in figure 2.  

 
Figure 2. Schematic of demand time series data 

 

As you can see, data behavior is distorted and non-linear. Some statistical 
features are presented in table 1.  
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Table 1. Demand time series statistical features 

 

Number 

(n) 
Non-zero data Domain 

Max. 

value 

Min. 

value 
Mean SD 

1000 900 22230 22230 0 10680 4522 

 

The data show a cyclic increasing behavior. Fortunately, the amount of data is 
sufficient to predict using neural networks. Iterative neural networks model is 

similar to neural network. The only difference is that each neuron in the latent 

layer has reversible connections which are returned in the next level into all 
neurons in that layer. This provides the reversible neural networks with learning 

some patterns over time.  

 
Finding the best network architecture  

 

Table3 lists the best network architectures for three different datasets. As 

mentioned before, the optimal architecture was selected based on minimum error 
of assessment using the test data.  

 

Table 3. The best network architectures for different datasets 
 

Number of optimal 
neurons in the middle 

layer  

Multiple 
perceptron  

Reversible network 

I J i j 

Dataset 1 20 40 1 16 

Dataset 2 20 19 1 9 

Dataset 3 11 10 1 17 

 

i (i=1,2,…20) is the number of network parameter selections and i (i=1,2,…,40) is 

the number of neurons in the middle layer.  
 

Error criterion selection 

 
To compare different prediction models, MAPE was considered as a general 

criterion. Since in distorted demands, demand level is zero at some periods, the 

main definition of MAPE with terms in form of 
|𝐸𝑡|

𝐷𝑡
 in which 𝐷𝑡 and 𝐸𝑡 are real 

demand and prediction error at time t respectively, they are not practically used 

since the denominator for some time periods would be zero. Therefore, instead of 
the traditional definition of MAPE, an alternative definition is used:  

 

𝑀𝐴𝑃𝐸 =
∑ |𝐸𝑡|
𝑛
𝑡=1

∑ 𝐷𝑡
𝑛
𝑡=1

(16) 

 

For the sake of comparisons stability, error criterions other than MAPE had to be 
considered. A research by Armstrong and Collopy (1992) assessed the error 

comparison criteria between 90 annual time series data and 101 seasonal time 

series data. They concluded that if possible prediction errors were large; MAPE 
should not be selected as assessment criterion because MAPE tends to lower 

predictions. They also concluded that while Route Mean Square Error (RMSE) is 
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used frequently, it is not reliable. They suggested using Median absolute 

percentage error (MdAPE) when there are many time series data as the best 

technique for prediction, but using MdAPE calculation for distorted demand data 

is also difficult since there are zero demand periods. Of course, there are other 
error criteria such as ‘Percentage Better’ that have been suggested in literature to 

compare different prediction models of distorted demand. So, here only the MAPE 

is used to compare different prediction models. Table 3 compares four models 
used for prediction based on MAPE.  

 

Table3. Different prediction models comparison 
 

MAPE 
(%) 

naive 
Exponential 
smoothing  

synthetos Multilayer 
perceptron  

Reversible 
network  

Dataset 1 43.17 34.15 26.12 21.61 21.28 

Dataset 2 41.11 33.47 25.96 21.53 21.21 

Dataset 3 44.89 34.99 29.56 25.65 26.67 

 

Based on this table, the synthetos model clearly outperforms other classical 
models such as naive and exponential smoothing. Neural networks generally 

outperformed the classical prediction models for all three datasets. Also, in 

comparing the two networks, the reversible neural networks, while needing higher 

computations is not different in term of performance from multilayer perceptron 
model. All five prediction models used performed best on dataset two.  

 

ARO optimization algorithm implementation  
 

Running times (𝑇𝑚𝑎𝑥) is 1000 and number of decision variables is equal to 
prediction horizon which is five. Minimum value of weight vector is zero and 

maximum value is two times more than estimated demand value. As mentioned 
earlier, in this algorithm, first the parent randomly selects a value in interval 

between the upper and lower bounds. Actually, this value is the primary justified 

respose. Here, the lower bound is zero and the upper bound is two times more 
than demand value. Since the number of decision variables is five, then there are 

five values for order rate along the prediction horizon which are selected randomly 

as the parent’s values. Then, the parent's fitness value is calculated. The parent 

produces a child and then the child's fitness value is calculated. If the child's 
value is better than that of the parent, the parent is substituted by the child; 

otherwise, the child will be excluded. This iterates until reaching the end 

condition.  
 

ARO algorithm validation 

 
To validate optimization algorithms, there are well-known functions used whose 

optimal values are certain and are used to test the speed and accuracy of these 

algorithms. The result of optimization for 10 dimensions and its comparison to 
standard genetic algorithm are listed in table 4.  
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Table 4. Comparing proposed optimization to algorithm GA 

 

10در  ARO و GA مقایسه بین بعد   

Function  
Objective 

function  

ARO GA 

Mean  SD Mean  SD 

Rastrigin  10e-10 59.95 1.23 86.156 0.263 

 

Model validity  

 
To determine the model’s validity, real data of demand is used. The designed 

model is implemented with real data and optimal control signal determination, or 

order rate, was conducted online. One controlling performance criteria is that real 
values and system outputs be able to track the target outputs or reference values 

and, as a result, system error is minimized. As mentioned above, there are two 

processes in the designed model. The goal of controller is to determine the control 
signal or order rate such that at each time period, the signal tracks real net stock, 

target stock and order in progress signal, and target order in progress. Figure3 

represents the target net stock and real net stock values at sampling periods.  
 

 
Figure 3. Real and target net stock values 

 
In this figure, the target net stock is in red and system output or real net stock at 

each time period is in blue. As you can see, after running the ARO algorithm and 

dynamic learning by neural network, real stock value approaches the desirable 

output, i.e. the target net stock. Figure 4 shows the value of desirable order in 
progress and the real order in progress for the sampling periods.  
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Figure 4. Real and target order in progress values 

 

As you can see, after running the optimization algorithm of asexual reproduction 

(ARO) and dynamic learning of neural networks, the system output which is the 

real order in progress at each time period, approaches the desirable output, target 
order in progress value. Tendency of the output of both processes to desirable 

outputs ensure error minimization. This, in turn, leads to a situation in which 

order rate signal is equal to estimated demand signal.  
 

Bullwhip effect  

 
As mentioned before, bullwhip effect is intensification of the demand fluctuations 

in moving towards upstream nodes in supply chain. Prediction model controller’s 

design makes it difficult to extract transformation functions and depict frequency 
response vectors. Therefore, the bullwhip’s general measure, variance ratio, is 

used:  

                         (17) 
 

Where 𝜎OR
2  =2665.9 and 𝜎𝐷

2=4521.8; therefore, variance ratio or bullwhip effect is 

0.5896. Figure5 shows order rates in sequential periods.  
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Figure 5. Order rate at different periods 

 
This figure refers to 1000 sampling periods and obtained values are in fact values 

of controller estimation of order rates at each time period. It is observed that as 

time periods increase, the order rates increase as well. Figure 6 indicates the 
asexual reproduction optimization algorithm convergence:  

 

 
Figure 6. Convergence diagram of asexual reproduction optimization algorithm 
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5. Conclusion  

 

Prediction model control has been used in supply chains and the results were 

satisfactory, but proposed systems did not have future demand information. 
Integrating a prediction methodology into the model prediction control framework 

could improve the controlling system performance. In this study, first a prediction 

system was used in a customer's demand prediction model. The customer's 
demand is distorted and fluctuating; that is, fluctuations are high and in 

relatively diverse periods, this demand is zero. Real time series data of demand for 

an part in Drug Company was collected to predict uncertainty in distorted 
demand behavior, classical and smart prediction models were used. One of the 

common demand prediction models in scientific literatures is exponential 

smoothing model, while Croston (1972) indicated that this is a diagonal prediction 
model. This is more obvious particularly when the demand is distorting. To design 

the desirable prediction system, first more advanced demand prediction models 

such as neural networks, reversible neural networks, integration of wavelet and 

neural networks with classical models like naive, exponential smoothing and 
synthetos model were compared in a real time series and then, the new 

controlling design and framework was proposed. In the new control design, the 

best demand prediction model was used. It was expected that more advanced 
models such as intelligent ones outperform the classical ones because advanced 

models introduce non-linear models; therefore, they can outperform linear models 

and based on non-linear and fluctuating behavior of distorted demands, neural 
networks were better in modeling and predicting them compared to classical 

models such as exponential smoothing and synthetos.  
 

At first, it seemed that noise reduction improves distorted data prediction. To this 

end, using data filtering model before insertion into the neural networks and 

noise elimination were desirable. Wavelet analysis is one of the most powerful 
filtering and noise elimination tools in this context. Therefore, different wavelets 

such as Meyer, Morlet, and Mexican Hat etc. were investigated. Noise elimination 

did not influence the data behavior and it was concluded that data doesn’t have 
noise and generally speaking, you cannot assume that wavelet and neural 

network integration can outperform in predicting time series compared to neural 

networks since the networks are noise-tolerable. Five different prediction models, 
naive, exponential smoothing, synthetos, neural networks and reversible neural 

networks were compared based on MAPE defined in the study. Neural networks 

outperformed other classical models mentioned. The output of this predictive 

model, i.e. estimation of future periods demand for downstream nodes, is the 
regulation points or target values of controlled processes, feedback loop of the net 

stock and feedback loop of order or production flow. In addition, estimated 

demand plays a role in generating the order rate controlling signal at each time 
period. A control system consisting of an optimizer and two perceptron neural 

networks with a latent layer was designed. The control system’s goal is to find 

optimal control signal at each time period so that the real output deviation of both 
processes from regulation or reference path points is minimized. Neural networks 

are responsible for dynamic learning of the process and predicting several periods 

ahead values of the process based on present control signal value as the process 
input. The functions constituting the processes dynamics and system equations 

were extracted based on the production planning problem’s logic. After the 
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training of neural networks, real output of the two feedback processes were 

introduced into the optimizer along with networks' prediction values which were 
responsible for dynamic learning of these processes. The optimizer had to solve a 

conditioned dynamic nonlinear optimization problem defined by the objective 

function and problem limitations were explained to determine the optimal 
controlling signal which is the order rate at each time period. To solve the 

minimization problem, a meta-heuristic algorithm ARO was used. Through 

minimizing the overall system error, the optimizer made the control signal closer 

to the estimated demand signal. This ensured minimizing the bullwhip effects. 
Implementation of the proposed design with a real dataset of distorted demand 

brought about satisfactory results. 
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