How to Cite:

IoT based smart surgical management platform for hospitals to enhance safety in medical treatment

Dr. K. Kalaivani
Associate professor, Department of Electronics and Instrumentation engineering
Easwari Engineering College, Chennai
Email: kvani2007@gmail.com

Rohini Govindaraju
Professor, Department of Electrical and Electronics engineering, S.A. Engineering College, Chennai
Email: rohinimukunthan@gmail.com

V. S. Selvakumar
Professor, Department of Electronics and Communication Engineering, Rajalakshmi Engineering College, Thandalam, Chennai
Email: selvakumar.vs@rajalakshmi.edu.in

Dr. N. Bharathiraja
Associate Professor, Dept of ECE, Veltech Multitech Engineering College
Avadi, Chennai
Email: bharathinatarajan78@gmail.com

Dr. R. Thiagarajan
Associate Professor, Dept of IT, Prathyusha Engineering College, Chennai
Email: rthiayarajanpt@gmail.com

Dr. Balaji Vijayan Venkateswaralu
Associate Professor, Dept. of Information Science and Engineering, HKBK College of Engineering, Bengaluru
Email: balaji.is@hkbk.edu.in

Abstract—An automated surgical monitoring system was developed and put into use depending mostly on sophisticated IoT. The use of a system for medical professionals to enter and access data reduces errors and saves time needed filling out paperwork, which improves clinical outcomes as well as the standard of care. Additionally, this technique makes it possible to precisely retain and share all the data that was obtained during process. This method may be used as a
knowledge basis for new treatments and also decreased the cost to produce surgery document pages and health information pages. The surgical information could save clinical staff effort through routinely storing their private information. We also have implemented voice-based access to information to make it easier for people to access the data. Additionally, a chatbot that serves as a level of understanding for the procedures is educated on the medical data.

Keywords—IoT, healthcare, voice based access, chatbot, smart surgical, medical data.

Introduction

The growth of IoT will become a crucial factor of development, mostly in health IoT, which improves clinical outcomes by fostering more reliable and actively pursued between physicians and surgeons. IoT devices (IoT) are being integrated into the health industry to monitor people and perform tests using sophisticated medical advances. When using a mobile, doctors can quickly verify patient information, and changes are made that are legitimate. To conduct a reliable assessment, real-time data streamed from devices in healthcare facilities is used. Use of an input approach by medical professionals when carrying out a difficult surgery not only permits the quick generation of multiple records needed to complete the treatment but also enhances the accuracy and reliability of data input. But incidences of medical malpractice, including unsuitable surgery locations, patients whose identities have not been confirmed, incorrect surgical methods and techniques, and other risks, continue to happen.

Each assessment and verification made by nursing staff members from the time a patient is carried into the operating room has an impact on the patient’s safety since operation is such a crucial component of medical treatment. Therefore, upgrading surgical procedures is considered to be a crucial safety indicator in improving therapeutic surgeries. This typical surgical aid system just offers a straightforward UI and fails to deliver users with good operating performance. The accuracy and reliability of medical information can easily be jeopardised by human error and faults in system validation procedures. Some publications promote the development of a medical programme that makes use of developing information technology to assist medical professionals in managing the copious amounts of data needed during surgery. Additionally, a number of thesis research employed research studies to evaluate user happiness and operational effectiveness in relation to the validation of data application performance. In addition, an earlier study provided six elements for assessing the success of the system’s performance review.

On the day of the protocol, as per standard practise, the hospital medical control staff notifies the nurse’s workstations to check their following information and the person’s identity, complete all necessary preoperative procedures, and transport the patient into the surgery room. To guarantee patient care, the nurse must confirm data with the patient before the anaesthesiologist administers anaesthesia. The doctors and anaesthetic nurses would take some "time off" from
their jobs before the surgery. Validating the patient’s identity, major surgery, clinical setting, and listing of pertinent specialist doctors is by far the most important preparation stage. The patient will be led into the recovery area after the procedure to wait for the anaesthetic to wear off. In this study, we created an intelligent integrated process to enhance patient safety when receiving medical care and also to increase the transparency of community and hospital settings.

The Internet of Things offers a modern treatment data system utilising RFID technology. It is now the predominant IoT method. In addition to assisting us in locating doctors, caregivers, and patients in the healthcare information system, RFID tags also enable us to track these individuals throughout hospitals. Data is collected and entered into an efficient data platform to construct it. In order to minimise the workload of nurses and surgeons, remove human error-related linguistic errors, and enhance the quality of medical services, we developed an autonomous surgical management solution in this study. Through the development of the intended smart surgery management platform, material utilised in operations is retrieved and stored in databases. The smart medical data solution incorporates text-to-speech conversion with surgical records, cloud-based storage for easy access, and clinical capturing used in research consideration. This system takes advantage of intelligent sensor-based recording. Medical personnel may input medical reports, scan results, auditing, as well as other relevant data before, throughout, and after the operation by using the smart surgical information system. This verification ecosystem provides a high degree of reliability even though the data is not complete by automatically assessing their correctness.

Literature Review

Imran Ahmed [1] proposed a paper in which he indicates that the health sector is paying attention towards the development of smart sensing devices, gadgets, data storage, and healthcare technology. IoT, particularly in medical image analysis, has indeed been identified as among the most potential discoveries in the field of medical services. For the analysis of the clinical imaging technique combines AI technology with a variety of advanced machines learning approaches. Such recently founded methods for diagnostics could help doctors diagnose illnesses at a preliminary phase, give precise, reliable, efficient findings quickly, and lower the risk of mortality. Coronavirus (COVID-19) is one of the most deadly and deadly viruses today, and it is spreading over the world. An intelligent health service for automatic diagnosis and classification of contagious diseases (including pneumonia) in lung X-ray images was presented in this method. This method makes use of a multi-layer convolution operation, a feature strategy, and two different computational intelligence designs.

These phases of this effort are as follows: To improve the diversity of information recorded, data augmentation is used, and deep neural networks such as VGG-19 or Inception-V3 are integrated using transfer learning to enable extraction of features. Technique, basically, as per Fatima Alshehri [2], is a crucial element of connected society. Another important human need is universal healthcare, and it is projected that an efficient healthcare system would maximise profits in the near term. Smart health care includes aspects such as IoT devices (IoT), the Internet of
Medical Things (IoMT), healthcare sensors, artificial intelligence (AI), advanced analytics, cloud services, and next-generation cellular modern communications. As a result, we conducted a comprehensive review of journal papers from 2014 to 2020 that predominantly concentrate on IoT or IoMT-based advantages in smarter health insurance. We discuss our findings by covering several research domains such as IoT and IoMT, AI, periphery and cognitive hosting, privacy, and clinical signal synthesis. We also talk about current research challenges.

According to Mohd Javaid [3], the IoT does have the potential to revolutionise healthcare (IoT). In view of the COVID-19 Pandemic, there is a need to investigate potential IoT-enabled mobile applications. A small amount of research is required in order to select the optimal route of investigation. Research on the COVID-19 Epidemic and IoT in health coverage is being undertaken to explore the possibilities of technologies. Such a literature-based study may help analysts think of remedies to related concerns and battle COVID-19 pandemics. We immediately evaluated the important IoT achievements with the help of a diagram. Identify seven significant IoTs that look to be useful for healthcare during the COVID-19 Epidemic. This report concludes by naming and quickly explaining sixteen critical IoT systems for the health sector as they existed during the COVID-19 Epidemic.

Aravind H [4] presented a paper on vital signs but they’re an essential element of monitoring a diagnosis as they’re being managed in a clinic since they allow rapid detection of conditions that may hamper recovery or be undesirable. The vital signs were constantly or routinely examined during the surgical treatment and the recuperation period. Numerous electrodes are applied to the patient’s body by using surveillance and medical diagnostics to assess changes in resistance strain in the system. Those wires as well as valves hinder each person being scrutinised. This concept proposes a simple assessment and monitoring service for post-operative people.

Yazdan Ahmad Qadri [5] submitted a study on how IoT devices have had a significant influence on the expansion of the health industry (IoT). With the advent of Medical 4.0, infrastructural activities have increased at both equipment and code optimization layers. As a consequence of this concept, healthcare IoT (H-IoT) devices have indeed been created. Communication mechanisms between sensors as well as processing are one of the key technical solutions, as are the computing techniques employed to give an output from sensor data. Nonetheless, a slew of fresh developments is now bolstering this technology. Because of the employment of AI technologies, the H-IoT industry has experienced practically a full revolution (AI). By placing computing power close to the network connection, its fog/edge concept mitigates various difficulties. While big data allows for the analysis of huge volumes of data, Moreover, this network is adaptable owing to Software-Defined Networks (SDNs), and blockchains are identifying the most imaginative uses in H-IoT systems.

The Internet of Nano Things (IoNT) and the Tactile Internet are driving advancements in H-IoT technology (TI). This study investigates how these technologies are altering H-IoT networks and identifies the most feasible path for improving QoS with these upcoming breakthroughs. According to G. Yang [6], the
medical technology sector 4.0 has begun, and it is being pushed by industrial production technologies (Healthcare 4.0). As an example of this transformation, next-generational home healthcare insurance robotic systems (HRS) based on cyber-physical systems (CPS) with faster and therefore wiser execution are emerging. This study presents these novel concepts and functionalities for CPS-based HRS. Breakthroughs in key technical technologies such as artificial intelligence, sensing, materials, and machines, cloud computing, connection, motion sensors, and localization. Moreover, the potential for CPS-based HRS is being investigated, as are the technical challenges faced in each technology area.

Methodology

A smartphone with such a web-based interface structured as elements that will manage all the medical processes makes up the recommended surgical data app. The day before an operation, the registered nurse can review the surgery schedule. Across the procedure, this device could be used to input the physical indicators of the patient’s care, the quantity of medical tools used, multiple surgical information, and nursing data. The clinic and nurse’s station may have access to postoperative data of surgical patients, making things easier to add up and value back-end goods, including for instructional objectives like case studies and training. It provides verification and reminder mechanisms to ensure the accomplishment of the requirements which must be accurately completed, in addition to maintaining the key paper record of intrusive process data. Additionally, the confirmation systems work to facilitate future research progression by enabling the subsequent assignment of responsibility and the effective preservation of experiences and thoughts throughout surgical procedures. Preliminary patient records, including such private details, would be loaded into the system before the specifics of the surgical operations.

The creation of a standardised format for keeping medical records, alongside the requirement that the same form be maintained for all operations, makes it effective for prospective access to data and referencing for study and other research. Several physicians can validate the method used to do a comparable operation on complicated jobs owing to a cloud-based centralised solution that is appropriate for data preservation. While the smart device will scan the RFID tag information, the entire operation and process will be documented in digital form. A proper and efficient operation results from the proper keeping of the surgical data. It will be documented the results of the information during the surgical phase, making it a valuable base of information. Prior to, throughout, and after the operation, a doctor must check the whole health record for errors in order to help the automated data collection process. This smart device also has a text-to-speech translator that helps by allowing users to release the full surgical operation in voice format.

In order to help surgeons with historically accessible data, a smart chatbot was incorporated into the design and developed using surgical data. In order to prevent medical conflicts brought on by performing surgery on the wrong area, the major importance of evaluating the insertion site and special product installation site was to double-check the operation marks on the patient prior to surgery. The apparatus login indicates the quantity of devices used during the
operation. Use of the device could be recorded repeatedly throughout the operation. This same equipment used by the nurse is instantaneously added to the system so that the nurse can quickly constitute as well as verify the results at the end of the procedure. Following this, the checker’s identity is implanted as well as the member of staff who was in charge of the device counting was documented for the intent of assigning duties.

![Architecture Diagram](image)

Figure 1. Architecture Diagram

Construction

Textual Based Input

This speech to text-to-speech is accomplished by utilising both voice to text models and contextual features. Contextual parameters are used to modify the outcomes provided by the speech to text model. Because voice response technology allows prescription data to be captured and read rather than written down by a physician, the advancement of speech-based smart phones may help reduce some of these inaccuracies. The establishment of voice-based mobile medication to improve health services is described in this report.

RFID Detail Access

Minimization of failure in healthcare is one of the key promises offered by complex RFID systems. Its implementation of self-regulating RFID technology is critical if one of healthcare’s key concerns is to ensure patient safety. This device has been unable to work on its own. Any facility will require qualified organisations to operate the gear and technology required for full-scale network upgrade and control. Professional training is the most challenging hurdle for RFID because it is typically time-consuming and costly.

Smart Reports

The procedure of collecting information, including people’s clinical records, is critical in the healthcare industry and is referred to as patient record data. The patient’s health record data could be used as a resource for subsequent patient clinical assessment and also verified for verification of the patient’s illness diagnosis and treatment. The patient should be at the focus of the creation of a
smart health service. Patients may obtain past health information quickly, register online to use a smartphone app, and obtain prompt, precise therapy.

Experimental Results

Intelligent chat bot on surgery

An intelligent assistant is a chatbot driven by neural networks that can adjust automatically based on surgical data. An accurate technique for documenting the surgical procedure in 3 categories: pre-operative data, operation information, and post-operative care. As in the context of smart records, access to medical data is made available through a linked system. Pre-operatively, its intelligent surgical technology doubles patients’ pre-treatment markings to avoid medical disagreements caused by incorrect surgery. The main aim is to prevent human error in data maintenance all throughout the operating phases. RFID-based data input for medical practitioners as well as other staff members' employee data. Text-to-speech transformation allows you to shout out most of the procedure’s details for study and resource sharing. The IoT device is used to completely detect and assess a variety of particular health markers, as well as to further with this data. This remotely wireless health management service technology can easily reduce the problems of seeing a physician.

With advanced treatment of patient devices known as the internet of Things, medical data has been totally digitised and accessible. We are investigating ways to make learning more compassionate, so we must also consider how to make teaching less challenging for such network-detecting phases. With greater access to massive amounts of sensory information, data-driven techniques are becoming more popular for discovering possible defects or deviations from expectations. Caregivers have real-time access to data via network virtualization or other connectivity occurrences, allowing them to make intelligent decisions and provide evidence-based treatment. This ensures faster health care and better treatment outcomes. Because of the internet of things’ connection with the health service, the patient’s needs are prioritised, including treatments which are quick, reactive, and of higher quality and dependability. Once it comes to diagnostics, faster medical action and improved treatment outcomes contribute to responsible care, which patients highly respect.

Conclusion

An effective technique to document the medical operation in its three parts, including pre-operative information, operation information, and post-operative care. Accessibility to surgical data in the case of smart records is made possible via an integrated solution. Preoperatively, the smart surgical system double-checks the patients’ surgical marks in order to prevent medical disputes brought on by improper operation. These effectively prevent errors in data upkeep throughout operational stages. RFID-based data entry for personnel data on medical professionals as well as other employees. For investigation and information exchange, text to speech conversion makes it possible to vocalise aloud all of the information about the procedure. A chatbot with neural networks that can train autonomously based on surgery data serves as a smart assistant. A sophisticated Internet of Things-based surgical management system that fully
records the surgical data. The operating room's medical and nursing teams may obtain files via RFID technology. During operation, take smart observations utilising text and voice input. Following surgery, a sophisticated reporting system occurs. Use a text-to-voice translator to read out the complete text. An intelligent chatbot that uses CNN to train itself with all the surgical data and serve as a resource for future use.

References

