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Abstract---Sign language is a visual-gestural language used by 

hearing impaired person, they modality the gesture to convey 

meaning. The main problem with sign language communication is 
ordinary people do not understand the sign language. Therefore, sign 

language is one of the challenging problems in machine learning. In 

this paper, researchers focus on visual-based methods and optimize 
the data preprocessing apply with existing sign language resources. 

Researchers propose an innovative technique for video processing 

called Sequenced Edge Grid Images (SEGI) for sign language 
recognition to interpret hand gesture, body movement, and facial 

expression. Researchers collected several of sign language data from 

the internet, the data including Thai sign language utilize in everyday 
life. The proposed technique was implemented with a convolutional 

neural network (CNN). The experiments showed SEGI with CNN has 

increases test accuracy rate with approximately 11% compared to 

static hand gesture images. Finally, researchers discovered a CNN 
structure suitable for dataset and examination data by transferring a 

pre-trained CNN. The fine-tuning with SEGI technique improved 

99.8%, thus highest among all the methods. From the results data-
preprocesses technique of dataset generation and deep transfer 

learning was an effective way to improve the accuracy of sign language 

recognition. 
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1 Introduction 

 

Sign language is commonly known as a primary language for deaf people with 

hearing impaired, which use modality of gesture to convey meaning. The main 
problem of sign language communication is most of ordinary people do not 

understand a specific language of sign language. Moreover, sign language is one 

of the most challenging problems in machine learning. In the field of sign 
language recognition (SLR) systems, there are many techniques and methods that 

researchers around the world demonstrated including two of the well-known 

methods which are the data pre-processing methods for SLR visual-based and 
device-based gesture recognition (Y. Dong, J. Liu, and W. Yan., 2021). On visual-

based gesture recognition, many datasets are detecting and cropping specific on 

the hand movement with a camera to store video clips or static images (I. 
Makarov, N., et al.,2019), ( W. Aly, S. Aly, and S. Almotairi, 2019).  

 

In early periods, most of researchers used static images as datasets to construct 

the recognition model since a limitation of computer performance and capability 
limitations of traditional algorithms. And these datasets that use static image to 

represent the meaning of sign language communication, the category of sign 

language vocabularies that can be used is restricted and it has its own vocabulary 
and syntax which is completely different from written languages. As a result, the 

SLR model had a high accuracy, but researchers cannot use it in real-world 

applications because a motion of hand movements on complex vocabulary, long 
syllables words, phrases, or sentences. In addition, the main components of sign 

language communication include hand position, hand movement, facial 

expressions, and body movement. Therefore, the static images are not suitable for 
SLR system. Currently, many research apply dynamic sign language recognition 

methods but there is some issue on drawbacks with difficulties of recognizing 

complex hand gestures, low recognition accuracy for most dynamic sign language 

recognition, and potential problems in larger video sequence data training (Y. 
Liao, P. Xiong, W. Min, W. Min and J. Lu., 2019).  

 

The devices-based is a popular method for SLR, which a suggested to solve the 
limitations of static hand gesture image recognition.  The sensor devices are work 

on hand detecting and finger movements for example, gloves type with motion 

sensors, motion cameras to capture the depths image, Leap Motion Controller 
sensor for tracking motion of finger bones of human hands, armband wearables 

sensor for tracking fingerspelling, thermal camera to creating the thermal image 

of hand detection (D. Avola, M. Bernardi, L. Cinque, G. L. Foresti, and C. 
Massaroni., 2019), (P. V. V. Kishore, D. A. Kumar, A. S. C. S. Sastry, and E. K. 

Kumar., 2018).The result of dataset recognition with sensor devices is higher 

accuracy than static hand gesture image datasets. In addition, device-based can 

detect hand motion movements very well. However, researchers need to 
reconstruct all of these datasets with sensor devices which the cost has increases. 

Thus, existing data sources cannot be used as datasets to perform on the 

machine because they are visual-based forms such as sign language video clips 
on websites, sign language learning media in schools, and sign language 

published on television. Therefore, researchers focus on visual-based methods 

and optimize the data pre-processing to support these resources for maximum 
benefit.  



         9984 

This paper aims to study an innovative technique for digital image data 

preparation called Sequenced Edge Grid Images (SEGI) for SLR and to increase 
the recognition performance of the convolutional neural network (CNN) based on 

transfer learning. The CNN structure was optimized for recognition with our 

datasets generated by the SEGI technique. Additionally, transfer learning is used 
to solve the problem of insufficient data. Researchers also use fine-tuning when 

after pre-training a CNN model with our dataset. Then, conducted experiments to 

evaluate the transfer learning methods after fine-tuning, researchers can finally 

test the performance of the fine-tuned CNN for SLR based on the SEGI technique. 
 

Dataset and Methods 

Sign language Datasets 
 

Sequence images  

 
In recent years, researchers proposed new data pre-processing techniques to 

solve motion in movement problem. Cooper et al. (2017) used features extraction 

techniques based on 2D and 3D tracking, Zadghorban and Nahvi (2018) used 
convert sign language video to the feature of hand motion and hand shape. Cui, 

Liu, and Zhang (2017) used mapping of video segments to glosses by using 

recurrent convolutional neural network for spatial-temporal feature extraction 

and sequence learning. Neyra-Gutiérrez and Shiguihara-Juárez [16] developed the 
continuous SLR with directly transcribes videos of sentences to sequences of 

ordered classes. Cui, Liu, and Zhang (2017) focus on optimizing the performance 

of dynamic gestures image by summarizing the hand gesture from sequences of 
video frames, capturing the key points of the result frames that use deep CNN 

with stacked temporal fusion layers as the feature extraction module.  

 
Edge detection 

 

Image edge detection is an important basis for image recognition extraction, it can 
reduce the amount of information from the image to be processed. The procedure 

of edge detection can compute gradient magnitudes and edge directions in an 

image and compute the edge strength on the gradient magnitudes of brightness 

within the image to detect and extract the edges as output (P. Prathusha, S. 
Jyothi, and D. M. Mamatha., 2018).     

 

 
Figure 1: Sobel masks of 3 × 3 dimensions: (a) horizontal, (b) vertical. 

 

The Sobel operator is widely used filter to compute gradients, therefore uses a 
pair of convolution matrices/masks as shown in Figure 1, one for estimating the 

horizontal gradient and the other for the vertical one. For example,  

the horizontal gradient mask is constructed by multiplying a horizontal averaging 
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vector with a horizontal differential vector (K. Zhang, Y. Zhang, et al., 2018). 

Whether researchers let 𝑎𝑖𝑗 be a brightness value on a cell (𝑖, 𝑗) of the source 

image, and 𝑑𝑥𝑖𝑗 and 𝑑𝑦𝑖𝑗 be approximated horizontal and vertical gradients on the 

cell(𝑖, 𝑗), respectively, they are computed by using the Sobel operator as follows: 
 

                                                                 𝑑𝑥𝑖𝑗 ≡  [−10 + 1 − 20 + 2 − 10 + 1 ] ∙

[𝑎𝑖 𝑎𝑖𝑗+1 𝑎𝑖+1𝑗+1 𝑎𝑖−1𝑗  𝑎𝑖𝑗  𝑎𝑖+1𝑗  𝑎𝑖−1𝑗−1 𝑎𝑖𝑗−1 𝑎𝑖+1𝑗−1 ],              

 

             𝑑𝑦𝑖𝑗 ≡  [+1 + 2 + 1 0 0 0 − 1 − 2 − 1 ] ∙

[𝑎𝑖−1𝑗+1 𝑎𝑖𝑗+1 𝑎𝑖+1𝑗+1 𝑎𝑖−1𝑗  𝑎𝑖𝑗  𝑎𝑖+1𝑗  𝑎𝑖−1𝑗−1 𝑎𝑖𝑗−1 𝑎𝑖+1𝑗−1 ]                     (1) 

 

where (⋅) means inner product calculation. After calculating the approximated 
gradients, researchers can calculate a gradient magnitude 𝑑𝑖𝑗  and its direction 𝜃𝑖𝑗 

(hereinafter, this is called gradient direction) on the cell (𝑖, 𝑗), by the following 
formula: 
 

𝑑𝑖𝑗 ≡  √𝑑𝑥𝑖𝑗
2 + 𝑑𝑦𝑖𝑗

2                                                                          (2) 

𝜃𝑖𝑗 ≡  𝑡𝑎𝑛−1(𝑑𝑦𝑖𝑗 + 𝑑𝑥𝑖𝑗)                                                         (3) 

 

Another algorithm that gained popularity is the canny edge detector, which is an 
edge detection operator using a multi-stage method to detect a wide range of 

edges in images. It was developed by John F. Canny in 1986. The Canny Edge 

Detection Algorithm runs in 5 steps as follow (T. Fujimoto, T. Kawasaki, and K. 
Kitamura.,2019): 

 

Smoothing: Blurring an image to remove the noise. 
Finding gradients: The edges should be marked where the gradient of the image 

has large magnitudes. 

Non-maximum suppression: individual local maxima consider to marked as 

edges. 
Double thresholding: Potential edges are determined by thresholding. 

Edge tracking by hysteresis: Final edges are determined by suppressing all 

edges that are not connected to a very certain (strong) edge. 
 

CNN 

 
In the field of image recognition, researchers have used the sequence image and 

dynamic image technique for data pre-processing with convolution neural 

network (CNN) in SLR task (M. A. Bencherif et al., 2021), (R. Rastgoo, K. Kiani, 
and S. Escalera., 2020). The CNN is a very high-performance machine learning 

tool for computer vision tasks because CNN has down-sampling layers, reducing 

the resolution of the feature map  (A. TANG, K. LU, et al., 2015). The CNN mainly 
consists of two parts which are convolutional layers (CONV) and fully-connected 

layers (FULC) on Figure 2. CONV first extract and combine local features from the 

input image, and these features are then combined to output feature maps that 

represent a spatial arrangement of activations. Each unit in a CONV layer 
receives inputs from a set of units located in a small neighborhood in the previous 

layer. With a spatial arrangement, neurons can extract primitive visual features 
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such as oriented edges, endpoints, and corners. CONV can support flexible image 

sizes and generate feature maps up to any size. On the other hand, the FULC 
needs to fixed-size/length input by their definition. The inputs are processed in 

FULC and converted into a 1D feature vector (flatten). Then 1D features 

represented on each neuron in the fully connected layer and multiplied with the 
weight of the neuron to produce the output (A. Neyra-Gutiérrez and P. 

Shiguihara-Juárez., 2020),  (S. Ji, W. Xu, M. Yang, and K. Yu.,2013). In 2D CNN 

is performed at the convolutional layers to extract features from local 

neighborhood on feature maps in the previous layer. Formally, the value of a unit 

at position (𝑥, 𝑦) in the 𝑖th feature map in the 𝑖th layer, denoted as 𝑣𝑖𝑗
𝑥𝑦

, is given 

by: 

𝑣𝑖𝑗
𝑥𝑦

= 𝑡𝑎𝑛ℎ (𝑏𝑖𝑗 +  ∑𝑚 ∑
𝑃𝑖−1
𝑝=0

∑𝑄𝑖−1
𝑞=0 𝑤𝑖 𝑗𝑚

𝑝𝑞
 𝑣(𝑖−1)𝑚

(𝑥+𝑝)(𝑦+𝑞)
)                          (4) 

 
where 𝑡𝑎𝑛ℎ(∙) is the hyperbolic tangent function, 𝑏𝑖𝑗 is the bias for this feature 

map, 𝑚 indexes over the set of feature maps in the (𝑖 − 1)th layer connected to the 

current feature map, 𝑤𝑖𝑗𝑘
𝑝𝑞

 is the value at the position (𝑝, 𝑞) of the kernel connected 

to the 𝑘th feature map, and 𝑃𝑖 and 𝑄𝑖 are the height and width of the kernel, 
respectively . 

 

 
Figure 2: 2D CNN with the dataset was generated by SEGI technique. 

 

Transfer Learning  

 
In machine learning whereas the dataset has small samples, transfer learning 

method can be the source domain to the target domain, and could help to 

overcome the difficulty in data insufficient. If a domain is represented by 𝐷 =
{𝜒, 𝑃(𝑋)}, where 𝜒 is the feature space and 𝑃(𝑋) is the edge probability, and a task 

is represented by 𝑇 =  {𝑦, 𝑓(𝑥)}, where 𝑦 is the label space and 𝑓(𝑥) is the target 
prediction function, the definition of transfer learning can be formally defined as 

follows (S. J. Pan and Q. Yang., 2010): given a learning task 𝑇𝑡 on domain 𝐷𝑡, 

researchers can assist from another learning task 𝑇𝑠 on domain 𝐷𝑠. Transfer 

learning aims to improve the performance of predictive function 𝑓𝑡 for the task 𝑇𝑡 

by discovering and transferring knowledge from 𝐷𝑠 and 𝑇𝑠, where 𝐷𝑠 ≠  𝐷𝑡 and/or 

𝑇𝑠 ≠  𝑇𝑡 considering from the relationship between source domain and target 
domain. Transfer learning methods are divided into four major categories: 

instance-based, feature-based, parameter-based, and relation-based. Model-
based deep transfer learning (H. Chang, J. Han, C. Zhong, et al., 2018) ,(J. 

Yosinski, J. Clune, Y. Bengio, and H. Lipson.,2014) is the most accepted one, and 

fine-tuning pre-trained models learned from large benchmark datasets in source 
domains, has been proven to be more effective than direct transfer learning [29]. 
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The key to the success of model-based deep transfer learning is a low-level and 

middle-level features represented by a deep CNN is generic for different tasks (M. 

Oquab, L. Bottou, I. Laptev, and J. Sivic., 2014) 

 
The propose SEGI technique 

 

This research shown an innovative technique for digital image data preparation 
called Sequenced Edge Grid Images (SEGI) for SLR. The proposed approach for 

video data pre-processing, frame extraction from video files, data pre-processing 

and reconstructing new dataset form. SEGI aimed to solve the problem of static 
hand gesture images, therefore a single image unable to support all hand motion 

movement details. Moreover, communication requires body movements and facial 

expressions. As a result, the error rate of machine learning is increased. A SEGI is 
a technique to generate a set of motion within single images that stores gesture 

movement details at a different time. Optimal SEGI and input size are used to 

train CNN to classify Thai SLR. The video pre-processing to SEGI shown in Figure 

3 is a semi-automated method with 4 steps as follow: 
 

Image Frames: Image frames are captured from a video clip and the number of 

frames is set as desired.  
 

Cropped Image: This step is to get an optimal number of image frames. The first 

step is to cut off an empty area and borders of each image frame. 
 

Edge Detection: In this step converts the image frames (RGB mode) into a grey 

scale to perform edge detection. This process will reduce the information of 
images by remove color and texture (high-frequency data). 

 

Concatenate sub-image: This step constructs SEGI by combining sub-image 

(edge image converted) and order from top-left to top-right. 
 

The sign language translation considers three main parts consist of hand 

gestures, body movement, and facial expressions. Therefore, SEGI technique 
collects all spatial features from the sign language video clip then extract to 

sequences images (sub-image). Next, researchers convert sequenced images by a 

canny edge detector. Finally, researchers combine sub-images into the SEGI. The 
role of SEGI is to pre-process hand gestures according to each vocabulary from 

video clips collected into a single image as input to 2D CNN. In the SEGI, 

researchers proposed to increase the performance of 2D CNN able to leverage 
context across the height and width of the slice to make predictions. 

 

Results and Discussion  

 
Dataset based-on SEGI technique 

 

The SEGI technique constructs our dataset (Figure 3), which takes a 5×5 grid 
image (row × column) from a video clip by sorting the sequenced image (sub-

images) from top left to right. Preliminary experiment, a comparison between our 

dataset (SEGI technique) and sequenced grid image (SGI) in RGB mode (shown in 
Figure 4). The dataset for measuring the efficiency is counting numbers with sign 
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language from zero to nine to recognition by CNN with 64x64 pixels of input sizes. 

That total of 9 classes and a total of 450 images, was divided into 360 training 
sets and 90 test sets, the results as shown in table1. 

 

 

Figure 3: Block diagram representation of the proposed SEGI technique 

 

 

Figure 4: (a) image size 5×5 by SGI (RGB mode) and (b) image size 5×5 by SEGI 
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Table 1: Performance of sign language recognition compared to static images 

datasets, SGI technique and SEGI technique 

 

Epochs Image 

dataset 

Time  

(sec.) 

Train  

Acc. 

Train 

Loss 

Valid 

Acc. 

Valid 

Loss  

Test 

Acc. 

30 

Static 2132 0.821 0.024 0.613 3.896 0.659 

SGI 9897 0.995 0.017 0.677 2.689 0.673 

SEGI 2341 0.994 0.024 0.727 1.783 0.874 

60 

Static 6523 0.911 0.072 0.560 4.849 0.680 

SGI 15654 0.995 0.035 0.635 4.237 0.745 

SEGI 7975 0.994 0.051 0.729 3.053 0.882 

 

The results showed that the dataset constructed with the SEGI technique 
improves the recognition performance for SLR compared to SGI. In addition, it 

found SEGI technique reduces the cost of processing time with approximately 

49% for 60 Epochs of training compared to the SGI technique. In addition, the 

SEGI technique improves test accuracy with approximately 20% compared to the 
static image dataset. 

   

Optimization the dataset based-on SEGI technique 
 

The observe of dataset obtained from SEGI technique, found the sub-images were 

too redundant (as shown in Figure 5) since each of vocabulary has a simple 
gesture and short movements. Preliminary, one image from SEGI technique took 

sequence images as 25 frames per second from sign language video clip to 

transform into 5×5 sub-images. Therefore researchers focused on the optimal 
images size by rescaled the images size from 5×5 to 4×4 and 3×3. Finally, 

researchers compared the recognition performance when researchers reduced the 

grid size by different complexity gesture that is the length of the vocabulary from 

sign language video clips of 6 signers as follows:  
 

Dataset 1: one-syllable vocabulary with 30 classes consisting of 4,500 images 

divided into 3,240 training sets and 900 test sets. 
Dataset 2: two-syllable vocabularies with 37 classes consisting of 4,950 images 

divided into 3,960 training sets and 990 test sets. 

Dataset 3: three and more syllable vocabularies with 10 classes consisting of 
1,500 images divided into 1,200 training sets and 300 test sets. 

 

 
                    (a)                                   (b)                                          (c) 

Figure 5: Example SEGI size 5×5 according to the length of Thai sign language 

vocabulary  
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(a) SEGI of one-syllable, (b) SEGI of two-syllable and (c) SEGI of three and more 

syllable. 
 

Researchers also tested three input sizes: 32×32, 64×64, and 128×128 pixels. The 

CNN architecture, which uses the basic structure (CNN initial structure) contain 
Conv2D first layer (filters size 64, kernel size 3 and activation as ReLU) and 

MaxPooling2D last layer. The second layer is Conv2D (filters size 128, kernel size 

3 and activation as ReLU) and the last MaxPooling2D layer. Next layer is Conv2D 

(filters size 256, kernel size 3 and activation as ReLU) and the last MaxPooling2D 
layer. And dropout equal to 0.2, flatten layer. The fully-connected layers are 256 

nodes with ReLU activation and the last layer as 97 nodes with SoftMax 

activation. In leaning round is 60 epochs, which used 10-fold cross-validation to 
estimate the skill of the recognition model to find the optimal input size and SEGI 

size to obtain the best recognition performance, results are shown in Table 2. 

 
Table 2: The recognition performance of dataset optimization (divided the sub-

dataset by the length of the vocabularies) 

 
 

Vocabulary length 
Input size 
(px.) 

SEGI size 
(row × col) 

Performance evaluation 

 
 

Time  
(sec.) 

Train  
acc. 

Train 
loss 

Valid 
acc. 

Valid 
loss  

Test  
acc. 

  32×32 3×3 893 0.031 3.402 0.033 3.401 0.033 

One syllable 

 
4×4 1403 0.030 3.439 0.035 3.562 0.032 

5×5 1994 0.030 3.402 0.031 3.403 0.030 

64×64 

3×3 1170 0.986 0.048 0.967 0.120 0.882 

4×4 1723 0.982 0.058 0.957 0.156 0.717 

5×5 2328 0.973 0.091 0.912 0.484 0.216 

128×128 

3×3 2183 0.993 0.023 0.989 0.037 0.983 

4×4 2934 0.990 0.036 0.974 0.092 0.874 

5×5 3855 0.988 0.041 0.946 0.264 0.557 

  32×32 3×3 934 0.026 3.497 0.030 3.497 0.030 

Two syllable 

 
4×4 1466 0.028 3.497 0.030 3.497 0.030 

5×5 2119 0.028 3.497 0.030 3.497 0.030 

64×64 

3×3 1224 0.988 0.040 0.974 0.087 0.903 

4×4 1771 0.986 0.046 0.955 0.191 0.744 

5×5 2536 0.974 0.053 0.928 0.213 0.715 

128×128 

3×3 2353 0.992 0.027 0.989 0.039 0.985 

4×4 3017 0.989 0.038 0.977 0.077 0.894 

5×5 4064 0.985 0.052 0.943 0.267 0.558 

  32×32 3×3 377 0.985 0.042 0.957 0.159 0.590 

Three and more syllable 

 
4×4 582 0.982 0.051 0.936 0.305 0.457 

5×5 868 0.979 0.058 0.911 0.427 0.250 

64×64 

3×3 525 0.992 0.023 0.977 0.074 0.913 

4×4 806 0.990 0.030 0.963 0.133 0.750 

5×5 1177 0.984 0.045 0.939 0.263 0.453 

128×128 

3×3 988 0.993 0.023 0.990 0.031 0.997 

4×4 1417 0.992 0.026 0.984 0.052 0.937 

 5×5 1888 0.988 0.035 0.964 0.111 0.737 

 

Table 2 shows the experimental results. The smallest size of SEGI with 3×3 
provides the best performance compared to bigger sizes like 4×4 and 5×5, 



 

 

9991 

although the input size is scaled to a minimum of 32×32 pixels. When the input 

size is scaled up, it increases the performance of Thai SLR. When researchers 

used an input size of 128×128 input images, all sizes of SEGI can approach a 

higher accuracy performance in training, validation, and test sets because due to 
the reason that the SEGI is not over-compressed with the large size of the input. 

However, using larger images will cost higher computing time, a high-performance 

computing device is needed to process. Nevertheless, taking a long time to process 
does not mean better performance when the sign language dataset is large, which 

may be a problem in future experimentation. So, researchers recommend using 

input 64×64 pixels and SEGI size 3×3 as the default size. 
 

Next, the experimentation of sign language recognition performance with our 

dataset based on SEGI (size 3x3) to compare the traditional dataset (static hand 
gesture images). Both datasets are all sign language vocabulary (total of three 

subsets, one-syllable, two-syllables, and three and more syllables) consisting of 

10,950 images from 98,550 sub-images with 73 classes divided into 8,760 

training sets and 2,190 test sets. Finally, researchers used 10-fold cross-
validation to evaluate the recognition model. 

 

Table 3: The comparison of image recognition performance between static hand 
gesture images and datasets based on SEGI technique 

 

Sign language datasets  Performance evaluation 

 Epochs Train 
acc. 

Train 
loss 

Valid 
acc. 

Valid 
loss 

Test 
acc. 

Static hand gesture images 60 0.978 0.098 0.959 0.195 0.733 

Dataset based on SEGI 
technique 

60 0.979 0.064 0.819 1.087 0.846 

 
From table 3 researchers found that the dataset with SEGI technique by images 

sizes 3x3 provide higher performance when compared to static hand gesture 

images. In addition, the results found researcher’s dataset test accuracy rate had 
increase with approximately 11%. 

 

Optimisation of 2D CNN structure for SEGI 
 

The experimented in this section, researchers modifying the structure of a 2D 

CNN, aiming to obtain a suitable structure to enhance the sign language 

recognition efficiency in conjunction with the SEGI dataset. Researchers 
examined with different configurations of convolution function and the number of 

layers, activation function, pooling function and parameters as follows: 

 
CNN optimize structure 1: first block consist of first two layers are Conv2D 

(filters size 64, kernel size 3 and activation as ReLU) and the last MaxPooling2D 

layer. The next block consists of the first two layers are Conv2D (filters size 32, 
kernel size 3, and activation as ReLU) and the last MaxPooling2D layer of this 

block. Researchers add dropout equal to 0.2, flatten layer. The fully-connected 

layers are 256 nodes with ReLU activation and 97 nodes with SoftMax activation. 
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CNN optimize structure 2: first block consists of the first two layers that are 

separableConv2D (filters size 64, kernel size 3, and activation as ReLU) and the 
last MaxPooling2D layer. And next block consists of the first two-layer is 

separableConv2D (filters size 32, kernel size 3, and activation as ReLU) and the 

last MaxPooling2D layer of this block. Researchers add dropout equal to 0.2, 
flatten layer. The fully-connected layers are 256 nodes with ReLU and 97 nodes 

with SoftMax.  

 

CNN optimize structure 3: first block consists of SeparableConv2D on the first 
two layers (filters size 64, kernel size 3, and activation as ReLU) and 

SeparableConv2D (filters size 32, kernel size 3 and activation as ReLU). The next 

block contains SeparableConv2D (filters size 32, kernel size 3, and activation as 
ReLU) and convolution layer is SeparableConv2D (filters size 16, kernel size 3 and 

activation as ReLU). For MaxPooling2D researchers add dropout equal to 0.2, 

flatten layer. The last two fully-connected layers are 256 nodes with ReLU and 97 
nodes with SoftMax.         

 

CNN optimize structure 4: first block consists of SeparableConv2D (filters size 
64, kernel size 3, and activation as ReLU) for the first layer then 

SeparableConv2D layer (filters size 32, kernel size 3, and activation as ReLU) and 

the last AveragePooling2D layer of this block. The next block contains 

SeparableConv2D (filters size 32, kernel size 3, and activation as ReLU) as the 
first layer then SeparableConv2D (filters size 16, kernel size 3, and activation as 

ReLU) and the last AveragePooling2D layer of this block. Researchers add dropout 

equal to 0.2, flatten layer. The fully-connected layers are 256 nodes with ReLU, 
128 nodes with ReLU and 97 nodes with SoftMax. 

 

CNN optimize structure 5: first block consists of SeparableConv2D (filters size 
64, kernel size 3, and activation as ReLU) then SeparableConv2D (filters size 32, 

kernel size 3, and activation as ReLU), and researchers add dropout equal to 0.2 

and flatten layer of this block. The next block consists of SeparableConv2D as a 
first layer (filters size 32, kernel size 3, and activation as ReLU) then 

SeparableConv2D (filters size 16, kernel size 3, and activation as ReLU), dropout 

equal to 0.2 and flatten layer. The last two fully-connected layers are 256 nodes 

with ReLU and 97 nodes with SoftMax. 
 

CNN + Bi-LSTM and CNN + Bi-GRU: CNN initial structure is base of 

convolutional layer and add 2 layers of Bi-LSTM / Bi-GRU before the fully-
connected layer. 

 

VGG16 and ResNet: researchers load library of the pre-train model and retrain 
all layers with our dataset. 

 

Table 4: The performance of optimized CNN structures for sign language 
recognition based on SEGI technique 

 

CNN structure 

Performance evaluation 

Train 
acc. 

Train 
loss 

Valid 
acc. 

Valid 
loss 

Test 
acc. 

CNN initial structure 0.979 0.064 0.819 1.087 0.846 
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CNN optimize structure1 0.988 0.156 0.968 0.217 0.874 

CNN optimize structure2 0.991 0.036 0.974 0.119 0.874 

CNN optimize structure3 0.990 0.036 0.978 0.092 0.906 

CNN optimize structure4 0.991 0.037 0.978 0.110 0.936 

CNN optimize structure5 0.995 0.023 0.975 0.154 0.824 

CNN+Bi-LSTM 0.994 0.018 0.997 0.010 0.932 

CNN+Bi-GRU 0.965 0.125 0.958 0.142 0.918 

CNN+Bi-LSTM+Bi-GRU 0.957 0.152 0.952 0.162 0.911 

VGG16 0.921 0.057 0.919 0.085 0.899 

ResNet 0.907 0.482 0.898 0.461 0.891 

 

From table 4 shown SeparableConv2D and AveragePooling2D are suitable for 
researcher’s dataset. The filter size should be 64 and 32, 3 of kernel size, and 

ReLU activation function in the convolutional layers. In fully-connected layer have 

three layers comprising 256, 128, and 97 nodes respectively. The optimized CNN 
structures performance, from the experiment of 7 structures, structure 4 has the 

highest test accuracy at 93.6%. This structure has increase 12.3% compared to 

the CNN initial structure previously. The CNN optimize structure 4 is a pre-
trained model (model-based) that will be used in for transfer learning method.   

 

Transfer Learning  

 
The final experimental of this research, apply model-based to transfer a new sign 

language datasets with a workplace vocabulary and communication from 4 

signers. The SEGI technique is a dataset generator consisting of 2,250 images 
(20,250 sub-images) with 23 classes, which are divided into 1,800 training sets 

and 450 test sets. In transfer learning, researchers performed three strategies of 

fine-tuning as follows:  
 

Strategy 1: Train the entire model. Researchers use the architecture of the pre-

trained model and train it according to our dataset, which learns the model from 
scratch. 

Strategy 2: Train some layers and leave the others frozen. The lower layers refer 

to general features, while the higher layers refer to specific features. Researchers 
apply and adjust the weights of the network. 

Strategy 3:  Freeze the convolutional base. Researchers kept the convolutional 

base in the original form and then use its outputs to feed the classifier by using 

the pre-trained model as a fixed feature extraction mechanism. 
 

Table 5: The recognition accuracy of 3 fine-tuning strategies with the dataset 

 

Fine-tune 
strategy 

Performance evaluation 

Process 
time 

Train 
acc. 

Train 
loss 

Valid 
acc. 

Valid 
loss 

Test 
acc. 

Strategy 1 1748.63 0.996 0.019 0.994 0.025 0.998 

Strategy 2 1259.80 0.996 0.023 0.994 0.019 0.998 

Strategy 3 1100.66 0.995 0.034 0.992 0.038 0.991 
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Table 5 shows the results of the transfer learning experiment, the results found 
strategy 2 of fine-tuning technique had the highest recognition accuracy as same 

as strategy 1, at 99.8%. However, strategy 2 had reduce processing time with 

approximately 28% compared to strategy 1. Therefore, the transfer learning 
method for the datasets created by SEGI technique (the fine-tuning of training 

some layers and leaving the others frozen) is optimal for researcher’s dataset. 

 

Conclusion 
 

Researchers proposed a new video processing technique called Sequenced Edge 

Grid Images (SEGI) for sign language recognition applications. A dataset initiated 
from researcher’s technique can be generated as a sequence image with edge 

detection to use with 2D CNN. Researchers found the recognition performance of 

2D CNN with SEGI has higher accuracy than the dataset by SGI and static hand 
gesture image. Researchers compared dataset and static hand gesture images to 

recognize the 73 classes of sign language vocabularies from 5 signers. The results 

showed that SEGI technique enhances performance of 2D CNN for the sign 
language recognition system. In addition, with the reduced size SEGI, researchers 

found SEGI size 3×3 image yield higher accuracy than SEGI sizes 4×4 and 5×5 

with input image size 32×32 pixels and 64×64 pixels. Moreover, by scaling up 

input size to 128×128 pixels and all sizes of SEGI can lead to high performance. 
In addition, the SEGI got a higher test accuracy rate than the static hand gesture 

images. Finally, researchers discovered a CNN structure suitable for the dataset 

by the SEGI with high recognition performance. Along with the grid image size 
3×3 had increased a new sign language dataset on workplace vocabulary and 

communication from 4 signers. In addition, researchers applied transfer learning 

method to incrementally learn the new sign language datasets. For future study, 
researchers will optimize the SEGI algorithm to generate the dataset faster and 

reduce processing time for the better support real-time sign language translation 

applications.  
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