

How to Cite:

Abo Edra, N. M. M., El Saka, M. H., El-Baradey, H. F., & El Sherbny, R. A. (2022). Evaluating the role of muscular exercise in modulating the progress of peptic ulcer treated by quercetin or dexilant in male albino rats. *International Journal of Health Sciences*, 6(S5), 9962–9981.

<https://doi.org/10.53730/ijhs.v6nS5.10913>

Evaluating the role of muscular exercise in modulating the progress of peptic ulcer treated by quercetin or dexilant in male albino rats

Nesren Mohamed Mohamed Abo Edra

Physiology Department, Faculty of Medicine, Tanta University
Corresponding author email: Nesrenmohamed8@yahoo.com

Mervat Hassan El Saka

Physiology Department, Faculty of Medicine, Tanta University

Hala Fouad El-Baradey

Physiology Department, Faculty of Medicine, Tanta University

Romysaa Ali El Sherbny

Physiology Department, Faculty of Medicine, Tanta University

Abstract--Aim of the Work: Study the role of muscular exercise in modulating the progress of peptic ulcer treated by quercetin or dexilant in rats. Methods: 80 male rats divided into 8 equal groups: Control, gastric ulcer non-treated, gastric ulcer with exercise, dexilant treated gastric ulcer, quercetin treated gastric ulcer, dexilant treated gastric ulcer with exercise, quercetin treated gastric ulcer with exercise, quercetin and dexilant treated gastric ulcer groups. At the end, the collected samples were used to analyze PH, total gastric acidity, ulcer index(UI), curative index(CI), heat shock protein 70(HSP70), asymmetric dimethyle arginine(ADMA), tumor necrotic factor alpha(TNF α) levels. Histopathological and immunohistochemical analyses were done. Results: Non-treated group showed significant decrease of gastric levels of pH and CI with significant increase of gastric total acidity, UI, HSP70, ADMA and TNF α . Also, deterioration of histopathological and immunohistochemical expression of Bcl-2 with increase of NF- κ B immunohistochemical expression compared to control group. In treated groups with exercise, dexilant and quercetin, dexilant with exercise and quercetin with exercise, showed significant increase of gastric levels of pH and curative index with significant decrease of total acidity, ulcer index, HSP70, ADMA, MDA and TNF α with improvement of the histopathological appearance of gastric tissue, enhancement immunohistochemical expression of Bcl-2 with concomitant decrease NF- κ B immunohistochemical expression as

compared to non-treated group. All studied parameters significantly improved in quercetin and dexilant treated group as compared to non-treated and all treated groups. Conclusion: Combination of quercetin and dexilant could improve gastric ulcer induced by aspirin via anti-apoptotic, anti-inflammatory and antioxidant effects.

Keywords---Muscular Exercise, Peptic Ulcer, Quercetin, Dexilant, ADMA, Bcl2, NF- κ B.

Introduction

Peptic ulcer is a serious disease of the gastrointestinal tract (Lanas and Chan, 2017). It affects mainly in the stomach and duodenum (Prabhu and Shivani, 2014). Peptic ulcer disease is primarily caused by an imbalance between aggressive factors (acid, pepsin, non-steroidal anti-inflammatory drugs (NSAID), *Helicobacter pylori* infection, smoking, stress, and excessive alcohol intakes) and protective actions of the gastrointestinal mucosa, such as bicarbonate, mucus, and prostaglandins secretion (Fashner and Gitu, 2015).

Flavonoids are a class of naturally occurring chemicals that may be found throughout the plant kingdom as secondary metabolites (Tungmannithum et al., 2018). Clinically, flavonoids have been shown to have anti-inflammatory, antioxidant, antiviral, anti-allergic, anticancer, and antitumor effects (Panche et al., 2016). Quercetin is one of flavonoid group, which has the most potent antioxidant activity (Olayinka et al., 2015). Quercetin has been shown to protect the stomach mucosa against acute lesions generated by various experimental models and necrotic agents, such as restraint stress, NSAID, and ethanol-induced gastric ulcers (David et al., 2016).

Proton pump inhibitors (PPIs) are the most widely used and the most often prescribed medication for peptic ulcer, they work by inhibiting the production of gastric hydrochloric acid (Kuna et al., 2019). The mechanism of action of PPIs is based on blocking the activity of the hydrogen/potassium adenosine triphosphatase (H/K ATPase) enzyme, that is called the proton pump and it has been found in the gastric parietal cells (Mossner, 2016).

Dexilant (Dexlansoprazole modified release (MR) is novel PPIs generation that display high efficiency in the treatment of symptoms gastric ulcer (Goh et al., 2016). Due to dexilant's ability to reach two peak concentrations at separate periods over two and five hours of treatment, two peak concentrations may be achieved. Dexilant's elimination rate is lower than that of older PPIs, therefore it may remain in circulation for a longer period of time (Fass and Frazier, 2017).

Physical activity has a lot of benefits for psychological and physical health (Shephard, 2017). The effect of physical activity on the development of peptic ulcer disease depends on severity and the period of the physical activity (Levenstein et al., 2015). Nystriak and Bhatnagar, (2018) demonstrated that regular chronic moderate exercise, like walking, swimming, and cycling, has many benefits on cardiovascular, gastric and musculoskeletal systems. But the

mechanism of physical activity on peptic ulcer is still elusive. So, the aim of this work is to study the role of muscular exercise in modulating the progress of peptic ulcer treated by quercetin or dexilant in rats.

Materials & Methods

The present work was carried on 80 male albino rats. The rats were housed in an isolated animal cages (5 rats in each cage), in research lab of physiology department. They were freely supplied with water and food all over the period of the work. They were maintained in a 12-hour light-dark cycle at 23°C ambient temperature. The experiment was carried out in accordance with the guidelines of the Tanta University, Faculty of Medicine's ethics committee. (Approval Code Number: 33236/07/19). The rats were randomly divided into eight groups, each consists of 10 rats as the following:

- 1- Group I (Control group): They were received normal saline via oral gavage as a vehicle.
- 2- Group II (Gastric ulcer non-treated): Rats were received aspirin in a dose of 500 mg/kg via oral gavage (Das and Roy, 2012) for 2 weeks for induction of gastric ulcer, then they were received saline once daily via oral gavage as a vehicle for 4 weeks.
- 3-Group III (gastric ulcer with exercise): Rats were received aspirin as in group II. Then, they were exposed to chronic moderate exercise by swimming test for 4 weeks (Shephard, 2017).
- 4- Group IV (Dexilant treated gastric ulcer): Rats were received aspirin as in group II, then they were treated with dexilant in a dose of 60mg/kg once daily via oral gavage (Wu et al., 2016 b) for 4 weeks.
- 5- Group V (Quercetin treated gastric ulcer): Rats were received aspirin as in group II, then they were treated with quercetin in a dose of 50 mg/kg via oral gavage (Abourehab et al., 2015) for 4 weeks.
- 6- Group VI (dexilant treated gastric ulcer with exercise): Rats were received aspirin as in group II, then they were treated with dexilant as in group IV and they were exposed to chronic moderate exercise by swimming test for 4 weeks.
- 7- Group VII (quercetin treated gastric ulcer with exercise): Rats were received aspirin as in group II, then they were treated with quercetin as in group V and they were exposed to chronic moderate exercise by swimming test for 4 weeks.
- 8- Group VIII (quercetin and dexilant treated gastric ulcer): Rats were received aspirin as in group II, then they were treated with quercetin as in group V and they were treated with dexilant as in group IV at the same time.

Drug preparation

Aspirin, dexilant and quercetin were obtained from Sigma Aldrich CO., (Louis, Mo, USA) as powders and they were dissolved in normal saline.

Swimming test

This test was used for chronic exercise training. The animals were submitted to swimming exercise test after induction of gastric ulcer by aspirin for 2 weeks. But group VI and group VII were submitted to swimming test after administration of dexilant and quercetin respectively (treated gastric ulcer). The rats were

acclimated to swimming for 15 min in a water tank (diameter; 40 cm; depth, 70 cm) at a temperature of $35\pm1^{\circ}\text{C}$ every day for two weeks. Then the animals were helped out of the water and were returned back to their home cages for recovery (Matsakas, et al.2006).

Statistical analysis

The previously mentioned data were statistically expressed as the mean \pm standard deviation. Statistical comparison between different groups was carried out by using one-way ANOVA. Significant results of analysis of variance were subjected to post hoc analysis (Tukey-Kramer multiple comparisons). P-values <0.05 were considered statistically significant. All statistical calculations were done using computer program SPSS (Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA) for Microsoft Windows (version 25).

Results

Gastric pH, Total acidity, UI and CI levels in all studied groups:

As regard to the comparison with gastric ulcer group, the gastric pH level and gastric CI exhibited significant increase in all gastric ulcer treated groups. On the other hand, the gastric total acidity and gastric UI exhibited significant decrease in all gastric ulcer treated groups. In the same way, the gastric pH levels and gastric CI were significantly increase in all gastric ulcer treated groups as compared to the gastric ulcer group exposed to exercise. But, the gastric total acidity and gastric UI exhibited significant decrease in all gastric ulcer treated groups.

It was noticed that the gastric pH level and gastric CI were significantly lower in quercetin treated group as compared to dexilent treated group. However the gastric pH levels and gastric CI were significantly higher in dexilent treated group with exercise and both quercetin and dexilent treated group as compared to dexilent treated group. But, the gastric total acidity level and gastric UI were significantly higher in quercetin treated group as compared to dexilent treated group. However the gastric total acidity level and gastric UI were significantly lower in dexilent treated group with exercise and both quercetin and dexilent treated group as compared to dexilent treated group.

In comparison with quercetin treated group, the gastric pH levels and gastric CI showed significant increase in all gastric ulcer treated groups except the gastric ulcer group exposed to exercise. However, the gastric total acidity level and gastric UI showed significant decrease in all gastric ulcer treated groups except the gastric ulcer group exposed to exercise as compared to quercetin treated group. It was observed that the gastric pH level and gastric CI were significantly lower in quercetin treated group with exercise as compared to dexilent treated group with exercise. However the gastric pH levels and gastric CI were significantly higher in both quercetin and dexilent treated group as compared to dexilent treated group with exercise. However, the gastric total acidity level and gastric UI were significantly higher in quercetin treated group with exercise as compared to dexilent treated group with exercise. However the gastric total acidity level and

gastric UI were significantly lower in both quercetin and dexilant treated group as compared to dexilant treated group with exercise. Finally, as compared to quercetin treated group with exercise the gastric pH level and gastric CI were significantly higher in group treated with both quercetin and dexilant. But, as compared to quercetin treated group with exercise the gastric total acidity level and gastric UI were significantly lower in group treated with both quercetin and dexilant (Table 1).

Table (1): Gastric pH level, Total acidity level (mEq/L/100g), ulcer index (mm) level and curative index (%) level in all studied groups

Parameters	Control Group I	Gastric ulcer Group II	Gastric ulcer with exercise Group III	Dexilant treated Group IV	Quercetin treated gastric Group V	Dexilant treated with exercise Group VI	Quercetin treated with exercise Group VII	Quercetin and dexilant treated group VIII
Gastric pH level	2.82±0.18	1.24±0.07 ^a	1.55±0.09 ^{a,b}	2.16±0.05 ^{a,b,c}	1.91±0.04 ^{a,b,c,d}	2.41±0.12 ^{a,b,c,d,e}	2.12±0.07 ^{a,b,c,e,f}	2.80±0.18 ^{b,c,d,e,f,g}
Total acidity (mEq/L/100g)	52.59±2.4 ⁹	88.70±2.9 ^{6 a}	79.25±2.0 ^{1 a,b}	60.84±1.16 ^{a,b,c}	69.34±1.47 ^{a,b,c,d}	57.69±0.92 ^{a,b,c,d,e}	64.16±2.41 ^{a,b,c,d,e,f}	53.62±2.81 ^{b,c,d,e,f,g}
UI (mm) level	0.026±0.0 ¹⁹	39.99±0.9 ^{3 a}	35.55±0.4 ^{4 a,b}	5.35±0.63 ^{a,b,c}	19.58±0.37 ^{a,b,c,d}	3.08±0.15 ^{a,b,c,d,e}	15.11±0.25 ^{a,b,c,d,e,f}	1.33±0.066 ^{b,c,d,e,f,g}
CI (%) level	99.99±0.0 ¹⁵	0±0 ^a	22.42±0.1 ^{6 a,b}	86.91±0.23 ^{a,b,c}	51.71±0.40 ^{a,b,c,d}	90.74±0.311 ^{a,b,c,d,e}	55.39±0.51 ^{a,b,c,d,e,f}	98.57±1.04 ^{b,c,d,e,f,g}

UI: ulcer index, CI: curative index

a b c d e f g denotes statistical significance at $p \leq 0.05$. ^a shows significance as compared to group I, ^b shows significance as compared to group II, ^c shows significance as compared to group III, ^d shows significance as compared to group IV, ^e shows significance as compared to group V, ^f shows significance as compared to group VI, ^g shows significance as compared to group VII

Heat shock protein 70 levels in all studied groups:

As compared to gastric ulcer group, there was significant increase in HSP 70 in gastric ulcer group with exercise, dexilant treated group with exercise and quercetin treated group with exercise. However, there was significant decrease in HSP 70 in dexilant treated group, quercetin treated group and in group treated with both quercetin and dexilant as compared to gastric ulcer group.

In addition, HSP 70 levels were significantly decrease in all gastric ulcer treated groups as compared to the gastric ulcer group with exercise. Comparing with dexilant treated group, it was noticed that the HSP 70 level was significantly higher in quercetin treated group, dexilant treated group with exercise and quercetin treated group with exercise. But, HSP 70 level was significantly lower in both quercetin and dexilant treated group as compared to dexilant treated group.

As regard to quercetin treated group, there was significant increase in HSP 70 level in dexilant treated group with exercise and quercetin treated group with exercise. But, HSP 70 level was significantly lower in both quercetin and dexilant treated group as compared to dexilant treated group. As compared to dexilant

treated group with exercise, HSP 70 level significantly increase in quercetin treated group with exercise, but significantly decrease in both quercetin and dexilant treated group as compared to dexilant treated group with exercise. Moreover, HSP 70 level were significantly decrease in both quercetin and dexilant treated group as compared to quercetin treated group with exercise (Table 2).

Table (2): Heat Shock Protein 70 levels in all studied groups

Parameter	Control Group I	Gastric ulcer Group II	Gastric ulcer with exercise Group III	Dexilant treated Group IV	Quercetin treated gastric Group V	Dexilant treated with exercise Group VI	Quercetin treated with exercise Group VII	Quercetin and dexilant treated group VIII
HSP 70 (pg/ml)	36.74±4.4 6	79.03±3.29 a	148.73±4.6 a,b	57.9±5.2 a,b,c	64.4±3.4 a,b,c,d	100.61±4.51 a,b,c,d,e	120.6±3.33 a,b,c,d,e,f	37.80±4.72 b,c,d,e,f,g

HSP 70: Heat Shock Protein 70

a b c d e f g denotes statistical significance at $p \leq 0.05$. ^a shows significance as compared to group I, ^b shows significance as compared to group II, ^c shows significance as compared to group III, ^d shows significance as compared to group IV, ^e shows significance as compared to group V, ^f shows significance as compared to group VI, ^g shows significance as compared to group VII

Asymmetric Dimethyle Arganine and Tumor Necrotic Factor α levels in all studied groups:

As regard to the comparison with gastric ulcer group, the ADMA level and the TNF α level exhibited significant decrease in all gastric ulcer treated groups. In addition, the ADMA levels and the TNF α level were significantly decrease in all gastric ulcer treated groups as compared to the gastric ulcer group exposed to exercise. It was noticed that the ADMA level and the TNF α level were significantly lower in dexilant treated group with exercise and both quercetin and dexilant treated group as compared to dexilant treated group. However, the ADMA levels and the TNF α level were significantly higher in quercetin treated group and quercetin treated group with exercise as compared to dexilant treated group.

As regard to quercetin treated group, the ADMA level and the TNF α levels showed significant decrease in dexilant treated group with exercise, quercetin treated group with exercise and both quercetin and dexilant treated group. It was observed that the ADMA levels and the TNF α level were significantly higher in quercetin treated group with exercise as compared to dexilant treated group with exercise. However, the ADMA level and the TNF α level were significantly lower in both quercetin and dexilant treated group as compared to dexilant treated group with exercise. At the end, as compared to quercetin treated group with exercise the ADMA level was significantly lower in group treated with both quercetin and dexilant (Table 3).

Table (3): Asymmetric Dimethyle Arganine ($\mu\text{mol/L}$) and Tumor Necrotic Factor α (pg/mg protein) in all studied groups

Parameters	Control Group I	Gastric ulcer Group II	Gastric ulcer with exercise Group III	Dexilant treated Group IV	Quercetin treated gastric Group V	Dexilant treated with exercise Group VI	Quercetin treated with exercise Group VII	Quercetin and dexilant treated group VIII
ADMA($\mu\text{mol/L}$)	1.41 \pm 0.14	4.96 \pm 0.40 ^a	4.09 \pm 0.24 ^{a,b}	2.43 \pm 0.16 ^{a,b,c}	3.57 \pm 0.32 ^{a,b,c,d}	1.98 \pm 0.21 ^{a,b,c,d,e}	2.9 \pm 0.47 ^{a,b,c,d,e,f}	1.49 \pm 0.18 ^{b,c,d,e,f,g}
TNF α (pg/mg protein)	30.99 \pm 3.0 ⁸	88.05 \pm 10.0 ^{5 a}	79.78 \pm 4.8 ^{a,b}	48.61 \pm 2.03 ^{a,b,c}	63.12 \pm 3.34 ^{a,b,c,d}	40.42 \pm 4.91 ^{a,b,c,d,e}	55.8 \pm 3.9 ^{a,b,c,e,f}	32.48 \pm 2.4 ^{9 b,c,d,e,f,g}

ADMA: Asymmetric Dimethyle Arganine, TNF α : Tumor Necrotic Factor α
 a b c d e f g denotes statistical significance at $p \leq 0.05$. ^a shows significance as compared to group I, ^b shows significance as compared to group II, ^c shows significance as compared to group III, ^d shows significance as compared to group IV, ^e shows significance as compared to group V, ^f shows significance as compared to group VI, ^g shows significance as compared to group VII

The histopathological analysis of the gastric tissue in the present work revealed the following (Figure 1):

Control group exhibited normal architecture of the gastric tissue. While, Gastric ulcer group displayed disruption of the surface epithelium and necrotic lesions penetrate deeply into. There was extensive edema of submucosa layer hemorrhage and leucocyte infiltration. Gastric ulcer with exercise group showed disruption of the surface epithelium, there was edema of sub-mucosal layer, hemorrhage and leucocyte infiltration. Dexilant treated group revealed slight improvement of the surface epithelium, there was mild edema of submucosa layer and mild leucocyte infiltration. In addition, quercetin treated group displayed slight disruption of the surface epithelium, there was edema of submucosa layer, hemorrhage and leucocyte infiltration.

Dexilant treated with exercise group exhibited mild disruption of the surface epithelium, there was mild edema of submucosal layer and mild leucocyte infiltration. Also, quercetin treated with exercise group revealed slight disruption of the surface epithelium, there was mild edema of submucosal layer, and leucocyte infiltration. While, quercetin and dexilant treated group showed restoration of normal architecture of gastric tissue with disappearance of edema, hemorrhage and leucocyte infiltration.

Immunohistochemical expression of Bcl-2 with quantitative changes of its positive cells of gastric mucosa in all albino rats groups:

Figure (2) displayed normal immunohistochemical expression of Bcl-2 in gastric tissue of the control group and revealed reduction of Bcl-2 expression in gastric ulcer group. The immunohistochemical expression of Bcl-2 showed mild increase in gastric tissue of gastric ulcer with exercise group. On the other hand, expression of Bcl-2 showed prominent increase in all other gastric ulcer-treated groups (Figures 2).

Immunohistochemical expression of NF-κB with quantitative changes of its positive cells of gastric mucosa in all albino rats groups:

Figure (3) displayed normal immunohistochemical expression of NF-κB in gastric tissue of the control group and revealed prominent increase of NF-κB expression in gastric tissue of gastric ulcer group. The immunohistochemical expression of NF-κB showed reduction in gastric tissue of in all other gastric ulcer-treated groups (Figures 3).

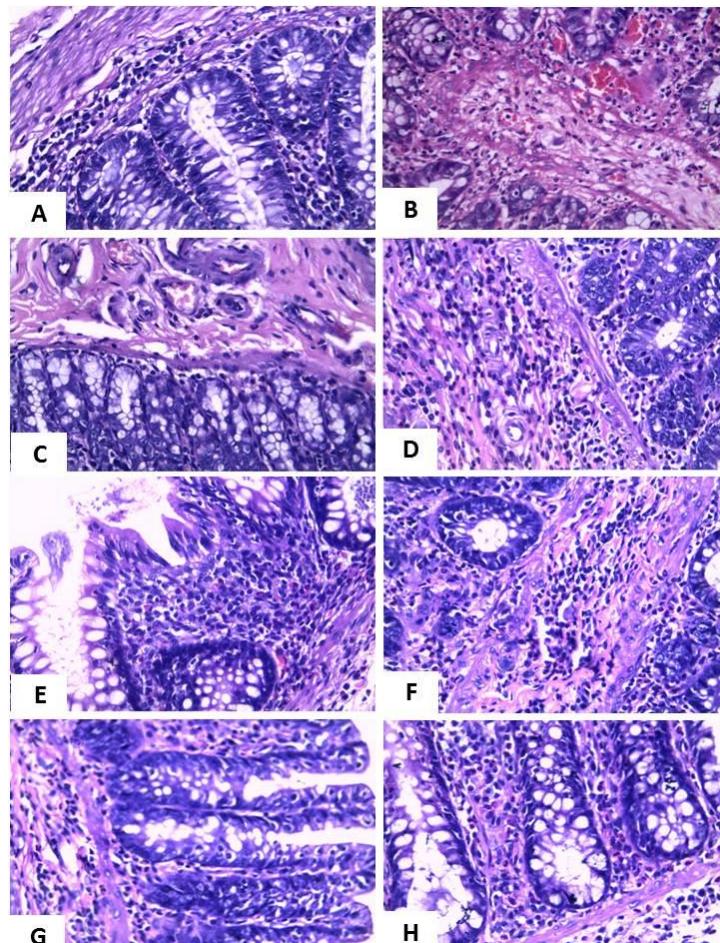


Figure (1): Histopathological examination of gastric tissue of (A): control group. (B): gastric ulcer group. (C): gastric ulcer with exercise group. (D): dexilant treated group. (E): quercetin treated group. (F): dexilant treated with exercise group. (G): quercetin treated with exercise group. (H): quercetin and dexilant treated group.

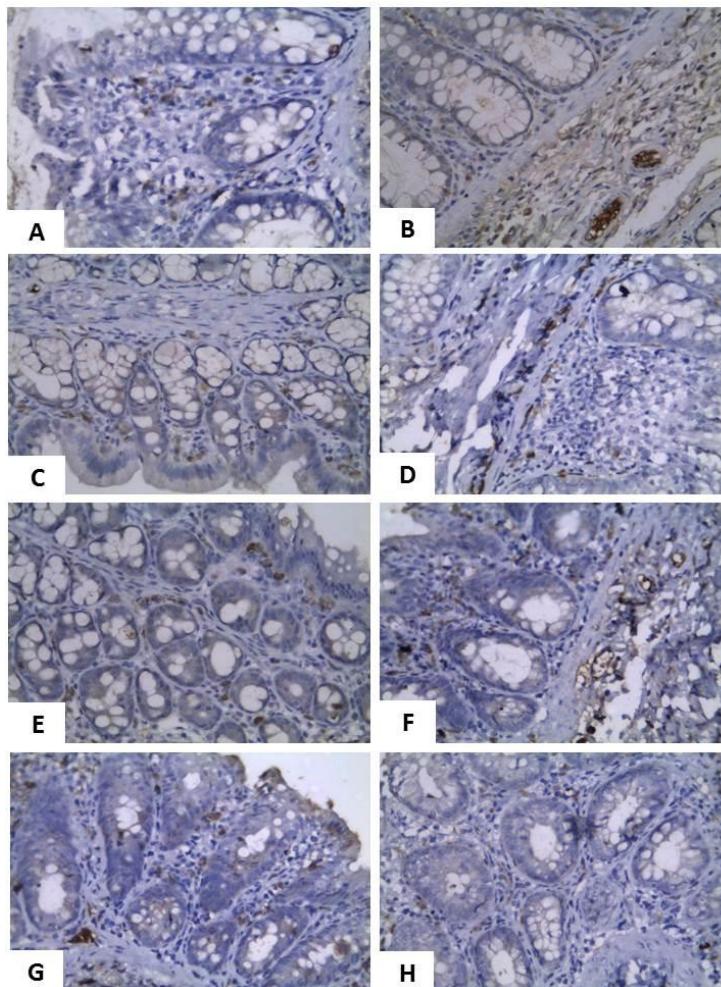


Figure (2): Immunohistochemical analysis of (A): control group. (B): gastric ulcer group. (C): gastric ulcer with exercise group. (D): dexilant treated group. (E): quercetin treated group. (F): dexilant treated with exercise group. (G): quercetin treated with exercise group. (H): quercetin and dexilant treated group.

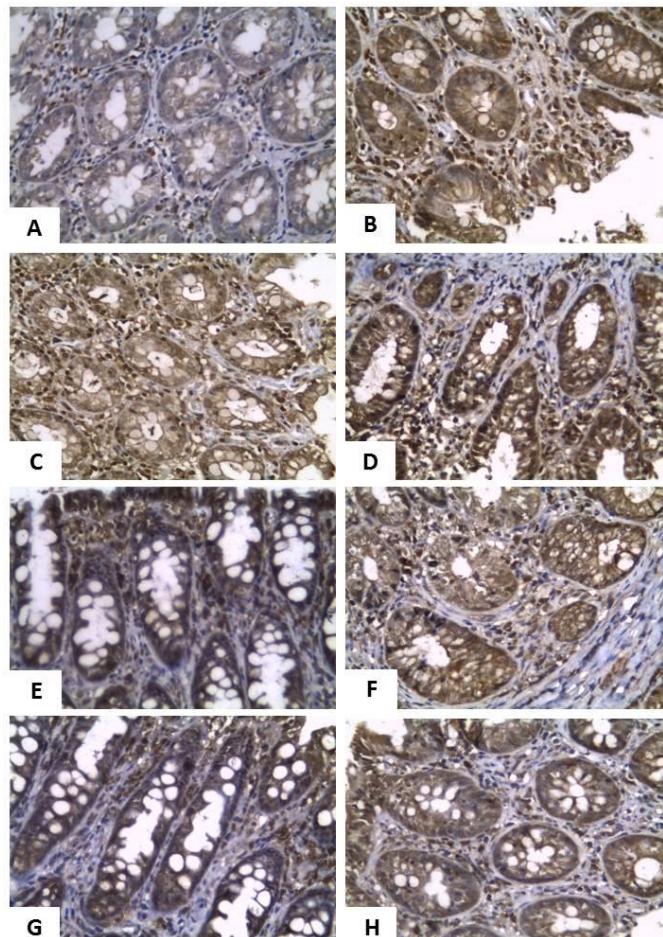


Figure (3): Immunohistochemical analysis of NF- κ B in gastric tissue of (A): control group. (B): gastric ulcer group. (C): gastric ulcer with exercise group. (D): dexilant treated group. (E): quercetin treated group. (F): dexilant treated with exercise group. (G): quercetin treated with exercise group. (H): quercetin and dexilant treated group.

Discussion

The findings of this study showed that aspirin-induced peptic ulcer in rats resulted in significant damage to gastric tissue, as evidenced by a significant drop in pH, an increase in total stomach acidity parameters, an increase in UI, and a decrease in CR, as compared to the normal control group. These results are in accordance with previous reports (Cryer and Mahaffey, 2014; and Saha et al., 2016).

The present work showed that aspirin could cause gastric hyperacidity by antagonizing the effect of histamine on H₂ receptors within the parietal cell membranes, which results from the stimulatory G protein acting via protein kinases to increase the intracellular concentration of cyclic AMP, which in turn causes an increase in H₂ transport into the gastric lumen by H₂K₊ ATPase (Chan

et al., 2017). Another mechanism of aspirin is the systemic blocking of COX-1 enzyme, which is responsible for PG production, so when decrease PG level leads to increasing H₂ transport and increase HCl formation with subsequent decrease of gastric pH, increase its total gastric acidity and increase of UI with decrease CI (Ornelas et al., 2017).

COX-1 suppression by aspirin contributed to a considerable release of endothelin-1 (ET-1) which is a powerful vasoconstrictor that has been demonstrated to produce mucosal damage (Gunaydin and Bilge, 2018). In addition to irreversible inhibition of COX-1 enzyme by aspirin results in a deficiency in neutrophil activation, resulting in the generation of ROS, which in turn causes the gastrointestinal damage (Diaz-Gonzalez and Sanchez-Madrid, 2015).

In addition, aspirin also inhibits thromboxane A2 on platelets, inhibiting platelet aggregation, and therefore increasing ulcer bleeding (Orlando et al., 2014). Aspirin induced decrease in blood flow, mucus-bicarbonate discharges, impairment of platelet aggregation, loss of epithelial cell renewal, and an increase in leukocyte adherence that are contributing for pathogenesis of ulceration (Handa et al., 2014). The results of the present work are in line with those previously outcomes reported by Motamed et al., (2015) who found that moderate physical exercise has improved gastric pH and the accompanied gastric total acidity in rats.

The mechanism by which moderate physical exercise might be due to improvement of gastric pH and decline total gastric acidity levels was not well definite, but it might be related to antioxidant, anti-inflammatory and anti-apoptotic effects of moderate exercise as revealed in our results. The mechanism by which moderate exercise significantly decrease UI with concomitant significant increase of CI have not been reported but it is possible that physical activity may affect peptic ulcer disease through various biologic mechanisms, including improving the immune system's ability to neutralize the effects of aspirin and improving a person's ability to deal with stressful situations. (Lee et al., 2019).

The decrease in acid secretion is another proposed mechanism by which physical exercise might influence the development of ulcer disease. Regular physical activity (walking, gardening, or swimming) has been associated with a decreased risk for severe GIT hemorrhage due to improvement of the blood supply (Jones et al., 2015).

Dexilant's antioxidant, anti-inflammatory, and anti-apoptotic properties may be responsible for the considerable rise in stomach pH and reduction in overall gastric acidity levels as shown in the results of the present work. In addition, another explaining mechanism is that dexilant is a modified PPI. These PPI medications irreversibly block hydrogen-potassium adenosine triphosphatase on the luminal side of the parietal cell, thus preventing secretion of hydrogen ions into the gastric lumen (Kitay et al., 2019).

The reduction of UI with concomitant significant increase of CI might be explained by that was dexilant inhibits stomach acid output for up to 36 hours, aiding in the repair of ulcers and erosions, stabilizing thrombi, and minimizing GIT

bleeding in patients on low dose aspirin (Ali Khan and Howden, 2018). Additionally, dexilect promotes mucosal cell renewal by promoting gene expression of prosurvival proliferating cell nuclear antigen, survivin, epidermal growth factor, and basic fibroblast growth factor (Rantanen et al., 2014).

By lowering the number of mast cells and antagonizing histamine's activities, quercetin has been discovered to enhance stomach pH and lower overall acidity levels (Jafarinia et al., 2020). Quercetin has been shown to decrease H⁺K⁺-ATPase activity by up to 33% as a secondary mechanism for lowering overall acidity and raising gastric pH (Carvalho et al., 2018). Also, quercetin has antioxidant, anti-inflammatory and anti-apoptotic as exhibited in our results with subsequent improvement of gastric ulcer. In addition, quercetin controls the activity of COX and NOS. Also, Quercetin enhanced nuclear translocation of the nuclear factor related to erythroid 2 (Nrf₂) which plays a significant role in protecting the digestive tract from oxidative damage. Hemoxygenase-1 (HO-1) and other antioxidant defense proteins, as well as NF-κappaB activation and intercellular adhesion molecule-1 (ICAM-1) and P-selectin expression, are all negatively regulated by Nrf2 and so suppress pro-inflammatory signaling as well as increase the activities of GPx (Habtemariam, 2019).

The combination of exercise with either dexilect or quercetin dramatically elevated gastric pH and decreased both total gastric acidity and UI with concurrent enhancement of CI. Also, combination of both dexilect and quercetin exhibited greater improvement of these parameters as compared to the ulcer or other treated groups. The combination of these treatment gave rise to greater improvement of gastric ulcer which might be related to the combination of their mechanisms.

In the present work, the results exhibited that the gastric HSP70 level was dramatically elevated in the ulcer group as compared to the control group. The mechanism for increasing the gastric HSP70 level in the ulcer group by aspirin was that Hsp70 is a group of highly conserved stress proteins which are critical for the body's capacity to maintain its own stability, cellular stress tolerance, normal physiological function, and increased defense and adaptation of cells to lethal stimulus. The aspirin-induced oxidative stress may be countered in rats by overexpression of the heat shock protein 70 gene (HSP70) (Stetler et al., 2010). HSP70 overexpression enhances ulcer healing by enhancing stomach mucosal blood flow and cell proliferation. Expression of HSP70 can also be caused by long term administration of aspirin to increase the adaptive cellular protection-tolerances through modulation of the denatured and unfolded proteins (Liu et al., 2011).

In the current work, the results showed that the gastric HSP70 level was remarkably increased in the exercise treated group as compared to the ulcer group. For the exercise-treated group, HSP70 levels increased as a consequence of hypoxia, increased temperature, and generation of free radicals (Lollo et al., 2013). The level of plasma HSP70 during exercise is increased due to numerous release of HSP70 from lymphocytes during high-load exercise (Lawler et al., 2016). The mechanism for decline of the gastric HSP70 level in the dexilect treated group was that dexilect reduces stomach acid output, suppresses the

production of oxidative stress indicators like MDA, and reverses the expression of proinflammatory markers like TNF, thereby relieving the stress state (Ruiz-Hurtado et al., 2021).

The results of the present work demonstrated that the gastric level of HSP70 decreased in the quercetin treated group as compared to the ulcer group. These results were in accordance with several studies (Yang et al., 2016). The mechanism for decline of the gastric HSP70 level in the quercetin treated group was that A number of kinases, including creatine kinase2 (CK2), which has been demonstrated to promote HSP70 production via the phosphorylation of heat shock factor 1 (HSF1) threonine 142, were inhibited by quercetin. Thereby, quercetin may decrease HSP70 induction by preventing CK2 phosphorylation of HSF1 and thus inhibiting HSP70 induction (Zorz et al., 2011). The findings of this research showed a considerable increase in HSP70 activity in the dexilient exercise group. The mechanism for increasing the gastric HSP70 level in dexilient with exercise group was due to the exercise effect which increase the gastric HSP70 level.

The combination of exercise with either dexilient or quercetin significantly increased the gastric HSP70 activity as compared to either dexilient or quercetin groups. The combination of these treatment gave rise to greater improvement of the gastric HSP70 which might be related to the combination of their mechanisms. The results of the present work showed that the ADMA activity considerably higher in the ulcer group as compared to the normal group.

In aspirin induced peptic ulcer, there is an observed drop in DDAH-1 gene expression with subsequent increase of ADMA level in damaged mucosa due to decreasing ADMA metabolism. Lowering DDAH gene expression might be related to the imbalance oxidative status associated with gastric injury caused by aspirin. A direct link has been shown between the production of ROS and ADMA, according to this theory (Shahin et al., 2018).

The results of the current study revealed that exercise treated group effectively attenuated the rise of gastric ADMA level as compared to the gastric ulcer group. Mechanism by which moderate physical activity reduced increased levels of gastric ADMA via its antioxidant, anti-inflammation, and anti-apoptotic properties (Semeraro et al., 2022). In addition to increase HSP70 (Nakhjavani et al., 2012) as shown in our results. The results of the current study exhibited that the gastric ADMA level remarkably reduced in dexilient group as compared the ulcer group. These results were in line with other previous reports (Hu et al., 2017).

An anti-inflammatory and antioxidant activity of dexilient that may directly affect inflammatory cells such endothelial cells, neutrophils, and monocytes to modulate the expression of adhesion molecules was hypothesized to be a mechanism for lowering stomach ADMA levels in the dexilient treated group. This prevents the activation of Nf K-B, the production of inflammatory cytokines, and the chemotaxis of neutrophils. Also, blocking the release of pro-inflammatory cytokines, increasing the endogenous anti-oxidant defense mechanism and maintaining the integrity of the internal structure of damaged tissue, so dexilient

balances the oxidative stress and decreases ADMA level (Alfahad et al., 2021) as shown in our results.

The results of the present work demonstrated that the gastric level of ADMA decreased in the quercetin treated group as compared to ulcer group. The mechanism for decline the gastric ADMA level in the quercetin treated group was that Antioxidant quercetin scavenges free radicals, reducing their production, and quercetin also possesses anti-inflammatory and anti-apoptotic properties (Ranganathan et al., 2015). Inhibiting lipid peroxidation by catalysing the breakdown of H₂O₂ and GPx reduces ADMA levels in the stomach by lowering gastric ulcer pathogenesis (Zhang et al., 2020). The combination of exercise with either dexilient or quercetin significantly increased gastric HSP70 activity. Also, combination of both dexilient and quercetin exhibited greater improvement of this parameter as compared to the ulcer or other treated groups.

The combination of these treatment gave rise to greater improvement of gastric HSP70 which might be related to the combination of their mechanisms. In the present work, our findings revealed that TNFa significantly increased in the ulcer group as compared to the control group. The mechanism for increase of the gastric TNFa level in aspirin induced gastric ulcer was that aspirin causes inflammation by stimulating macrophages to produce cytokines as TNFa that then enhance infiltration of neutrophils (Sugimoto et al., 2016). One purposed mechanism for decreased the gastric TNFa by moderate exercise was that regular exercise performed at a moderate intensity prevented neutrophil infiltration and reduced lipid peroxidation, which resulted in the down regulation of pro-inflammatory cytokines like TNF (Manna and Jain, 2015).

Also, it appears that a systemic physiological adaptation occurs as a consequence of exercise-induced oxidative challenge and improves the resistance to further oxidative stress by increasing antioxidant and housekeeping enzyme activities while decreasing neutrophil-dependent inflammation (Arabaci Tamer et al., 2020). When compared to the ulcer group, the dexilient group showed significant reductions in stomach TNF levels. According to prior studies, these results were consistent with these findings (Ruiz-Hurtado et al., 2021).

The purposed mechanism for reduction of the gastric TNFa after the dexilient treatment was that dexilient has direct anti-inflammatory effects by reducing the expression of TNF- α at both transcription and protein levels. Dexilient suppresses the monocytic cell line's generation of TNF (Ruiz-Hurtado et al., 2021). The results of the present work demonstrated that the gastric level of TNFa decreased in the quercetin treated group. These results were in accordance with earlier studies (Alkushi and Elsawy, 2017; Zhang et al., 2020). There are several reasons why quercetin reduces gastric TNF- α , but the most common one is that quercetin regulates myeloperoxidase (MPO), a biomarker of neutrophil infiltration that has pro-inflammatory and pro-oxidative qualities, in peptic ulcers (Zhang et al., 2020). Quercetin has been shown to decrease MPO levels with subsequent suppression of neutrophil activity. Hence, it decrease the TNFa level (Farzaei et al., 2015).

The combination of exercise with either dexilient or quercetin significantly reduced gastric TNFa. Also, combination of both dexilient and quercetin exhibited greater

improvement of gastric TNF α as compared to the ulcer or other treated groups. The combination of these treatment gave rise to greater enhancement of gastric TNF α which might be related to the combination of their mechanisms. This histopathological impairment in aspirin-induced ulcers may be attributable to the increased production of NO in the stomach mucosa as a result of the overexpression of iNOS. Aspirin induces inflammation and neutrophil infiltration, as well as an increase in TNF- production, which in turn increases the production of superoxide by neutrophils (Mahmoud and Abd El-Ghffar, 2019).

While, the results of this study revealed that in all treated groups the histopathological changes of gastric tissue induced by aspirin was attenuated. It was noted that these changes were remarkably improved with combination of dexilent and quercetin as compared with other treated groups. The mechanism by which all treatments improved the histopathological changes might be reflected to their antioxidant, anti-inflammatory and anti-apoptotic effects of exercise, dexilent and quercetin (Xu et al., 2019; Paz et al., 2020) as shown in our results. The mechanism by which aspirin decreased Bcl-2 was that Bcl-2 mRNA and protein expressions and the Bcl-2/Bax ratio were lowered by aspirin because aspirin increased Bax mRNA and protein expressions and decreased Bcl-2 mRNA and protein expressions (Alarifi et al., 2017).

The aspirin mechanism which increased NF-KB was that aspirin increase inflammatory factors by which NF-kB is activated like IL-8 during the development of peptic ulcer through inhibitory factor κ B- α (IkB) kinase complex phosphorylates IkB, and then degradation of IkB (Marta et al., 2020). The mechanism by which moderate regular exercise decrease immunehistochemical expression of NF-KB was that the phosphorylation of NF-B and IB was lowered dramatically by moderate frequent exercise as a method for reducing NF-KB immunohistochemical expression. Moderate exercise training and inhibition of macrophage markers at the mRNA level reduced the expression of inflammatory genes, including IL-6 and TNF (Liu and Chang, 2018).

The results of the current study exhibited that the immunehistochemical expression of Bcl-2 remarkably increased in contrast to the decreased NF-KB level in dexilent group as compared to the ulcer group. These results were in line with other previous reports (Lu et al., 2019). In order to preserve the usual proapoptotic/antiapoptotic ratio, dexilent suppresses aspirin-induced up-regulation of Bax and down-regulation of Bcl-2, therefore raising Bcl-2 levels (Rantanen et al., 2014). The results of the current study exhibited that the immunehistochemical expression of Bcl-2 significantly increased in contrast to the decreased NF-KB level in quercetin group as compared to the ulcer group. These results were in line with Serafim et al., 2020.

The mechanism for increasing Bcl-2 level was that quercetin has an antiapoptotic impact against aspirin-induced apoptosis in gastric tissue that was mediated through inhibiting the c-Jun N-terminal kinases (JNK) and ERK-mediated apoptotic pathways (Abdel-Tawab et al., 2020). The mechanism for decreasing NF-kB level was that the NF-kB pathway, which is involved in the generation of pro-inflammatory cytokines including tumour necrosis factor- (TNF-), interleukin-6

(IL-6), and interleukin-1 (IL-1), is suppressed by quercetin, which suppresses inflammation via neutrophil infiltration (Cheng et al., 2019).

The combination of exercise with either dexilant or quercetin significantly increased BcL-2 and decreased NF κ B. Also, combination of both dexilant and quercetin exhibited greater improvement of these parameters as compared to the ulcer or other treated groups. The combination of these treatment gave rise to greater improvement of BcL-2 and NF κ B which might be related to the combination of their mechanisms.

Conclusion

We concluded that combination of quercetin and dexilant could improve gastric ulcer induced by aspirin via their anti-apoptotic, anti-inflammatory and antioxidant effects.

References

Abdel-Tawab MS., Mostafa Tork O, Mostafa-Hedeab G, Ewaiss Hassan M, and Azmy Elberry D, (2020): Protective Effects of Quercetin and Melatonin on Indomethacin Induced Gastric Ulcers in Rats. *Reports of Biochemistry & Molecular Biology*; 9(3): 278–290.

Abourehab MA, Khaled KA, Sarhan HA, and Ahmed OA, (2015): Evaluation of combined famotidine with quercetin for the treatment of peptic ulcer: in vivo animal study. *Drug design, Development and Therapy*; 9:2159–2169.

Alarifi S, Ali H, Alkahtani S and Alessia MS, (2017): Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. *Int J Nanomedicine*; 12:4541–4551.

Alfahad M, Jasim M, Qazzaz M, Alassaf FA and Abed MN, (2021): The impact of antioxidant potential of proton pump inhibitors on peptic ulcer management: An overview. *Journal of Drug Delivery and Therapeutics*; 11(4-S):242-246.

Ali Khan M and Howden CW, (2018): The Role of Proton Pump Inhibitors in the Management of Upper Gastrointestinal Disorders. *Gastroenterology & Hepatology*; 14(3):169–175.

Alkushi A and Elsawy N, (2017): Quercetin attenuates, indomethacin-induced acute gastric ulcer in rats. *Folia Morphologica*; 76(2): 252–261.

Arabacı Tamer, Üçem S, Büke B, Güner M, Karaküçük AG, Yiğit N, et al., (2020): Regular moderate exercise alleviates gastric oxidative damage in rats via the contribution of oxytocin receptors. *The Journal of Physiology*, 598(12): 2355–2370.

Carvalho FB, Gutierrez JM, Beckmann D, Santos RP, Thomé GR., Baldissarelli J, et al., (2018): Quercetin treatment regulates the Na⁺, K⁺-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination. *Nutrition Research* (New York, N.Y.); 55: 45–56.

Chan FK, Kyaw M, Tanigawa T, Higuchi K, Fujimoto K, Cheong PK, et al., (2017): Similar Efficacy of Proton-Pump Inhibitors vs H2-Receptor Antagonists in Reducing Risk of Upper Gastrointestinal Bleeding or Ulcers in High-Risk Users of Low-Dose Aspirin. *Gastroenterology*; 152 (1): 105–110.

Cheng SC, Huang WC, Pang JH, Wu YH and Cheng CY, (2019): Quercetin inhibits the production of il-1 β -induced inflammatory cytokines and chemokines in

arpe-19 cells via the mapk and nf- κ b signaling pathways. International Journal of Molecular Sciences; 20 (12): 2957.

Cheung KS, Chan EW and Wong AYS, (2018): Long-term proton pump inhibitors and risk of gastric cancer development after treatment for *Helicobacter pylori*: a population-based study. Gut; 67:28-35.

Cryer B and Mahaffey KW, (2014): Gastrointestinal ulcers, role of aspirin, and clinical outcomes: pathobiology, diagnosis, and treatment. Multidisciplinary Healthcare; 7: 137-146.

David AVA, Arulmoli R and Parasuraman S, (2016): Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev.; 10 (20): 84-89.

Diaz-Gonzalez F and Sanchez-Madrid F, (2015): NSAIDs: learning new tricks from old drugs. Eur J Immunol.; 45 (3): 679-686.

Farzaei MH, Abdollahi M, and Rahimi R, (2015): Role of dietary polyphenols in the management of peptic ulcer. World J Gastroenterol; 21 (21): 6499-6517.

Fashner J and Gitu AC, (2015): Diagnosis and treatment of peptic ulcer disease and *H. pylori* infection. Am Fam Physician; 91(4): 236-242.

Fass R and Frazier R, (2017): The role of dexlansoprazole modified-release in the management of gastroesophageal reflux disease. Therapeutic Advances in Gastroenterology; 10 (2): 243-251.

Giri, M. K. W. (2019). Immunological side in overtraining exercise. International Journal of Health & Medical Sciences, 2(1), 1-6. <https://doi.org/10.31295/ijhms.v2n1.52>

Goh KL, Choi MG, Hsu PI, Chun HJ, Mahachai V, Kachintorn U, et al., (2016): Pharmacological and safety profile of dexlansoprazole: a new proton pump inhibitor - implications for treatment of gastroesophageal reflux disease in the Asia pacific region. J Neurogastroenterol Motil.; 22 (3): 355-366.

Gunaydin C and Bilge SS, (2018): Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J Med.; 50 (2): 116-121.

Habtemariam S, (2019): The Nrf2/HO-1 axis as targets for flavanones: neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxidative Medicine and Cellular Longevity; 2019: 4724920.

Handa O, Majima A, Onozawa Y, Horie H, Uehara Y, Fukui A, et al., (2014): The role of mitochondria-derived reactive oxygen species in the pathogenesis of non-steroidal anti-inflammatory drug-induced small intestinal injury. Free Radic Res.; 48 (9):1095-1099.

Hu ZH, Shi AM, Hu DM and Bao JJ, (2017): Efficacy of proton pump inhibitors for patients with duodenal ulcers: A pairwise and network meta-analysis of randomized controlled trials. Saudi journal of gastroenterology: official journal of the Saudi Gastroenterology Association; 23 (1): 11-19.

Jafarinia M, Sadat Hosseini M, Kasiri N, Fazel N, Fathi F, Ganjalikhani Hakemi M, et al., (2020): Quercetin with the potential effect on allergic diseases. Allergy, asthma, and Clinical Immunology; 16: 36.

Jones PD, Kappelman MD, Martin CF, Chen W, Sandler RS and Long MD, (2015): Exercise decreases risk of future active disease in patients with inflammatory bowel disease in remission. Inflammatory Bowel Diseases; 21 (5): 1063-1071.

Kitay AM, Ferstl FS, Link A and Geibel JP, (2019): Induction of secretagogue independent gastric acid secretion via a novel aspirin-activated pathway. Frontiers in Physiology; 10: 1264.

Kuna L, Jakab J, Smolic R, Raguz-Lucic N, Vcev A and Smolic M, (2019): Peptic ulcer disease: a brief review of conventional therapy and herbal treatment options. *J Clin Med.*; 8(2):179.

Lanas A and Chan FKL, (2017): Peptic ulcer disease. *Lancet.* 390 (10094): 613-624.

Lawler JM, Rodriguez DA and Hord JM, (2016): Mitochondria in the middle: exercise preconditioning protection of striated muscle. *The Journal of Physiology*, 594 (18): 5161-5183.

Lee M, van Netten JJ, Sheahan H and Lazzarini PA, (2019): Moderate-to-vigorous-intensity physical activity observed in people with diabetes-related foot ulcers over a one-week period. *Journal of Diabetes Science and Technology*; 13 (5): 827-835.

Levenstein S, Rosenstock S, Jacobsen RK and Jorgensens T, (2015): Psychological stress increases risk for peptic ulcer, regardless of helicobacter pylori infection or use of non-steroidal anti-inflammatory drugs. *Clin Gastroenterol Hepatol.*; 13: 498-506.

Liu HW and Chang SJ, (2018): Moderate exercise suppresses nf- κ b signaling and activates the sirt1-ampk-pgc1 α axis to attenuate muscle loss in diabetic db/db mice. *Frontiers in Physiology*; 9: 636.

Liu W, Chen Y and Lu G, (2011): Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by *H. pylori*. *BMC Gastroenterol*; 11: 146

Lu ZN, Shi ZY, Dang YF, Cheng YN, Guan YH, Hao ZJ, et al., (2019): Pantoprazole pretreatment elevates sensitivity to vincristine in drug-resistant oral epidermoid carcinoma in vitro and in vivo. *Biomedicine & Pharmacotherapy*; 120: 109478.

Mahmoud YI and Abd El-Ghffar EA, (2019): Spirulina ameliorates aspirin-induced gastric ulcer in albino mice by alleviating oxidative stress and inflammation, *Biomedicine & Pharmacotherapy*; (109): 314-321.

Manna P and Jain SK, (2015): Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. *Metabolic Syndrome and Related Disorders*; 13(10): 423-444.

Marta ŹN, Agnieszka W and Jacek P, (2020): NFKB2 gene expression in patients with peptic ulcer diseases and gastric cancer. *Mol Biol Rep*; 47: 2015-2021.

Mossner J, (2016): The indications, applications, and risks of proton pump inhibitors. *Dtsch Arztebl Int.*; 113(27-28): 477-483.

Motamed H R, Taati M, Dezfoulian O, Alirezaei M and Zahedan MM, (2015): The effects of moderate exercise on ethanol-induced gastric injuries in rats; *J Res Med Sci.*; 17(10): 2195

Nakhjavani M, Morteza A, Asgarani F, Khalilzadeh O, Ghazizadeh Z, Bathaie SZ, et al., (2012): The dual behavior of heat shock protein 70 and asymmetric dimethylarginine in relation to serum CRP levels in type 2 diabetes. *Gene*; 498(1): 107-111.

Nystriak MA and Bhatnagar A, (2018): Cardiovascular effects and benefits of exercise. *Front Cardiovasc Med.*; 5: 135.

Olayinka ET, Ore A, Adeyemo OA, Ola OS, Olotu OO and Echebiri RC, (2015): Quercetin, a flavonoid antioxidant, ameliorated procarbazine-induced oxidative damage to murine tissues. *Antioxidants (Basel)*; 4(2): 304-321.

Orlando BJ, McDougle DR, Lucido MJ, Eng ET, Graham LA, Schneider C, et al., (2014): Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. *Archives of Biochemistry and Biophysics*; 546: 33–40.

Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, et al., (2017): Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. *Cancer Metastasis Reviews*; 36 (2): 289–303.

Panche AN, Diwan AD and Chandra SR, (2016): Flavonoids: an overview. *J Nutr Sci.*; 5: 47.

Paz M, de Alencar M, de Lima R, Sobral A, do Nascimento G, Dos Reis CA., et al., (2020): Pharmacological effects and toxicogenetic impacts of omeprazole: genomic instability and cancer. *Oxidative Medicine and Cellular Longevity*; 2020: 3457890.

Prabhu V and Shivani A, (2014): An overview of history, pathogenesis and treatment of perforated peptic ulcer disease with evaluation of prognostic scoring in adults. *Ann Med Health Sci Res.*; 4 (1): 22–29.

Ranganathan S, Halagowder D and Sivasithambaram ND, (2015): Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells. *PLoS one*, 10 (10): 0141370.

Rantanen T, Udd M, Honkanen T, Miettinen P, Kärjä V, Rantanen L, et al., (2014): Effect of omeprazole dose, nonsteroidal anti-inflammatory agents, and smoking on repair mechanisms in acute peptic ulcer bleeding. *Digestive Diseases and Sciences.*; 59(11): 2666–2674.

Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, et al., (2021): Propolis and its gastroprotective effects on nsaid-induced gastric ulcer disease: a systematic review. *Nutrients.*; 13(9): 3169.

Saha L, Bhatia A and Chakrabarti A, (2016): Gastroprotective effect of bezafibrate, a peroxisome proliferator activated receptor α agonist and its mechanism in a rat model of aspirin-induced gastric ulcer. *Advances in Digestive Medicine*; 3 (3): 101–110.

Semeraro M D, Almer G and Kaiser M, (2022): The effects of long-term moderate exercise and Western-type diet on oxidative/nitrosative stress, serum lipids and cytokines in female Sprague Dawley rats. *Eur J Nutr*; 61: 255–268.

Serafim C, Araruna M E, Júnior, E A, Diniz, M, Hiruma-Lima, C, and Batista L, (2020): A review of the role of flavonoids in peptic ulcer (2010–2020). *Molecules* (Basel, Switzerland); 25(22): 5431.

Shahin NN, Abdelkader NF and Safar MM, (2018): A novel role of irbesartan in gastroprotection against indomethacin-induced gastric injury in rats: targeting ddah/adma and egfr/erk signaling. *Sci Rep.*; 8:4280.

Shephard RJ, (2017): Peptic ulcer and exercise. *Sports Med.* 47(1):33-40.

Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G and Chen J, (2010): Heat shock proteins: cellular and molecular mechanisms in the central nervous system. *Progress in Neurobiology*; 92 (2): 184–211.

Sugimoto MA, Sousa LP, Pinho V, Perretti M and Teixeira MM, (2016): Resolution of inflammation: what controls its onset?. *Frontiers in Immunology*; 7: 160.

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2022). Post-pandemic health and its sustainability: Educational situation. *International Journal of Health Sciences*, 6(1), i-v. <https://doi.org/10.53730/ijhs.v6n1.5949>

Tungmunnithum D, Thongboonyou A, Pholboon A and Yangsabai A, (2018): Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects. *Medicines (Basel).;* 5 (3): 93.

Xu D, Hu MJ, Wang YQ and Cui YL, (2019): Antioxidant activities of quercetin and its complexes for medicinal application. *Molecules (Basel, Switzerland);* 24 (6):1123.

Yang W, Cui M, Lee J, Gong W, Wang S, Fu J, et al., (2016): Heat shock protein inhibitor, quercetin, as a novel adjuvant agent to improve radiofrequency ablation-induced tumor destruction and its molecular mechanism. *Chinese Journal of Cancer Research = Chung-kuo yen cheng yen chiu.;* 28 (1): 19–28.

Zhang W, Lian Y, Li Q, Sun L, Chen R, Lai X, et al., (2020): Preventative and therapeutic potential of flavonoids in peptic ulcers. *Molecules (Basel, Switzerland);* 25 (20): 4626.

Zorzi E and Bonvini P, (2011): Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. *Cancers;* 3 (4): 3921–3956