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Abstract---Microarray gene expression data is used to understand the 

actions of thousands of genes. Just a few genes out of thousands have 

a significant impact in any cancer process. Finding these defective 

genes using experimental data is impractical. To locate the relevant 
genes, computational techniques are required. A method to identifying 

cancer candidate genes from microarray data is created. Clustering of 

similar genes is necessary to find co-expressed genes in different 

biological conditions. It is important to develop methods to find the 

few candidate genes for cancer. An optimization process is used for 

such purpose. A genetic algorithm employs the principles of evolution: 
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selection, recombination, and mutation to solve an optimization 

problem. Mutual information is used to find the dependency between 

genes. The two genes are similar if their expression levels are 

comparable. The similarity as well as positive and negative 
correlations between genes is considered while clustering them. 

Interdependence measure tells how the genes are correlated. The 

genes responsible for a sick state have higher interdependence 

measures. These genes are defective genes having cancer diagnostic 

information. Here microarray gene expression datasets from gastric 

cancer and colon cancer from the public domain are considered. The 
candidate genes found by this genetic algorithm model can identify 

known microarray samples as malignant or normal with high 

accuracy. The new algorithm creates even distribution of genes in the 

clusters. Furthermore, the computational tool can group genes having 

higher differences in gene expressions. This algorithm can assist in 
computational drug discovery process.  

 

Keywords---genetic algorithm, grouping genes, classification of 

microarray samples, candidate genes for disease, microarray data, 

entropy, mutual information, optimization. 

 
 

Introduction 

 

Microarray technology measures gene expression levels across the genome of an 

organism. The DNA microarray technique monitors the interactions of thousands 
of genes simultaneously through their expression levels. Genes with varied 

expression levels under different experimental settings are subjected to 

differential gene expression analysis. Different tissue types or developmental 

stages of the organism might be used as experimental levels. Normal-versus-

diseased state studies are a common type of analysis. Differential gene expression 

is analogous to gene co-regulation. It's necessary to find the genes whose 
expression levels are associated across the different experimental circumstances 

or samples being analyzed. Two genes are said to have positive correlation if the 

expression level of both genes rises simultaneously. On the other hand, they have 

negative correlation when one gene's expression level rises while that of the other 

falls at the same time. Gene regulation analysis requires looking into many gene 
profiles. Knowing the activities of genes in many biological systems has become a 

research area after the human genome project. Functional genomics has been 

transformed by the introduction of microarray technology. Scientists may now 

analyse hundreds of genes and their expression patterns in parallel under a 

variety of experimental settings. On a genome-scale, this sheds light on gene 

products behavior in normal and pathological conditions. The cellular activities of 
genes and the regulatory mechanisms in disease processes can be understood 

using this mechanism. 

 

Gene function is revealed by microarray research. The procedure entails 

comparing the expression patterns of the desired genes. A gene profile is a set of 
gene expression data of a fixed gene across several samples. An array profile 

shows the gene expression levels of many  genes in a single experimental 
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condition. The function of an unknown gene can be effectively inferred if the 

expression profile of a known gene matches the expression profile of an unknown 

gene. The functionalities of genes with very comparable expression patterns are 
used to predict the function of new genes. Data on gene expression is very useful 

in clinical diagnosis. They can identify expression patterns that are associated 

with a certain illness. Computational and statistics approaches are used to 

analyze microarray data. Microarray data analysis consists of numerous 

processes. To minimize the data volume, the raw data is first processed. A gene 

data matrix is a set of values that indicate the expression levels of a gene in 
multiple samples. The measured value deviates from the real expression level due 

to the measurement error caused by the faulty equipment. To cope with 

measurement inaccuracies, normalization is necessary. 

 

Microarray gene expression levels for gastric cancer and colon cancer are 
investigated here. The literature on experimental and computational microarray 

data analysis can be found here (Berrar et al 2003). Razak explains the data 

mining process in depth (2013). In cancer bioinformatics, Liu (2009) presented 

computational data mining. Solmaz et al. created SEMA, an online platform for 

generating models of cancer processes using massive cancer genomic data sets 

(2019). The fundamentals of data mining techniques and their applications in 
genomics, proteomics, and medical analysis were described by Herbola et al 

(2022). In recent years, the field of microarray data analysis has exploded (Zhang 

et al 2009; Selvaraj and Natarajan 2011; Koschmieder et al 2012; Amaral et al 

2018). Cancer identification studies involve greatly microarray data in recent 

days. Different data mining classification tools for microarray data with 
information on speed and accuracy of algorithms were systematized (Aydadenta 

and Adiwijaya 2017). The Deep Gene Selection (DGS) algorithm was investigated 

on several public microarray datasets and it provided better results in classifying 

different types of cancers Alanni et al 2019). The selected genes of the algorithm 

showed high degree of sensitiveness to the samples’ classes.   

 
Algorithms for genes cluster 

 

Computational tools to group genes together are necessary. Microarray data 

clustering is a fertile area of research in bioinformatics. Under specific situations, 

they can show the nature of co-regulation. Genes must be chosen that can 
reliably categorize test samples into sick and non-diseased categories. In general, 

the number of genes in microarray data far exceeds the sample size. This makes 

sample categorization and gene selection challenging. It's just essential to have a 

limited number of genes containing diagnostic information. All genes taken 

together may increase noise in the system and makes analysis difficult. A small 

number of important genes can lower the data's dimensionality. Then these genes 
can be exploited easily for diagnostic research.  

 

In the recent past, several clustering methods have been created. The K-means 

algorithm is a basic clustering technique (Lloyd 1982). But a priori determination 

of the number of clusters, k, is necessary in this process. The goal is only to 
cluster the data points. There is no need to compare them to any benchmark 

performance. It divides the genes into k separate partitions depending on 

particular attributes/features (e.g. gene expression levels). Each gene is only part 
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of one cluster. The microarray data is used to obtain a range of gene expression 

levels. 

 

The algorithm's stages are as follows. The k cluster centers are first taken at 
random. Each data point is assigned to the centre that is nearest to it. The cluster 

centre is then determined by taking the mean values of data points from a 

particular cluster centre. Now the new cluster center is changed. Then all the new 

cluster centers are determined. The iteration process is repeated until the values 

of the cluster centers remain unchanged. As a result, k clusters are created to 

group comparable genes. The expression levels of the genes inside each cluster 
are comparable. Between the clusters, the genes are more different. In general, 

related genes in an organism perform the same activities. Other clustering 

techniques are mentioned below but not in depth. They don't immediately relate 

to the topic at hand, but they illumine clustering tools used in the literature. 

 
The Self-Organizing Map (SOM) is an unsupervised learning method of clustering 

(Kohonen 1990). A neural-network type of array represents the SOM. The cells are 

adjusted to various input signal patterns in a systematic manner. The process of 

learning is unsupervised. Hence, the SOM converts high-dimensional data into 

low dimensional representation. The technique for hierarchical clustering features 

a simple visualization tool (Johnson 1967). A tree with individual members at one 
end is the standard depiction of this structure. Agglomerative approaches are 

differentiated from hierarchical clustering. A succession of gene fusions into 

groups is carried out. The genes are then grouped into ever finer groups. Bi-

clustering is another tool relies on data mining method. The rows and columns of 

a matrix of data are clustered simultaneously (Cheng and Church 2000). The 
technique creates bi-clusters from a collection of m rows and n columns. They are 

subsets of rows that show similar types of behavior on a subset of columns, or the 

vice versa. For clustering gene data from microarray datasets, all of these 

clustering algorithms are routinely utilized (Eisen et al 1998; Heyer et al 1999; 

Golub et al 1999). The expression levels of a gene under a certain experimental 

setting can be a time series data. The Euclidian distance and the Pearson's 
correlation coefficient are two extensively used distance metrics to cluster data. 

The Euclidian distance (s) between two genes, x and y, with n characteristics may 

be calculated as follows: 
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 where y,x  are the average of expression values of genes x and y respectively, xi 

is the value of ith expression level of gene x and yi is the value of the ith expression 

level of gene y. For negative p, a negative linear relationship between x and y 
exists. A positive value of p implies a positive linear relationship. The genes are 

independent if p is equal to zero.  

 

To calculate the similarity between two genes, traditional clustering techniques 

employ a Eucledian or Pearson's correlation as distance measurements. There are 

various restrictions to distance measurements. Genes with similar profile shapes 
are usually functionally linked. The Euclidian distance compares two expressions 

based on their expression values rather than their profile form. As a result, genes 

with similar expression profile shapes but big differences in gene expression are 

less likely to be grouped together. Genes with slight differences in expression 

profile shape and expression profiles that differ by a small magnitude may be 
grouped together. In terms of defining relationships, the Pearson's correlation 

outperforms the Euclidian distance. It is, nevertheless, sensitive to outliers. A new 

distance measure through mutual information has been suggested recently. This 

is the Attribute Clustering Algorithm (ACA) by Au et al 2005. It overcomes some of 

the drawbacks of traditional distance measurement methods. The ACA is based 

on the k-means idea. The genetic distance here is interdependent redundancy 
measure. It considers the interrelationships between any two genes. 

 

Two genes, x and y, each with n expression levels has Interdependency 

Redundancy measure defined as: 
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where M (x: y) is the mutual information, E(x: y) stands for the joint entropy, g is 

the number of x intervals, h denotes the number of y intervals, vk is the k th 
interval of x, vl is the l th interval of y, and P(vk vl) is the probability of a gene 

value appearing in the interval vk and vl, . P(vk) is the mutual information that 

deals with two genes' dependency, but it increases as the number of possible gene 

expression levels grows. Thus it is normalized by dividing it with entropy value.  

 
The idea of Clustering by Mutual Information (CMI) is defined as follows. It is  

similar to the one developed by Au et al (2005). But there is an exception of the 

fact that they employ a different smoothing method for the dataset (Behera et al 

2018). However, the gene distributions in the clusters have a limitation resulting 
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in narrow search space. Finding the optimum gene cluster can be biased by this 

limitation. The best answer in this case may not be the global optimum. 

Therefore, a hybrid of stochastic computation and clustering algorithm is created 

to solve this drawback (Behera et al 2018). Evolutionary computations are search 
methods to find the best solution to a research problem. They can be used to 

investigate a large variety of initial gene distributions in clusters. The 

Evolutionary Clustering Algorithm (ECA) is created keeping this idea in mind 

(Behera et al 2018). The ECA is an extension of CMI employing Darwinian 

principles of evolution by natural selection. It improves gene grouping and 

selection by eliminating the limits imposed by the clusters' skewed initial 
distribution of genes. 

 
This technique is applied to two datasets of taken from the public domain 

available on the internet: gastric cancer (Tsutsumi et al 2002), and colon cancer 

(Alon et al 1999). The findings are compared to those of other well-known 
clustering techniques. A decision tree algorithm, C4.5 is used to create classifiers 

based on a subset of candidate genes (Quinlan 1993). The C4.5 program is a 

standard method used in learning (Elomaa 1994). From a set of data, a decision 

tree is generated. It employs certain concepts from information theory. The 

decision tree classifier has been used in data mining research.  

 
Methodology 

 

Partitioning of data 

 

A vast majority of data is generally continuous. For any quantitative study, they 
must be discretized. Noise is frequently present as a result of measurement 

mistakes or inaccurate value entering. In the discretization process, this noise 

might result in a huge number of intervals. The greater number of intervals tends 

to increase the amount of information lost. A good method must address this 

problem. The gene expression levels in microarray data are generally continuous 

for all practical purposes. To facilitate computation of an information measure, 
they must be partitioned into appropriate intervals. To discretize a continuous 

data, the Optimal Class Dependent Discretization (OCDD) method is used (Wong 

et al 2004). It creates a near-global solution.  The OCDD takes into account the 

interaction of the classes and the values of gene expressions. Then it reduces the 

amount of data lost (Au et al 2005). Each sample belongs to a fixed category. In 
this case, there are two types of samples: normal and diseased. Smoothing of the 

data and a chi-square test are used in the model to offset   information loss due 

to large intervals in data. Before doing partitioning, smoothing is performed to 

reduce noise. The number of intervals is decreased when using the Chi-square 

test. The ECA method uses somewhat different smoothing and chi-square test 

than specified in the OCDD algorithm.  
 

Genetic Algorithm 

 

A genetic algorithm is a procedure to finding true or approximate solution of an 

optimization problem via an evolutionary search. This method can solve complex 
optimization issues in science and engineering (Holland 1975; Goldberg 2008). 

The algorithms use mutation, selection, and crossover concepts of evolutionary 
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biology. It is an evolutionary algorithm. It mimics Darwin's idea that Nature is the 

best optimizer. A population of approximate solutions undergoes Darwinian 

selection over several generations. Mutation (new genes introduced spontaneously 
as a result of random fluctuations) is the raw material for the Darwinian evolution 

to act. Mutation is caused by a change in the sequence of certain nucleotides in 

the gene.  

 

Recombination of genes in the chromosomes occurs due to the reproductive 

process. As a result, new chromosomes are generated. A haploid gene system is 
used in this example for illustrative purposes. A chromosome's crossing site is 

picked up at random. The genes in the parent 1 from the beginning of the 

chromosome up to the crossover point and the genes in parent 2 from the 

crossover point to the end of the chromosome are combined. Therefore, it 

produces a new chromosome. When parent 1 and parent 2 are swapped a new 
offspring is produced. They introduce new individuals into the population that did 

not exist in the previous generation.  

 

Individuals who adapt well are more likely to survive in an environment and 

reproduce. Their genes are passed on to future generations. So the genes that 

confer greater fitness to for survival of a population become more common in 
following generations. The fitness is measured by the net offspring an individual 

passes to the next generation. The chief problem is to design a fitness function 

appropriate for the particular research topic. This genetic algorithm has been 

successfully applied to numerous problems in diverse areas: evolutionary biology 

(Behera and Nanjindiah 1995, 1996, 1997, 2004), multiple protein sequence 
alignment optimization (Behera et al 2017), and analysis of microarray gene 

expression data (Behera et al 2018). A genetic algorithm will be utilized to extract 

the essential genes responsible for cancer from the microarray gene expression 

data. A string (individual) is represented by a series of 1s and 0s. It represents a 

plausible solution to the optimization issue in question. The genetic algorithm 

begins with a set of solutions created at random (possible solutions) by guess 
work. As the solutions evolve, they become better in subsequent generations. 

Every string in the population gets changed (recombined and maybe mutated) 

probabilistically. As a result, new individuals are created in each generation. With 

each consecutive generation, the solution improves. The fitness of each individual 

is assessed. To generate a new population in next generation, multiple individuals 
are randomly taken from the present population based on certain fitness criteria. 

The new population is subsequently used in the algorithm following the iteration. 

The method ends when the population has reached a predestined level of fitness, 

or when the maximum number of generations (given as input parameter) has 

been reached. Finally, the optimal solution corresponds to the individual having 

the highest fitness.  
 

Evolutionary Clustering Algorithm 

 

Mutual information idea of the CMI algorithm is used. The ECA implements the 

interdependence redundancy measure. The modes of the clusters are taken into 
account to find the distance metric. The gene with the largest multiple 

interdependent redundancy (MIR) is treated as the cluster's mode. The MIR of a 
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mode is defined as the total of its IR measures with all other genes in a fixed 

cluster. Figure 1a depicts the ECA's flow diagram.   

 

Creation of Individuals 
 

A two-dimensional array of integers is used to represent each individual. The gene 

number from the microarray data is represented by one index. The cluster 

number is shown by the other. It indicates that the genes relate to specific 

clusters in different ways. A set of gene expression values equal to the number of 

clusters is selected in a random manner. They become the clusters' modes. The 
remaining genes are assigned to the clusters. It's done by comparing the greatest 

IR values of the genes to the modes of the required clusters. The members of the 

population are created in a similar manner. An individual is a set of clusters. Its 

overall number of genes remains unchanged. This holds true for the population 

as a whole. A heterogeneous population of individuals with different gene 
distributions is created. Changing the seed values in the algorithm can generate 

different initial gene distribution. The population size is set at 300 in this model. 

This was discovered after analyzing the effect of population size on the optimized 

result (Behera et al 2018).  

 

Mutation Operations 
 

• Cluster Assignment Operator   

The Genetic K-Means tool was created by combining the K-means model 

with the genetic algorithm concept (Krishna and Murty 1999). This model 

gives the best outcome when compared to certain convergence criteria. In 

this work, a fusion of the K-mode clustering technique with an evolutionary 
algorithm is made. It determines each cluster's mode. It's the number of 

genes in that cluster with the highest MIR (at a given expression level). 

Other genes are allocated to the clusters with greater IR when using a 

specific cluster mode. The fitness of the individual and the new modes of the 

clusters are then determined.  

• Probabilistic Mutation Operator 

The mutation rate is a parameter that can be chosen. To avoid losing 
individuals of higher fitness, only the top 5% of the population having high 

fitness is kept. A genetic algorithm's usefulness is improved in this 

procedure. The remaining 95% of people are randomly picked for mutation. 

A random number is picked to choose an individual for mutation. The 

random number lies between 0 and 1. If the random number is smaller 

than the mutation rate, an individual from the whole population is chosen 
randomly for the implementing mutation. A mutation rate is usually very 

low. An individual here is made up of a number of clusters, each of which 

contains a number of genes.  A cluster with at least five genes is taken into 

account. The gene with the lowest MIR value is moved to another cluster of 

the same individual. A roulette wheel is built by combining the values of the 
IRs of the genes with the modes of the clusters in an individual. For more 

information, see the section below. The roulette wheel selection is used to 

choose the cluster to which a gene is transported. The fitness of the 

individual and the new modes of the clusters are next assessed. The 

mutation process affects all clusters. The result is a mutated individual. The 
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new population is made up of the top 5% of the better fit population as well 

as mutant and normal ones. This is done to eliminate bias caused by the 

top 5% of the population being chosen, to avoid early convergence and to 
increase variety. After examining the effects of the mutation rates, the 

probabilistic mutation rate is set to 0.1 to get the optimum results (Behera 

et al 2018). Figure 1b describes a flow chart of the operator steps. 
 

Fitness Function 

 
The best individual in the population is the one with the greatest fitness value. 

The sum of the fitness values of the total number of clusters determines an 

individual's fitness. It is defined as follows:  
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where F represents individual fitness, i signifies cluster number, and Ri is the 
cluster i's multiple interdependence redundancy measure.  

 

Selection 

 

To choose all of the individuals for the next generation, the roulette wheel 

technique is used. In a genetic algorithm, it is a common selection strategy. The 
relative fitness of each individual is used to create a roulette wheel. It's shown as 

a pie chart with the space filled by each player on the roulette wheel according to 

their relative fitness. The relative fitness sum (S) is computed. A random number 

is generated between 0 and S. The relative fitness values are added together. The 

corresponding individual is chosen when the total relative fitness value exceeds 
the random number created. An individual with a higher relative fitness value will 

take up more space in the pie chart. Therefore, the likelihood of selecting this 

individual for the next generation will be increased. Figure 1c illustrates a visual 

representation of the roulette wheel selection. 

 

Termination 
 

The change in average fitness for subsequent generations is found. The change in 

the mean fitness for two successive generations is calculated. This procedure is 

done for ten generations. When this change becomes less than 2% for ten 

continuous generations, the computer program is stopped. Otherwise the 
population moves on to the next generation. 

 

Results 

 

The program has run on a 3.0 GHz dual-core Intel Xeon CPU with 2 GB RAM. The 

research project is developed in Java 1.6.0. It is has the following sections: 
discretization, redundancy computation, and the ECA development. For a 

collection of 7129 genes and 30 samples, the discretization time was 0.6469 

minutes. There were a total of 55337 intervals created. The computation of 

redundancy for the same dataset took 1363.3997 minutes. ECA took 48.6153 



         7730 

minutes to simulate. The equilibrium generation was between 12 and 14 

kilowatts. One simulation of CMI took 0.7068 minutes and had 2 to 4 iterations 

for convergence for the same set of data.  It took 70.56 minutes to run a k-means 

simulation with 10,000 iterations. For a larger number of iterations, k-means 
revealed that the answer recurred more than once. This indicated that the answer 

was likely to be statistically optimum. 

 

Real data 

 

Three gene expression data sets are utilised to assess the ECA's performance. 
They are of the Tsutsumi et al 2002 for gastric cancer dataset, Alon et al 1999 for 

colon cancer dataset, and MacDonald et al 2001 for brain cancer dataset. Table 1 

lists all of the datasets and their descriptions. The CMI is simulated 50 times for 

each dataset. Each simulation has a different number of clusters, ranging from 2 

to 20. For that simulation, the cluster with the highest individual fitness becomes 
the best cluster in the dataset. Because data for big values might be dispersed, 

the lowest value is used. The ideal cluster number for the dataset is determined 

by the minimum value of the optimal cluster number among the 50 simulations. 

The same cluster number is utilized in all simulations for all methods.  The ECA 

is compared to the CMI and the k-means. For the sake of comparison, 10 

simulations of each method are taken into account. A collection of clusters is 
generated for each simulation. For classification investigations, a selection of 

genes from each cluster is chosen. Candidate genes are what they're termed. They 

are made up of the most fit genes at the top of the list. The top-ranking genes in 

the ECA and CMI are defined as the genes with the highest multiple redundancy 

measure in clusters. They are the genes with the shortest Euclidian distance from 
the cluster's mean value for the k-means.  

 

The leave-one-out cross-validation (LOOCV) method is used to calculate 

classification accuracy. The first sample is used as the test set, while the following 

samples are used as the training set for LOOCV. To predict whether the test 

sample is sick or normal, the top-ranking genes from the training set are 
employed. The test sample is then taken from the second sample. The training set 

is made up of the rest of the sets. Each individual sample is used as the test 

sample, and the process is repeated. The percentage of test samples accurately 

identified as sick or normal is used to assess classification accuracy. A greater 

classification accuracy number indicates that the algorithm is more effective at 
pinpointing the genes with the most diagnostic information. 

 

Dataset of studies on stomach cancer (GDS1210) 

The algorithms are compared based on sample classification accuracy 

 

For each of the methods, the average classification accuracy of the top-ranking 
genes is computed. One example of a stomach cancer dataset is shown in Table 2. 

The ECA discovered the percentage disparities in classification accuracy. The CMI 

and the k-means are used to compare them. It clearly demonstrates the ECA's 

superiority to the other algorithms. Table 3 shows the results for the stomach 

cancer dataset. According to the research, the ECA surpasses the CMI and k-
means. When the seed for producing the random number is changed for a fresh 

simulation in any stochastic computation, the initial gene distributions in the 
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clusters likewise change. For each simulation, this can result in distinct 

evolutionary dynamics, such as the equilibrium generation number and mean 

fitness. As a result, the average impacts of many simulations with various 
beginning gene distributions in the clusters are determined. 

 

The following are the findings of a complete investigation of the algorithms on the 

stomach cancer dataset. In the ECA, there are more simulations that yield greater 

classification accuracy of test samples than in the CMI and k-means. This 

demonstrates that the ECA has a better likelihood of locating the proper 
candidate genes than the other methods. Table 4 shows the performance of 

classification accuracies for the 10 simulations of the ECA, CMI, and k-means. 

The table displays the number of simulations required for various numbers of 

top-ranking genes, as well as the classification accuracy obtained. 

 
The investigation of classificatory genes 

 

On the genes subset, the decision tree produced by C4.5 is examined. Only one 

gene, TGIF1 or, in some cases, D26129, had 96.67 percent classification accuracy 

in the cases. According to a review of the literature, reduced TGIF1 expression is 

associated with lymph node metastases. It may limit gastric cancer invasion and 
metastasis by down-regulating MMP9 and VEGF proteins (Liu et al 2006). 

D26129 is also a dominant gene that influences gastric cancer growth (Wang et al 

2006). The two genes TGIF1 and D26129 are ranked extremely low by k-means 

and much lower by the CMI (data not shown). For three distinct simulations, the 

numbers beneath each algorithm's name reflect the locations of the relevant 
genes in the respective clusters (given in square brackets). The top three ranking 

genes were correctly classified in 96.67 percent of the ECA simulations. Because 

either TGIF1 or D26129 can only attain a 96.67 percent accuracy value, one of 

the genes must be among the top three. The ECA can be determined to be 

successful in identifying genes that carry important diagnostic information for a 

certain illness. Beyond a given threshold of classification accuracy, a comparison 
of the three methods based on the common genes detected throughout all 

simulations is provided. Each simulation yields a set of top-ranking genes (i.e. top 

1, 2, and 3), as shown in Table 6. The common genes are the ones that appear in 

all of these simulations.  

 
Algorithms based on representative genes are compared. 

 

The degree of coherence determines the overall trend in the expression levels of a 

collection of co-expressed genes. Only the genetic distances from the cluster 

centre are taken into consideration when calculating gene similarity. The 

interdependence factor, on the other hand, takes into account genetic distance as 
well as negative and positive gene correlations. The degree of coherence of a pair 

of genes can be assessed in terms of similarity or positive/negative correlation. 

Three example genes are chosen from the top five genes to better comprehend the 

coherence pattern. For each method, their patterns are evaluated across distinct 

clusters. The most important genes in distinct clusters are chosen for the ECA 
and the CMI based on the size of their multiple interdependency metrics. The 

genes with the smallest distance from the cluster mean are chosen for the k-

means. For a single simulation, the pattern of coherence of these genes for the 
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algorithms - ECA, CMI, and k-means - is illustrated in Figures 2, 3, and 4. The 

simulation is based on a completely random setting. This is true in a lot of 

simulations. The HMHA1 and TGIF1 genes are interdependent in the ECA 

because their total expression profiles have a negative connection. They are not, 
however, genetically related due to the huge genetic gap between them. The 

expression profiles of the HMHA1 and C21orf33 genes are comparable and exhibit 

negative relationships in some areas.  

 

Positive and negative relationships may be seen across the expression profile 

shape for the TGIF1 and C21orf33 genes. The CMI also reveals 
interconnectedness even when genes are dissimilar owing to significant scale 

factors, as the HMHA1 and CUL5 genes demonstrate. The HMHA1 and COPS5 

genes are comparable, with negatively and positively associated areas found 

across the profile. The k-means algorithm, on the other hand, only displays 

coherence in the sense of resemblance. It does not account for all of the genes' 
scaling factors or dependency. The finding is that, although the Euclidean 

distance clusters genes based just on similarity, the interdependent redundancy 

measure clusters genes based on both similarity and positive/negative 

correlations. 

 

In contrast to tiny sections throughout the profile form, the ECA may group genes 
that demonstrate correlations in their overall expression profile shape (determined 

by short Euclidean distance). In addition, the ECA considers bigger scaling factors 

(a higher value in gene expression) than the CMI. As a consequence of these 

findings, it may be concluded that the ECA is more consistent in grouping genes 

than the CMI. This illustrates that, despite the fact that the ECA and the CMI 
employ the same distance metric for clustering, namely the interdependence 

redundancy measure, the ECA uses the interdependence measure better than the 

CMI. The ECA's algorithm is more powerful than the CMI's.  

 

Study of gene distribution in clusters  

 
The clusters formed by the ECA consist of nearly the same number of genes 

(Behera et al 2018). So the genes in different clusters are evenly distributed. The 

selected top-ranking genes provide significant information about a disease 

process. This is clear as the ECA classifies the microarray samples as normal or 

sick. Therefore, the cluster configuration obtained by the ECA is more reliable to 
select the candidate genes for a disease state. The k-means algorithm creates the 

most lopsided gene distribution in the clusters (Behera et al 2018). Compared to 

the k-means algorithm, the CMI shows better even-distribution in many cases. 

But its performance is poor in comparison to the ECA. The following trend of gene 

distributions in distinct clusters may be seen in a randomly selected single 

simulation for each of the ECA, CMI, and k-means algorithms. The ECA, for 
example, has divided 7129 genes into four clusters: 2025, 1695, 1720, and 1689 

genes; and the CMI, on the other hand, has divided the same number of genes 

into 2582, 2614, 1592, and 341 genes. The k-means has clusters of 752, 89, 

5148 and 1140 genes. The ECA outperforms the CMI and the k-means algorithms 

in terms of nearly equal gene distribution in the clusters. This holds good for a 
large number of simulation samples picked at random.  
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Colon cancer dataset 

The algorithms are compared based on classification accuracy. 

 
Mean classification accuracy for all ten simulations is determined for the total test 

samples using each tool. The top 4 genes per cluster are shown in Table 8 for one 

colon cancer dataset. The percentage difference in classification accuracy between 

the ECA and the CMI and the k-means algorithms is computed. Table 8 shows 

that the ECA outperforms the CMI and k-means algorithms when a few top-

ranking genes per cluster is considered. Au et al. (2005) conducted considerable 
research on this colon cancer dataset. Here, analysis is done regarding the test 

samples' accuracy as normal or diseased.  

    

Conclusion 

 
The high-throughput microarray data gives the expression patterns of thousands 

of genes at the same time. Out of thousands of genes, the computational 

procedures try to select a few key genes responsible for diagnostic information of 

a disease. Therefore, microarray data clustering and selection for the candidate 

genes of cancer has become important in the recent years. A new algorithm for 

tackling this problem has been devised in this research. The clustering method 
and genetic algorithms are combined in this algorithm.  The ECA developed here 

is a strong software tool for identifying the candidate genes for a cancer process. 

The ECA's Cluster Assignment Operator is powerful to speed up the algorithm's 

convergence without sacrificing its efficiency. The proper gene distribution in 

distinct clusters is found in a short amount of time. In the ECA, the Probabilistic 
Mutation Operator adds diversity to the population, preventing early convergence 

with bad clustering of genes. Other genetic algorithm operators are studied 

throughout the algorithm development but are abandoned due to their 

limitations. The typical crossover operator is tested but found to be disruptive. 

This ECA is a standard stochastic computation program that produces good 

result without the need of a crossover operator. Crossover operators, in general, 
help in the development better solutions in other evolutionary models. The genes 

with the least MIR from two random clusters are exchanged in a Swap Mutation 

Operator. The results suggest that it can only explore a restricted portion of the 

gene clustering space. For the time being, this isn't really important. 

 
The ECA is more stable in terms of lopsided gene distribution across clusters 

unlike the CMA and the k-means tools. In addition, unlike the other two 

algorithms, the ECA clusters the same set of genes with a higher probability in 

multiple simulation samples. The research is carried out by obtaining the top-

ranking genes from different clusters in various simulations. It is particularly 

effective in clustering genes based on expression profile similarity as well as 
positive and negative correlation between the genes. The interdependent 

redundancy measure is a considerably superior metric in this case. Although the 

CMI and the ECA both employ the interdependence measure, the ECA is superior 

at grouping the genes and locating the cancer causing genes due to its exposure 

to a much larger search space in the gene expression values. Hence the ECA is 
extremely good in grouping genes. Microarray datasets often contain a large 

number of genes. Due to the high probability of of noise in such systems, 

classification of test samples as normal versus diseased by machine learning 
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algorithms becomes problematic. It is necessary to reduce the dimensions of the 

data set to find the informative genes that contain the diagnostic information. For 

each method, a subset of genes is chosen.  

 
The ECA surpasses the other two algorithms to classify the test samples as 

normal or sick by using a small number of candidate genes in most cases. The 

classification accuracy for gastric cancer, and colon cancer datasets is determined 

using the ECA's top genes. When just the top-ranking genes are utilized, some 

classification accuracies are higher than when the entire dataset is used. The 

classification accuracy for the colon cancer dataset, for example, is 93.33 percent 
when the entire dataset is included. But the classification accuracy is 96.67 

percent when TGIF1/D26129 is used alone. This demonstrates that the ECA is 

capable of accurately and successfully selecting the candidate genes of a disease. 

In the context of drug development, their functional and diagnostic features can 

be investigated further. Au et al. (2005) have created the Attribute Clustering 
Algorithm (ACA), which primarily employs interdependent redundancy measure 

and the OCDD discretization procedure. They have shown that it outperforms 

biclustering, K-means, Self Organization Map, and other traditional tools. Their 

ACA is not publicly available. They don’t provide the details of their discretization 

method, such as the smoothing procedure or the chi-square test. The CMI 

algorithm is identical to the ACA except that it uses a somewhat different 
smoothing method. The ACA and the CMI have nearly similar performances.  

 

The ECA has been shown to be superior to the CMI and K-means algorithms. 

Hence it should outperform biclustering, SOM, and a few other techniques (Au et 

al, 2005). A fundamental problem is that most traditional algorithms only employ 
Euclidean genetic distance metrics in different forms. They don't employ an 

interdependent redundancy metric that explicitly considers positive and negative 

gene correlations. Therefore, the ECA is now the best algorithm for analyzing the 

microarray data and discover the correct cancer genes for a disease process. A 

three-class microarray gene expression data may be created using the current 

approach. Samples of normal, moderately developed, and totally sick tissues, for 
example, can be found in some cancer microarray data. Modifications to the 

discretization algorithm can be done to improve it further. To make the machine 

learning method more successful, the data smoothing process can be optimized. 

Also, other mutation operators may be investigated to improve the ECA's 

effectiveness. 
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Appendix 

 

Smoothing and Chi-square test 

 

A segment si is for each gene value xi such that it contains values ranging from xi-

w to xi+w, where w is the segment width. The frequency of the often occurring 
class label and the frequency of the class label for xi are used to determine a ratio 

(r) for this segment. The class label is altered to the often occurring class label if r 

is larger than some threshold value (t). For discretization, the default values for w 

and t as 5.0 and 1.3 respectively are used. The smoothing and parameter settings 

incorporated are almost identical to those in the OCDD method (Wong et al., 
2004).The Chi-square test is used to find the statistical significance of a gene's 

interaction with its classification labels. It calculates if the frequency distributions 

of two adjacent intervals and the class label are significantly correlated. So the 

intervals are decided to merge. The IR between each gene and class label is 

calculated for this purpose. Let E be the combined entropy of a gene and a class 

label. A product p is determined by multiplying E by the total number of data 
points. The ratio of the chi value to twice the value of p is calculated. It is known 

as rt. The intervals are merged if the IR is larger than the rt. The conventional chi-

square distribution table is used to calculate the chi values. The degree of 

freedom for the chi value is the product of the total number of classes minus one 

and the total number of intervals minus one The technique is the same as the 
OCDD algorithm (Wong et al., 2004). 

 

Figure Legend 

 

• Figure 1(a): The flow chart of the ECA. 

• Figure 1(b:)The chart of the probabilistic mutation. 

• Figure 2: A normal line graph of the expression pattern of three 

representative genes for cluster 1 of a single simulation in the ECA 

algorithm for the gastric cancer dataset. 

• Figure 3: A normal line graph of the expression pattern of three sample 
genes in cluster 2 of a single simulation CMI algorithm for the gastric 

cancer dataset 
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• Figure 4:  A normal line graph of the expression pattern of three example 

genes in cluster 3 of a single k-means simulation for the gastric cancer 

dataset 
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Fig 1( c) 
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Figure 4 

 

Table Legend 

 

Table 1: The number of genes in each dataset, the total number of samples, the 

number of sick samples, the number of healthy samples, the number of clusters, 
and the lowest and maximum gene expression levels. 

 

Gastric cancer dataset (GDS1210) 

 

• Table 2:  The gastric cancer dataset. It illustrates the classification accuracy 

of the two top-ranking genes for the ECA, the CMI, and the k-means. 

Individual classification accuracy for each of the ten simulations as well as 
the average classification accuracy for each method, are shown.  

• Table 3: The ECA outperforms the CMI and k-means in the gastric cancer 

dataset. The difference in percentages with regard to the ECA is computed 

using the average classification accuracies. 

• Table 4: The ECA, CMI, and k-means performances in terms of the 

classification accuracy for the gastric cancer dataset. In the appropriate 

columns, the number of simulations with the associated classification 
accuracy for one to four top-ranking genes is presented.  

• Table 5: The ECA, CMI, and k-means have the classification accuracy of 

common genes for 1,2, and 3 top-ranking genes, respectively. 

• Table 6: The list of genes chosen by the ECA (a) based on their presence as 

common genes across simulations and (b) based on the C4.5 classification 

tree (for the gastric cancer dataset) 

 

Dataset on colon cancer 
 

• Table 7:  The ECA, CMI, and k- means classification accuracy for the top 

four genes in the colon cancer dataset Individual classification accuracy for 

each of the ten simulations as well as the average classification accuracy for 

each method is found.   
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• Table 8: The ECA outperforms the CMI and k-means in the colon cancer 

dataset. The % difference with regard to the ECA is found using the average 

classification accuracies of the related algorithms. 

 
Tables 

 

Table 1 

 

 gastric cancer colon cancer  

Genes 7129 2000  

Samples 30 62  

Diseased samples 22 40  

Healthy samples 8 22  

Clusters 4 10  
Gene expression value (min) 0.1 5.82  

Gene expression value (max) 14,237 20,903  

 
Table 2 

 

Simulation 

no 

Top 4 genes per cluster 

 ECA CMI K-means 

1 75.35 81.33 61.83 

2 93.88 72.56 71.08 

3 98.65 85.34 72.78 

4 97.27 78.15 63.88 
5 94.69 82.76 72.96 

6 99.02 74.82 74.38 

7 85.08 91.91 68.05 

8 79.22 75.23 71.83 

9 75.39 71.59 74.38 

10 95.11 61.88 60.77 
    

Average 89.36 77.55 69.19 

 
Table 3 

 

 Top  genes per 

cluster 

  ECA percentage better than 

 CMI k-means 

1 8.7 3.13 

2 7.37 15.15 

3 15.7 32.66 

4 11.80 26.25 
5 8.48 28.58 
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Table 4 

 

Genes per 

cluster 

classification accuracy in percentage 

 >60 & <=80 >80 & <=90 >90 & <100 

 ECA CMI k-

means 

ECA CMI k-

means 

ECA CMI k-

means 

Top 1 6 8 3 3 3 6 3 - 1 
Top 2 4 5 9 - 5 - 7 - - 

Top 3 3 2 10 1 1 - 10 7 2 

Top 4 3 4 8 - 2 5 10 8 1 

          

          

 

Table 5 

 

genes per cluster common genes classification accuracy in 

percentage 

 ECA CMI k-means ECA CMI k-means 

1 1 2 2 79.61 75.67 70.38 

2 5 5 4 85.44 72.39 73.77 
3 7 6 3 99.19 93.37 71.17 

 
Table 6 

 

Simulation 
no 

TOP 4 genes per cluster 

 ECA CMI k-means 
1 88.10 59.06 60.22 

2 74.97 69.76 65.52 

3 74.81 62.52 54.87 

4 68.43 70.54 73.52 

5 87.48 62.29 69.74 
6 89.74 65.9 60.52 

7 76.59 72.85 66.85 

8 86.86 81.68 65.74 

9 86.79 82.64 66.78 

10 83.43 66.75 53.67 

    
Average 81.72 69.39 63.74 

 
Table 7 

 

  Top genes per 
cluster 

  ECA better percentage 
than 

 CMI k-means 

1 17.88 11.94 

2 11.80 8.36 

3 15.13 10.59 
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4 18.78 14.78 

   

 

Table 8 

 

Simulation 

no 

Top 2 gene per cluster 

 ECA CMI k-means 

1 66.22 77.26 70.91 

2 67.22 68.57 49.13 
3 78.57 46.13 38.78 

4 73.57 43.13 39.13 

5 73.57 39.48 52.17 

6 62.17 27.39 34.78 

7 72.57 63.87 43.48 

8 69.57 44.78 39.13 
9 69.57 73.57 60.91 

10 72.57 34.78 34.43 

    

Average 70.56 51.89 46.28 

 

Table 9 

 

Top genes per 

cluster 

ECA better percentage than 

 CMI k-means 

1 29.28 33.11 

2 33.78 17.53 
3 26.55 14.35 

4 8.15 5.00 

5 18.69 3.59 

 


