Impact on ruminant performance of feed additives: Review

Sundos Farook Mohammad
Department of Animal Production, College of Agriculture, University of Baghdad, Iraq
*Corresponding author email: sundos.f@coagri.uobaghdad.edu.iq

Abstract---In order to elicit the desired reaction at animals, feed additives must be included in high concentrations in the diet. Microorganism-based feed additives for ruminants have been more popular over the last two decades, and this trend is expected to continue. Dairy farmers may utilize feed additives to enhance the nutritional content of their dairy cows’ meals and boost revenues by using them properly. The use of supplements should not be seen as a substitute for well-balanced diets and sound feeding procedures, but rather as an addition to them. Although yeast biomass, a byproduct of the alcoholic beverage industry, has previously been employed as a protein source, research into feeding yeast as a probiotic began in the 1950s. Probiotics like yeast were only employed as a feed additive at a lesser level. It was in the 1940s and 1950s when Saccharomyces cerevisiae (Sc) was first used as a probiotic in tiny doses added to animal feed. Anaerobic cellulitis bacteria count and ruminal PH value may be improved by adding yeast to ruminant diets, according to research. mineral absorption is influenced by the patterns of volatile fatty acids.

Keywords---saccharomyces cerevisiae, ruminants, performance in yeast.

Introduction

Fermentation in the rumen may be improved by using feed additives, which in turn help the animals absorb nutrients more efficiently. Microbes such Direct-Feed Microbial (DFM), yeast cultures, and live yeast cultures (LYC) were addressed by Denev et.al.(2007). Animal feed microbes were also included on the list in a well-written essay, (Fuller ,1989) summarizes some of the most often held beliefs regarding the benefits of DFM. Ewe gain in weight and feed conversion ratio are aided by both bacteria found in rumen(Khatta,et.al.2020). VFA levels were increased, pH was maintained, and lactate levels were lowered when yeast
was added to a rat diet. An increase in feed utilization and enhanced rumen fermentation may also help raise milk production and animal performance (Amin and Mao, 2021). However, according to Bayat et al. (2015), DFM supplementation had no influence on the growth rate of finishing cattle. As a probiotic, Saccharomyces cerevisiae (Sc) has been shown to improve the health of calves fed 10g/ calf/day of yeast culture Maamouri and Ben Salem (2021).

Natural Supplements for Animal Feed

Animals may benefit greatly from the use of natural feed additives such as medicinal herbs in their diets. With the addition of medicinal herbs like Nigella sativa and rosemary to limited concentration diets, the weight growth of lamb was significantly increased (Hassan and Hassan, 2010a). When given a diet enriched with Nigella Sativa (Ns), Karadzic sheep gained more weight than those fed diets lacking Ns (Hassan and Hassan, 2009a). Serum urea nitrogen (SUN) was considerably (P 0.05) greater in lambs given rosemary-infused diets, according to Hassan and Hassan (2009b). There is some evidence to suggest that herbal feed additives may enhance gastrointestinal function in vitro, according to Hua-wei and Jian-ming (2011). That the performance of the lambs might be enhanced by using the herbal growth enhancer. Microbes in the rumen are raised when medicinal herbs are used as feed additives to influence the microbes (Ruiz Garcia, et.al. 2011).

Additives made from microbes

Various microbial feed additives are used into ruminant diets for a variety of reasons. It has been shown in research that the usage of probiotics in non-ruminants, such as calves and lambs, may help them gain weight (Mirzaei and Hari, 2012). In addition to humans, ruminants also benefit from the usage of probiotics. Dry matter (DM), organic matter (OM), metabolizable energy (ME), and total intake (TN) in lambs given Iraqi probiotic supplements was significantly increased when S. cerevisiae (Sc) and Aspergillus or fungal (Salim, et.al. 2009) fermentation extracts were supplied. But according to Seo et al. (2012), lactic acid bacteria (LAB) and other microorganisms, such as Lactobacillus, Bifidobacterium, enterococcus, streptococcus, bacteria, Megasphaera elsdeni and Prevotella bryanti strains, yeast products containing Saccharomyces and Aspergillus LAB, may have beneficial effects on the rumen and intestinal tract.

Combining LAB and LUB may assist improve rumen conditions and promote dry matter intake, feed efficiency, and weight gain in cattle. Luebbe et al. (2013) demonstrated that the ADG and feed efficiency of cattle fed a DFM had numerical advantages. Rumenal fermentation activators generated from cultures of live microorganisms have recently attracted increased scientific and commercial attention (Galina, et.al. 2010). It is possible to increase digestion and cell wall strength while also stabilizing ruminal microbes using an active ingredient rich in lactobacilli, yeasts, carbonated short-chain organic acids, and a low pH value (microbial addition). Elias and Herrera (2008) Increased proliferation of beneficial rumen microbes was a result of the addition of supplemental yeast. YC enhanced the quantity of anaerobic and
cellulolytic bacteria in the rumen, which is a good thing. Yeast has been found to supply vitamins (particularly thiamin) that enhance the development of rumen fungus (Sun et al. 2021). As mutant Sc strains with impaired respiration could not increase the number of viable bacteria in the rumen, it seems that the capacity of various strains of Sc to remove oxygen from the rumen fluid is connected to their ability to promote bacterial counts (Li et al. 2016). Wheat straw + yeast had considerably greater total volatile fatty acid levels than wheat straw alone According to Xiao et al. (2016), the ruminal pH and ammonia-N concentrations were not affected by SCFP treatment.

![Diagram of Probiotic Yeast: Effects on Ruminant Nutrition](Ghazanfar.et.al.2017)

Fig 1. Probiotic Yeast: Effects on Ruminant Nutrition (Ghazanfar.et.al.2017)

Bacterial genus Saccharomyces cerevisiae

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum</td>
<td>Ascomycota</td>
</tr>
<tr>
<td>Sub Phylum</td>
<td>Saccharomycotina</td>
</tr>
<tr>
<td>Class</td>
<td>Saccharomyces</td>
</tr>
<tr>
<td>Order</td>
<td>Saccharomycetales</td>
</tr>
<tr>
<td>Family</td>
<td>Saccharomycetaceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Saccharomyces</td>
</tr>
<tr>
<td>Species</td>
<td>Cerevisiae</td>
</tr>
</tbody>
</table>
The impact of *Saccharomyces cerevisiae* on the performance of ruminant animals

Feeding Routine

However, dry matter had a negative impact on lamb development and rumen cellulolytic activity, but had no effect on feed intake. Increased feed intake has been linked to the use of probiotics (Moharrery and Asadi, 2009). The quantity of dry matter ingested by lambs and kids was unaffected by the addition of yeast culture, according to Titi et al. (2008) (DM). According to Kumar et al. (2012), supplementing buffalo bull calves with 0.25 g/head/day of yeast culture had no effect on feed consumption. Awassi lambs fed diets enriched with SC consumed more DM and OM from barley straw on a daily basis, according to a study (Titi et al. 2008). According to Pienaar et al. (2012) When lambs were fed either a live yeast product or an ionophore, there was no significant difference in the amount of feed they consumed (P = 0.05). Male lambs were fed either steam-flaked corn (CON), monensin (MO), or a baseline diet with live yeast (BYY) according to (Ding et al. 2008) . (LY). The average daily consumption of monensin and live yeast supplements was not affected (ADI). While feeding at four doses (50, 100, 150, and 200 g/day) resulted in significant (P 0.01) increases in DM, ME, TN, and the response to Iraqi probiotics were higher with the greatest dosage of feeding, which is similar with the results of (Moharrery and Asadi ,2009) .

According to Ding et al. (2008) , the addition of dry yeast to goat kid meals has increased DMI, TDNI, and DCPI. When supplemented with 10 g Sc/cow/d, dairy cows receiving medium or high doses of nutritious concentrate had modestly higher DMI, according to (Ahlam ,2011). Only the DMI of dairy cows given a LY-supplemented feed differed from that of the control group.

![Diagram](Image)

Fig 1. The mechanism by which yeast increases production in ruminants is shown schematically [Xiao et.al. 2016; Wallace,1994]

Ratio of feed to live weight increase

More study is needed to better understand the function of yeast culture (Yc) and its mode of action in sheep and goats. Yalçın, et.al.(2011) ; Ahmed and, Salah
(2007) found that when goats’ young were not given 2.5 or 5 grams of yeast per day, their average daily growth rate was much lower than when they were. Feed conversion ratios (FCR), average daily growth, live weight gain, and feed efficiency were unaffected in lambs fed diets supplemented with 10% Sc. Nathália, et al. (2021) found that feeding Cows a yeast culture plus monensin increased weight growth in the animals. Lambs receiving a probiotic supplement gained more weight and had a lower feed conversion ratio (Hassan and Hassan, 2009).

In calves given a full mixed diet with yeast culture, adding yeast culture at a rate of 20 kg/yeast/ton of feed had no influence on final weight, average daily growth, or feed conversion ratio. When feeding levels were raised (P 0.01), live weight growth was also enhanced (P 0.01), but the association between feeding levels and probiotics was not significant (Salim, 2009). An Iraqi probiotic or medicinal plant-supplemented lamb diet increased both live weight and feed conversion ratio significantly (Hassan and Hassan. 2010b; Mirzaei and Hari, 2012) compared to an supplemented lamb diet. Iraqi probiotics, which included the bacterium Sc, increased body weight growth, feed conversion, and mortality in the study animals. To our knowledge, feeding lambs diets that included 0, 5, 15, 20, 30, and 40% percent yeast cultures had no effect on daily weight gain and feed conversion ratio (P = 0.10). This also holds true for feeding the lambs diets that had 0, 1, 5, 10, and 15% percentages of yeast cultures. Growth and feed conversion efficiency, as well as rumen fermentation indices, were improved when S. cerevisiae NCDC-49 was added (Özsoy, et al. 2013).

Digestibility

Researchers have researched the effects of certain yeast cultures on ruminants’ performance for over two decades. The effects of a supplemental yeast culture on rumen development have not been studied. Fermentation and rumen microbial populations may be affected by the rumen-viable facultative anaerobic yeast Saccharomyces cerevisiae (Sc). As a result of this study, it was shown that in-vivo DM digestibility, acid detergent fiber, nitrogen and in vitro DM digestibility did not differ significantly between the control and treatment groups. After 24 and 48 hours, Kholif and Khorshed (2006) found no difference in the digestion of (DM) when yeast was introduced to the diets of lactating buffaloes. This study by Abdel-Ghani (2004) found that goats fed the same meal, but supplemented with 3 or 6 grams of YC, absorbed more nutrients.

A similar trend emerged in feed consumption. Saccharomyces cerevisiae (Sc) has been demonstrated to help with ruminal digestion when taken as directed (Gaafar, et al. 2009). Probiotics (yeast culture) had no effect on the digestibility of dry matter (DM), protein (CP), or NDF in Titi et al. (2008). Even additional study has shown that a mixture of OM and ADF may be more easily absorbed by lambs by adding yeast culture to the meal. According to Lascano et al. (2009) meat goats administered commercial probiotics metabolized more apparent dry matter, crude protein, neutral detergent fiber, and acid detergent fiber compared to the control group. Rumen digestion has been demonstrated to be impacted by yeast supplementation in studies (Han, et al. 2021). As reported by Lascano et al. (2009), adding yeast to a high-concentrate diet
(75.67 percent dry matter digestibility compared to 72.96 percent) improved the heifers' ability to digest dry matter. Between 73.65% and 73.97% of the population, For example, cellulose, hemicellulose and acid detergent fiber digestibility's increased when yeast supplementation was utilized by (Kholif and Khorshed, 2006).

Researchers observed that adding 15 g of baker's yeast per head per day to the 40:60 roughage feeding diet resulted in improved nutritional digestibility. Additionally, Kumar, et.al.(2012) discovered that the inclusion of 0.25 g/head/day of yeast culture in the buffalo bull calves' feed enhanced nutrient digestion. Ewes fed 60:40 concentrate: roughage diets supplemented with live dry yeast (5 or 7.5 g/h/d) had better DM, CP, CF, TDN, and DCP digestibility than lambs in the control group when Sc and (Sc + Ls) were included. Male lambs fed diets containing (0.5 and 1 kg/ton concentrate) Sc exhibited improved CF digestibility than the control group, whereas TDN and DCP did not differ between treatments. Probiotic supplementation with 20ppm and 0.1% probiotics increased DM, TDN and DP in lambs fed 18 to 22% protein, according to Sarwar and colleagues (2010). Herawaty, et.al.(2013) Beef cattle fed 0.5 percent Sc feed had higher nutritional digestibility than those fed a control diet, but poorer digestibility than those fed the supplement.

Characteristics of the Rumen

Volatile Fatty Acids That Are Quickly Decomposable (VFA)

The rumen's metabolism and absorption of volatile fatty acids (VFAs) have a major chemical impact on rumen growth. Microbes naturally manufacture these (VFA) (Newbold, et.al.1995). Yeast supplementation had influence on ruminal (VFA) concentrations, according to Phesatcha, et.al.(2021). When it comes to TVFA generation, Doleali and co-workers (2005) found that the use of ammonia was greater in the experimental groups than in the control groups (both at 8.40 and 8.40 mg/L, respectively). VFA concentrations in the rumen rose when Sc was added to a forage-enriched diet, according to Galip,(2006). Between 24 and 48 hours, Kholif and Khorshed (2006) found no change in the concentrations of acetate, propionate, or butyrate (Lila,etal.2004). TVFA content in rumen fluid increased from 91.26 to 103.34 mmol/l at 3 hours after feeding in Sc. compared to the control diet. Sc (Doležáli, et.al.2005]) boosted TVF's concentration.

Longuski and colleagues ,2009 Sarwar, et.al.2010) g/cow/d) found no effect of yeast supplementation on total ruminal VFA or acetate concentrations (Stewart and Smith.2005 ; Longuski, et.al .2009). A concentration of 102.3 mmol of VFA was shown to be unaffected by yeast supplementation or meal supplementation by researchers (Bal and Gokus 2013). Adding yeast had no influence on the acetate or propionate concentrations in the 50% or 70% concentrates. The concentrations of ruminal acetate and propionate, on the other hand, reduced and rose. At 2 and 4 months, TVFA concentrations in live YC-fed infants were considerably higher (P 0.01)(Özsoy ,et.al.2013).
The Rumen PH

For cellulolytic bacteria, which cannot thrive at pHs of 6.0 and lower, rumen pH is a significant factor in rumen activity (Longuski, et. al. 2009). Sulfur supplementation had no effect on ruminal pH Ahmed and Salah (2007). When Sc was employed, pH values decreased significantly (P> 0.05) according to Gaafar and colleagues (2009). The greatest and lowest ruminal pH values were seen in the 2.5 g Sc and control groups (Chaucheyras, et.al.2008). The ruminal pH may be elevated by feeding dairy animals probiotics or yeast culture, which has been demonstrated in other research to have health benefits for dairy cows and goats. Kholif and Khorshed (2006) found no difference in ruminal NH₃-N content when yeast was added. Sheep given yeast culture had a PH that was lower and fluctuated around the lower limit than the control group, according to Doleali et al. (2005) who found that adding Sc to the diet improved ruminal pH and decreased lactate levels in cattle. Yeast culture had little effect on rumen pH (Guedes and others, 2008). Dairy cows on high-concentrate diets were shown to have lower ruminal pH levels (Yalçın, et.al.2011) than those fed a lower-concentrate diet.

Animal Ruminants Exposed to Ammonia

Microbe protein degradation and non-protein nitrogen use have been linked to rumen ammonia concentrations. Broderick and others (2008). Adding Sc to hay to a steer diet had no influence on NH₃-N concentrations, according to Dawson et al.(1990). As Newbold et al. (1995) reported, sheep fed Sc. boosted their NH₃ contents. There was an increase in ruminal NH₃-N concentrations 4 hours after Sc administration (Biricik and Yavuz, 2001). S. cerevisiae supplementation was linked to a rise in the rumen-to-stomach ratio and an increase in amino acid absorption by small intestinal microbes [68]. Yeast had little effect on the small intestine’s absorption of nitrogen fraction and amino acids, according to Putnam et al. (1997). According to Hong and Gallagher (1994) adding yeast had no influence on ruminal NH₃-N concentration. At 1 g/day, Stewart and Smith (2005) found that adding Sc had no effect on the NH₃-N concentration. When it came to commercial live yeast cultures, Sc lowered the concentration significantly. Supplementation with 4 g/day of live yeast culture showed no impact on NH₃-N (Tripathi, et.al.2008; Saeed,2011; Hassan and Mohammed ,2016). According to Fatma et al. (2010), adding Sc at a concentration of 0.50 percent raised the NH₃-N concentration.

Conclusions

Saccharomyces cerevisiae boosted total daily intake and improved the rumen environment in all trials with high dosages of concentrate supplementation.

References

30. Hassan SA, Saeed AA. Effect of feeding different levels of dietary protein and addition of baker's yeast (Saccharomyces cerevisiae) on Awassi lambs

57. Saeed AA. Effect of level and degradability of dietary protein fed without baker's yeast (Saccharomyces cerevisiae) on Turkish a wassi lamb's...

