
How to Cite: 

Kumar, D. V., & Sarath, R. (2022). Survey of brain tumor segmentation with deep neural 
networks. International Journal of Health Sciences, 6(S4), 9932–9943. 
https://doi.org/10.53730/ijhs.v6nS4.10848  

 

 

 
International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.   

Manuscript submitted: 27 April 2022, Manuscript revised: 18 June 2022, Accepted for publication: 9 July 2022 

9932 

Survey of brain tumor segmentation with deep 

neural networks 
 

 

Deepak Venu Kumar 

Research Scholar, Department Of Electronics & Communication, Ni University, 

Thuckalay, Tamilnadu 

Corresponding author email: deepakvk2@gmail.com  
 

Sarath R 

Assistant Professor, Department Of Electronics &Instrumentation, Ni University, 

Thuckalay, Tamilnadu 

Email: sarathraveendran@gmail.com     
 

 

Abstract---A brain tumour is a serious condition that, if not 

diagnosed and treated early on, can lead to death. Researchers have 

proposed a variety of traditional and recently developed deep learning 

based segmentation and classification approaches for determining the 
condition of the tumor. Deep learning is found to be efficient and 

robust for classification and segmentation as it detects the fine-to-

coarse information about the tumors. The main component of deep 

learning is layered neural network architecture popularly known as 

convolutional neural network. Distinct information from brain images 
can be acquired and analysed depending on the architecture. In order 

to achieve high segmentation and classification accuracy, more 

research is required in this area. In this paper presents a review of 

state-of-the-art deep learning methods for brain tumor segmentation 

and deep learning neural networks, clearly highlighting their building 

blocks and different strategies. Finally, this article implying about 
present status on segmentation and classification of tumor-based 

image processing through deep learning models. 

 

Keywords---deep learning, segmentation, brain tumor, convolution 

network. 
 

 

Introduction 

 

In previous years, Magnetic Resonance Imaging (MRI) performs a crucial task in 

automatically identifying brain anomalies by assessing tissue range and position 
[1]. MRI is a kind of approach to handling medical images. The radiologist uses it 

specifically for the purpose of visualising the internal structure of the human 
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body. It offers important knowledge about structure of human soft tissues. It 

helps successfully in the brain tumour diagnosis process [2]. MRI is a key element 

of diagnosis and treatment planning that endows medical science with 
substantially improved knowledge of normal and diseased anatomy [3]. Due to the 

extreme contrast ratio of soft tissues, texture information and it also emits no 

destructive radiation and is a non-obtrusive strategy, MRI is powerful in the use 

of brain tumor recognition and determination as contrasted and all other imaging 

procedures [4][24][15]. Images obtained with MRI are used to examine and 

evaluate brain activity. Brain MRIs are also used to track the response of tumours 
to treatment processes [5]. MRI is the most preferred because it does not use 

ionising radiation and an irregular brain tissue enhancement is known as brain 

tumour [6]. Brain tumors are irregular Brain developments that can either be 

dangerous or noncancerous. The indications of malignant and benign Brain 

tumors on the Brain are to some degree comparative and can cause similar sorts 
of complexities notwithstanding on the tumor type and where it is situated inside 

the Brain. In the United States in excess of 200,000 cases are managing an 

essential or metastatic Brain tumor consistently [1][8]. One of the extreme and 

life-threatening tumours may be known to be brain tumour. It is ultimately 

produced either by an irregular and unregulated separation of brain tissue or by 

cancers found predominantly in other parts of the body. Tumor may have direct 
and indirect effect on healthy cells. It may cause swelling of the brain, and also 

increases pressure inside the skull. Tumors are usually categorised based on 

where they grow and how malignant they are[3][2]. The tumours are classified 

into two categories, such as tumours that are not cancerous (Benign) and 

cancerous (Malignant)[4]. Of such cases, about 40,000 are major brain tumours. 
Brain tumors are the significant reason for death from strong tumor malignant 

growth in kids more youthful than 20 years old, presently arriving at acute 

lymphoblastic leukemia (ALL). They are the subsequent significant reason for 

death from malignant growth in male grown-ups ages 20 to 29 and the fifth 

fundamental reason of death from disease in female grown-ups ages 20 to 39. The 

most well-known types of brain tumors are metastatic cerebrum tumors, the 
malignant growth that increases from different parts of the body to the brain. 

They happen in 10-15 percent of malignant growth patients. Primary brain 

tumours are not normally metastasised to other areas of the body[8].  The 

number of MRI images to be interpreted in manual diagnosis is large enough to 

make visual interpretation based readings costly, unreliable and complex. In 
addition, manual evaluation is time-consuming [10], and it relies on the 

radiologists' personal judgments which are difficult to measure, thereby leading to 

misclassification [11][9]. 

 

Pre-processing 

 
Several researchers in the last decades have proposed various pre-processing and 

optimization techniques. The role of enhancing clinical image is to hone the 

boundaries so as to improve the dissimilarity among apprehensive regions and 

context. Image improvement involves manipulation of strength and contrast, 

noise reduction, elimination of the background, sharpening of the edges, filtering 
etc. Zhou and Bai [1] suggested Fuzzy connectivity based on frequency non-

uniformity correction. Jaya et al. [2] proposed a weighted media filter-based 

system. High frequency components are suppressed by using weighted median 
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filters to de-noise. Anand and Sahambi [3] have developed a wavelet-based 

bilateral filtering system to minimize noise in MR images. Undecimated Wavelet 

Transform (UWT) is the noise coefficient used to eliminate noise. George and 

Karnan [4] conducted object removal and transformed the tracking algorithm into 
a pre-processing phase. Hamamci et al. [5] made a proposal for Median Filter 

approach for de-noising the salt and pepper noise and Poisson noise out of the 

input images. Ramalakshmi and Chandran [6] proposed an improved anisotropic 

filter version to eliminate background noise and thereby save the boundary points 

in the picture. Saad et al. [7] for the pre-processing and image enhancement, the 

global thresholding are used to obtain binary image.  
 

Image segmentation 

 

Segmentation is the preliminary stage in every study of the images. The 

segmentation of medical images requires two separate activities. The key goal is to 
get the positions of suspected regions to support diagnostic radiologists. Sathya 

and Kayalvizhi [8] designed a multilevel thresholding that depends on Adaptive 

Bacterial Foraging (ABF) algorithm for MRI brain image segmentation. George and 

Karnan [9] designed a brain tumor segmentation using Adaptive threshold 

method. Kaur et al. [10] presented a thresholding and an edge detection method, 

which is one of the most significant concepts of brain image segmentation prior to 
feature extraction and image recognition system. Ali et al. [11] designed a new 

brain tumor segmentation using an enhanced thresholding algorithm. Accurate 

division utilizing deep learning techniques has as demonstrated mainstream since 

these strategies produce existing results and can more likely tackle this issue 

than different strategies. Deep learning approaches can likewise take into account 
more effective preparing and target appraisal of the enormous amounts of image 

information dependent on MRI. Another dissertation by Ali et al[12] offered an 

analysis of the state-of-the-art approaches focused on profound learning. The 

objective of this model is to include an outline of methods for segmentation of 

brain tumours based on MRI. Next, it does segmentation of the brain tumour. 

Then the state-of-the-art algorithms are utilized for classification, with an 
emphasis on the current developments in deep learning techniques. At last, an 

evaluation of the present iteration is offered and potential advances are discussed 

for standardising methods of brain tumour segmentation based on MRI into 

regular clinical practise. High output proven by deep learning methods. 

 
Eman et al[13] used K-means clustering procedure joint with Fuzzy C-means 

algorithm to provide an effective system to segmentation of images. Thresholding 

and level-set categorization stages are observed for effective diagnosis of brain 

tumours. The suggested methodology will benefit from the K-means clustering in 

the features of reduced time complexity for image segmentation. Moreover, it can 

take advantage of the Fuzzy C-means in the precision features. Lakshmi and 
Angulakshmi[14] use superpixel-based spectral clustering to present MRI 

segmentation of brain tumour. ROI detection reduced the computation overhead 

of spectral clustering. ROI differentiation using spectral clustering provides high-

quality prediction performance for segmentation of brain tumours. Sandra et 

al.[15] planned optimization of the brain formation in the existence of numerous 
lesions from sclerosis. Here is a new intensity-based multi-atlas label fusion 

models that results in added precise resemblance measurements. 
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Kavitha and Rekha [16] proposed a combination based on the multilayer 

perceptron watershed and threshold algorithm for the division of brain tumors in 

MRI. Aung et al.[17] have developed a new segmentation framework based on an 
effective contour model based on an area based approach based on level range. 

Anithadevi and Perumal [18] have introduced a fusion model for brain tumor 

segmentation in the MR image. Subudhi et al. [19] have established a region-wide 

tumor segmentation method. The region's through the technique of segmentation 

is a common spatial segmentation method. Padole and Chaudhari [20] developed 

a tumor image detection regionally-growing automated brain MRI by machine 
learning algorithms, Cobzas et al. Havaei et al. [21],[22] others created an optional 

and interactive KNN-based brain tumor segmentation algorithm. Mavroforakis 

and Theodoridis [23] developed Ada-Boost SVM-based brain tumor division. 

Zhang et al.[24] presented a novel model for division based on Fully Convolutional 

Neural Networks (FCNN). Wang [25] investigated the automatic partition through 
the application of the deep convolutionary neural network, where regularization is 

achieved by graph slicing.  

 

Extracting features 

 

Feature extraction is a typical term for techniques of planning variable 
consolidations to obtain about these issues while as yet representing to the 

information with proper outcomes. The key objectives of feature selection are to 

discover a subset of factors, bringing about more exact classifiers and smaller 

models being created. Consequently the arrangement of features will screen out 

specific factors that are unessential to the specific model. Just the pertinent 
features ought to be captured while not over fitting the information. Likewise the 

sample size required for good generalisation is reduced. 

 

Jafari-Khouzani [26] et al. has presented a basic study to measure the statistical 

features of brain image. González-Navarro et al.[27] designed a novel approach for 

the choice of dimensionality-related features and several shelf classifiers for 
different HMRS modalities. Ghazali et al. [28] clarified the intent of extracting 

features and representing an object in a compact and distinct type of single 

values or a matrix vector. Liao et al. [29] have developed a new technique that has 

helped extract image characteristics for the identification of texture here gray-

level Co-Occurrence Matrix (GL CM) statistical technique for the study of texture 
characteristics using spatial pixel correlation. Huang et al. [30] implemented an 

object extraction technique. Vidyarthi and Mittal [31] developed a novel texture-

dependent extraction feature algorithm to extract relevant and informative 

features from the tumor-affected brain MR Images. Joans and Sandhiya[32] have 

developed a series of genetic algorithms to classify MRI scanning images of the 

brain. Habib et al[33] clarified how the MR-Brain image classification method 
conducts the evaluation of feature extraction methods. In this method uses three 

feature extraction techniques, namely the Gray-Level Co-Occurrence Matrix 

(GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradient (HOG). A 

mixture of Wavelet Statistical Features (WST) and Wavelet Co-occurrence Texture 

Function (WCT), acquired from Discrete Wavelet Transform ( DWT), was 
implemented by Padma and Sukanesh[34]. Karthik et al.[35] proposed an scheme 

for the successful detection of brain tumours from MR images by combining the 

 Curvelet and Gray Level Co-occurrence(GLCM) mechanism. 
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Classification 

 

In implementing an intelligent framework, classifiers performs a significant 

function in recognizing the tumor from brain and MRI image. The characteristics 
are given to the classifiers as contributions for grouping the clinical image into 

normal and abnormal. Classification is the process by which items are assembled 

into relating classes. Different image features are extracted for the grouping of the 

images. These functionalities are used to recognize the brain MR image as normal 

and abnormal. 

  
Hemanth et al.[36] used the first-order model Sugeno based Adaptive Neuro Fuzzy 

Inference Method (ANFIS) for the identification of brain tumour images. Using 

deep learning algorithms, Lalit et al[37] proved with deep learning methods and 

its benefits for classifying image. Le et al.[38] designed a new Support Vector 

Machine ( SVM) technique for classifying the two-class medical image. Ramteke 
and Monali[39] have suggested a procedure for classifying medical images into 

two groups, namely normal and abnormal based on image characteristics. 

  

Sivapriya et al.[40] developed a Least Square Support Vector Machine LS-SVM 

Training in combination with Chaotic Particle Swarm Optimization (PSO) to 

distinguish MR brain images. Saritha et al.[41 ] created a strategy for the Brain 
MRI classification based on the integration of spider web plots based on wavelet 

entropy and probabilistic neural network. In order to identify magnetic resonance 

brain images, Sumitra and Saxena[42] established a neural network approach. 

Joshi et al.[43] developed an advance hybrid PNN to improve the characterization 

of MRI brain tumors by using PNN and nonlinear changes in textured 
characteristics. Singh et al.[44] developed a combination of SVM and fuzzy c-

means, a hybrid approach used to predict brain tumors.  Ahmmed, et al. [45] 

designed a system that involves stages such as preprocessing of images, 

segmentation, and extraction of features, classification of SVM and classification 

of tumor stage using the Artificial Neural Network (ANN).  

 
V.Anitha, S.Murugavalli [46] explained Two-tier classification system it reduces 

the dimensionality of data and enhances predictive performance. The Random 

Majority Down-sampling-Synthetic Minority Over-sampling Technique (RMD-

SMOTE) proposed by Zaka Ur Rehman, et al.[47] this allows for greater precision 

and specificity. Mohammadreza Soltaninejad et al.[48] presented a 3D supervoxel-
based technique of learning Incorporating features from multimodal MRI images 

will greatly improve the accuracy of segmentation. Adriano Pinto et al.[49] created 

the  computationally expensive multi-class CAD framework Extremely 

Randomized Trees in nature, as well as being able to handle high 266 

dimensional feature vectors. Mohammadreza Soltaninejad, et al. [50] explained 

the extremely randomised trees based on superpixels which reduce the 
computational effort. Chao Ma et al.[51] engineered Random forests and active 

contour model Robotic contour initialization process, bringing greater efficiency 

and performance through priority shape and spatial restriction scheme. A. 

Shenbagarajan, et al. [52] produced better classification accuracy on the 

Levenberg-Marquardt (LM) algorithm. D. Jude Hemanth, J. Anitha [53] generated 
Modified GA approaches which reduce the number of features. That will result in 

the system's reduced complexity. For improving performance, various techniques 
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of optimization with novel features are needed, and this is the system's major 

limitation. 

 
Clara, et al. [54] conducted a survey on the application of deep learning 

algorithms in the analysis of medical images. Deep learning calculations, 

particularly convolutionary networks, have immediately become the convention of 

decision for clinical image examination. The primary ideas of deep learning, that 

are material to clinical image examination and reviews more than 300 field, the 

majority of which have developed in the most recent year. Utilizing Mathematical 
Morphological Reconstruction (MMR), Prasad et al [55] built up a computer-aided 

recognition way to deal with analyze brain tumor at its underlying point. Here 

Image pre-preparing done utilizing median filter is performed utilizing numerical 

morphological tasks to partition the segment image. Feature extraction using 

initial statistical and textural features, then reduction of features using study of 
the key components. 

  

Classification is achieved using GRB-kernel Support Vector Machines. Heba et 

al[56] for the detection of brain tumours, deep learning neural networks were 

used to develop a classification. The classifier was paired with the efficient feature 

extraction tool and principal  component analysis ( PCA) discrete wavelet 
transformation (DWT), and the performance assessment was very strong for all 

performance measures. In this model Image segmentation using Fuzzy C-means, 

Feature extraction using discrete wavelet transformation (DWT) and decrease 

using the technique of principal  Component Analysis ( PCA) and DNN 

Classification. 
 

Anjali and priya[57] created an appropriate classifier for classification of brain 

tumours.    Classification uses CART and SVM classifiers which are mixed hybrid 

process CART and SVM, the proposed system reached 92.31 per cent accuracy. 

Veeramuthu et al.[58] suggested the classification of brain images using 

the  machine learning method and the study of brain structures. The method of 
Multi Level Discrete Wavelet Transform helps to decompose the image, and then 

extract the features. Using PNN-RBF training and classification process, the brain 

image is categorised whether the disease is of mild, benign or malignant stages. 

Sanjeev et al.[59] developed a hybrid approach. This hybrid approach involves 

discrete wavelet transformation (DWT) to be used to remove features, genetic 
algorithm to decrease the number of features and support vector machine (SVM) 

for classification of brain tumours. Gopal et al.[60] proposed approach based on 

feed forward back-propagation of the neural network (FFBPNN) to improve the 

efficiency of classification of motor imagery. In this field several methods of 

grouping for medical images are available such as artificial neural network (ANN), 

fuzzy c-means (FCM), support vector machine (SVM), decision tree, K-Nearest 
Neighbour (KNN) and Bayesian classification. Among, this ANN, SVM, and KNN 

are the supervised learning procedures. Another class is unsupervised learning 

for data clustering such as Self Organizing Map, K-means clustering.  The 

classification technique has some limitations. The approach failed to consider 

classifying images of various pathological disorder, type and status of the disease. 
Implementation of the classification pipeline for deployment in clinical setups in 

real time and its applicability to other modalities of MRI are not considered. The 

method failed to concentrate DTI modalities for more intensive division of 
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subtypes of tumor tissue, such as necrosis and tumour enhancement. The system 

includes a lot of pure nodes that can result in overfitting. Method failed to take 

into account multimodal data.. Labelled training data is not called neural network 

for medical classification. 
 

Conclusion 

 

Brain tumour segmentation using various deep learning methods is an invaluable 

and challenging task. Because deep learning techniques have a powerful feature 

learning ability, automated image segmentation benefits many aspects. In this 
paper, we have investigated relevant deep learning based brain tumor 

segmentation methods and presented a comprehensive survey. We structurally 

categorized and summarised the deep learning based brain tumor segmentation 

methods. It represents that the Convolution Neural Network architecture has to 

be improved to handle the complex characteristics of brain tumor such as high 
diversity in its appearance and unclear boundary from the MR images. This 

provides the readers a detailed insight to the existing method and motivates them 

to develop robust architectures to segment and classify brain tumor for precise 

diagnosis. 
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