Yang’s keyhole plate versus conventional plate for treatment of mandibular sub-condylar fractures: Clinical and radiographic evaluation

Ali Ali Tawfik Abdo
Email: alystar2005@yahoo.com

Ashraf Abdel Fattah Mahmoud
Professor of Oral and Maxillofacial Surgery Faculty of Dental Medicine, Boys, Assiut, Al-Azhar University.
Email: Ashraf10102002@yahoo.com

Abdel Aziz Baiomy Abdullah
Assistant Professor of Oral and Maxillofacial Surgery Faculty of Dental Medicine, Boys, Assiut, Al-Azhar University.
Email: Abdelazizbaiomy@azhar.edu.eg

Mohamed Mahgob AlAshmawy
Assistant Professor of Oral and Maxillofacial Surgery Faculty of Dental Medicine, Boys, Assiut, Al-Azhar University.
Email: Mohamedalashmawy.46@azhar.edu.eg

Hossam Eldin Mohammed Ali
Faculty of Dental Medicine, Boys, Assiut, Al-Azhar University
Email: Dr.nourhossam@gmail.com

Omar El Farouk Mossad Sadek Ahmed
Faculty of Dental Medicine, Boys, Assiut, Al-Azhar University
Email: dromarelfarouk@gmail.com

Mohamed Ashraf Abdel Fattah
Faculty of Dental Medicine, Boys, Assiut, Al-Azhar University
Email: dr_m_ashraf87@yahoo.com

Abstract—Objectives: The use of a keyhole plate vs two miniplates in the treatment of mandibular subcondylar fractures. Materials and methods: Twenty patients were randomized into two equal groups. Ten patients with subcondylar fractures were treated with two Yang’s keyhole plates in Group I. Ten patients with subcondylar fractures
were treated with two conventional miniplates in Group II. Maximum mouth opening (MMO), Protrusive excursive movement, Lateral excursive movement, and Time for reduction and fixation were all used to evaluate patients clinically. Vertical height of ramus, and antero-posterior condylar angulation are all measured radiographically. Results: There was a statistically non-significant difference between the study and control groups at all intervals regarding MMO, Protrusive excursive movement, Lateral excursive movement, vertical height of the ramus, antero-posterior condylar angulation, but was significant at time for reduction and fixation. Conclusion: reducing a mandibular condylar fracture using a YK-plate, the results were similar and the operating time was quicker than when utilizing a traditional mini plate fixation.

Keywords---sub-condylar fractures, Yang’s Keyhole Plate, miniplates.

Introduction

Subcondylar fractures account for up to 45 percent of all mandibular fractures. The treatment of mandibular condylar fractures, on the other hand, is still a point of contention in maxillofacial surgery. (1) Closed reduction, which may entail up to 6 weeks of intermaxillary fixation (IMF) and intense physiotherapy. In patients with condylar injuries treated in a closed manner, long-term consequences include discomfort, arthritis, malocclusion, mandibular deviation during opening and closing motions, temporomandibular joint (TMJ) dysfunction, facial asymmetry, and decreased posterior facial height (2,3), as well as ankylosis. (4-6) There has been an increasing interest in using direct fixation with an open approach that allows for anatomical fragment reduction to achieve a speedier return to normal function. (7, 8)

When a bone segment is precisely physically reduced, most plates now on the market are known to be associated with little difference in prognosis. (9,10) However, in certain people, these miniplates are difficult to accurately fit to the bone segment, and bone fragment reduction and fixation at subcondylar fracture locations requires an extra-oral incision and an endoscope. Miniplates are difficult to utilise in the subcondylar area, therefore surgical outcomes are sensitive and highly dependant on the surgeon. (11, 12). The YK plate, unlike other plates, includes a range of hole sizes, allowing for a simple attaching mechanism. As a consequence, patients with subcondylar and angle fractures of the mandible can be treated with a smaller incision than with other plate systems when using the YK plate. Furthermore, the initial screw introduced can be utilised as an anchor screw, making surgery more convenient (13). A keyhole plate was compared to two miniplates in the treatment of extracapsular mandibular subcondylar fractures.

Subjects and Methods

Twenty patients (16 males and 4 females) with extracapsular subcondylar fracture were recruited from the outpatient clinic of the Faculty of Dental
Medicine Al-Azhar University’s Oral and Maxillofacial Surgery department (Assiut Branch). All patients signed an informed consent form before surgery, and the Al-Azhar ethics committee authorised the study (number/year).

Inclusion criteria:
- Patients free from conditions contraindicating surgery.
- Patients from 18-40 years.
- Patients sub-condylar fracture indicated for open reduction.

Exclusion Criteria
- Infected fracture site.
- Patients with systemic bone diseases.

Study sample:
Patients were be divided randomly into 2 groups using online software (https://www.randomizer.org). Group I: consisted of ten patients with sub condylar fracture treated with 2 yang’s keyhole plates. Group II: consisted of ten patients with subcondylar fracture were treated with two standard miniplates.

Operative Procedure
Following anaesthetic induction, the fracture was exposed, the IMF was secured to ensure appropriate occlusion. The retromandibular method was a viable option. A 1 cm posterior and parallel to the posterior edge of the mandible’s ramus incision was created. The parotid gland retreated superiorly and anteriorly after skin incision. The masseter muscle was being stripped from the ramus to disclose the fracture site during subcutaneous dissection. Fractured segments were reduced into normal position by inserting stainless steel wire (0.5) in Basel region of angle to function as a distraction of ramus exposing area of condyle, then adapting plate and drilling screw holes with surgical drill (1.8 mm dimeter) under continual saline irrigation.
Two Yang’s key hole plates were used to fix the broken condyle in Group I.
Group II: The broken condyle was fixed with two miniplates, one on the ramus’s posterior border and the other parallel to the mandibular notch.
The occlusion was checked before IMF was removed.
The extraoral wound was closed using polyglycolic polylactic 3-0 suture material* for deep layers and 4-0 polypropylene suture material** for skin layer.

Postoperative care
Each patient received intravenous ***unasyn 1.5 gm/12 hours for one day postoperatively followed by Amoxicillin/Clavulanate potassium *** * 1 gm twice daily for the next 5 days.

Assessment:
- Clinical
 - MMO
 - Protrusive and Lateral excursive movement
 - Time for reduction and fixation
- Radiographic
 - Vertical height of ramus
Antero-posterior condylar angulation

Statistical analysis of the data

Quantitative data were described using mean, standard deviation. Significance of obtained results was judged at 5% level. Student t-test for normally distributed quantitative variables, to compare between two studied groups was used.

Figure (1): a, Preoperative 3D C.T showing right medially displaced of subcondylar fracture, b, preoperative occlusion, c, Retromandibular incision, d, Reduction and Fixation by yang key hole plate with fixation by two yang key hole plate, e, Postoperative occlusion after 3 months, f, C.T postoperatively coronal cut, g, after 3 months, and h, after 6 months.

Figure (2): a, Preoperative 3D C.T showing lateral displacement of subcondylar fracture, b, Reduction of fracture segments after surgical exposure c, fixation by two conventional plate, d, Postoperative occlusion after 3 months, e, MMO after 6 months, f, C.T postoperatively coronal cut, g, after 3 months, and h, after 6 months.
Results

At 1st week, 3rd week, 3rd month, and 6th month, there was a statistically non-significant difference between study and control groups regarding MMO (p=0.431, 0.380, 0.182, 0.526 respectively). At 1st week, 3rd week, 3rd month, and 6th month, there was a statistically non-significant difference between study and control groups regarding protrusive excursive movement (p=0.241, 0.199, 1.000, and 0.525 respectively). At 1st week, 3rd week, 3rd month, and 6th month, there was a statistically non-significant difference between study and control groups regarding lateral excursive movement (p=0.809, 0.291, 0.848, and 1.000 respectively).

At Immediate, 1st month, 3rd month, and 6th month, there was a statistically non-significant difference between study and control groups regarding vertical height of ramus (p=0.360, 0.379, 0.379, and 0.379 respectively). At Immediate, 1st month, 3rd month, and 6th month, there was a statistically non-significant difference between study and control groups regarding antero-posterior condylar angulation (p=0.604, 0.593, 0.593, and 0.593 respectively). There was statistically a significant difference between study and control groups (p<0.001). Study group showed a lower Time for reduction and fixation than control group.

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Control</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st week</td>
<td>22.20 ± 2.82</td>
<td>21.0 ± 3.77</td>
<td>0.431</td>
</tr>
<tr>
<td>3rd week</td>
<td>30.40 ± 2.01</td>
<td>29.70 ± 1.42</td>
<td>0.380</td>
</tr>
<tr>
<td>3rd month</td>
<td>35.60 ± 3.20</td>
<td>33.70 ± 2.91</td>
<td>0.182</td>
</tr>
<tr>
<td>6th month</td>
<td>39.10 ± 1.66</td>
<td>38.50 ± 2.42</td>
<td>0.526</td>
</tr>
<tr>
<td>Protrusive excursive movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st week</td>
<td>3.40 ± 0.84</td>
<td>3.90 ± 0.99</td>
<td>0.241</td>
</tr>
<tr>
<td>3rd week</td>
<td>5.70 ± 1.16</td>
<td>6.30 ± 0.82</td>
<td>0.199</td>
</tr>
<tr>
<td>3rd month</td>
<td>8.20 ± 1.23</td>
<td>8.20 ± 0.92</td>
<td>1.000</td>
</tr>
<tr>
<td>6th month</td>
<td>8.60 ± 1.26</td>
<td>8.90 ± 0.74</td>
<td>0.525</td>
</tr>
<tr>
<td>Lateral excursive movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st week</td>
<td>4.40 ± 0.84</td>
<td>4.50 ± 0.97</td>
<td>0.809</td>
</tr>
<tr>
<td>3rd week</td>
<td>7.10 ± 1.20</td>
<td>6.50 ± 1.27</td>
<td>0.291</td>
</tr>
<tr>
<td>3rd month</td>
<td>9.20 ± 1.32</td>
<td>9.30 ± 0.95</td>
<td>0.848</td>
</tr>
<tr>
<td>6th month</td>
<td>9.60 ± 0.84</td>
<td>9.60 ± 0.52</td>
<td>1.000</td>
</tr>
<tr>
<td>vertical height of the ramus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate</td>
<td>71.0 ± 7.06</td>
<td>67.30 ± 10.27</td>
<td>0.360</td>
</tr>
<tr>
<td>1st month</td>
<td>70.59 ± 7.11</td>
<td>66.99 ± 10.37</td>
<td>0.379</td>
</tr>
<tr>
<td>3rd month</td>
<td>70.59 ± 7.11</td>
<td>66.99 ± 10.37</td>
<td>0.379</td>
</tr>
<tr>
<td>6th month</td>
<td>70.59 ± 7.11</td>
<td>66.99 ± 10.37</td>
<td>0.379</td>
</tr>
<tr>
<td>antero-posterior condylar angulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>MMO Mean ± SD 1st Group</td>
<td>MMO Mean ± SD 2nd Group</td>
<td>t-value</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Immediate</td>
<td>29.90 ± 3.98</td>
<td>28.90 ± 4.48</td>
<td>0.604</td>
</tr>
<tr>
<td>1st month</td>
<td>29.56 ± 4.04</td>
<td>28.52 ± 4.49</td>
<td>0.593</td>
</tr>
<tr>
<td>3rd month</td>
<td>29.56 ± 4.04</td>
<td>28.52 ± 4.49</td>
<td>0.593</td>
</tr>
<tr>
<td>6th month</td>
<td>29.56 ± 4.04</td>
<td>28.52 ± 4.49</td>
<td>0.593</td>
</tr>
<tr>
<td>Time for reduction and fixation</td>
<td>23.50 ± 2.46</td>
<td>31.10 ± 3.35</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

*t: Student t-test
p: p value for comparing between two studied groups
*: Statistically significant at p ≤ 0.05

Discussion

In the present study, there was no statistically significant difference in MMO, protrusive excursive movement, lateral excursive movement, vertical height of the ramus, or antero-posterior condylar angulation. However, group (I) recovered faster and better than group (II), which was consistent with the findings of Woo et al (13). The newly created YK plate system may be used to treat subcondylar and angle fractures in the mandible, and it is easy to apply and utilize.

Cheon et al (14) looked at individuals who had been treated with a YK plate for mandibular fracture reduction. The YK plate technique had proven to be a reliable approach for obtaining stable occlusion, with no patient complaining of joint sickness or discomfort. This was consistent with our findings, which revealed that both groups had satisfactory occlusion at the end of the preliminary experiment with no statistically significant differences.

In the current study, patients in group (I) had an average MMO of 22.20 ± 2.82 at the end of three weeks, which jumped to 30.40 ±2.01 at the end of three weeks, and reached a maximum level of 35.60 ± 3.20 at three months, which was more evident in the findings compared to the control group. This was in line with Woo et al (13), who found similar results following a four-month follow-up in their trial. This was demonstrated in our study, where we found a greater improvement in MMO range after following patients for 6 months, with a reading of 39.10. ± 1.66 mm in the study group.

Sufficient stability could be achieved by using a YK plate in a mandibular fracture, which could swiftly decrease the fracture bone segment and secure it to the correct position by inserting an anchor screw into a broad hole in the anterior section (11, 12). With a slight modification of the anterior hole, such as a sliding-plate, a YK-plate could be utilized to maintain condylar position, and fixation according to the positioning of an enlarged head screw.

The study group spent less time than the control group to decrease and mend. This was supported by the findings of woo et al (13), who looked at the clinical outcomes and surgical convenience of a newly developed Yang’s Keyhole plate (YK plate) system for the treatment of mandibular subcondylar and angle fractures. The findings suggested that using the YK plate approach was more convenient and time-saving than using the 4-hole miniplate.
Kim et al (16) achieved a similar outcome, which was confirmed in our investigation, where we achieved appropriate stability and bone healing using the YK plate. Group (I) had a more accurate anatomical reduction of fractured bone than group (II), which was compared to the findings of Cheon et al (14), which found that Yang’s key hole plate provided superior results to two plate fixations with easier application, lower cost, and shorter fixation time. In summary, while taking advantage of sliding-plate, the YK-plate was deemed to be easier to apply in clinical practise.

References

12. Perren Evolution of the internal fixation of long bone fractures. The scientific

