Phenotypic and genotypic characterization of macrolide resistance in *Staphylococcus aureus* isolates from wound infection

Haider Abdul-Amir Ali
Department of Biology, College of Science, University of Basrah, Iraq

Saad Shakir Mahdi Al-Amara
Department of Biology, College of Science, University of Basrah, Iraq
*Corresponding author email: saad.mahdi@uobasrah.edu.iq

Abstract—Microbiologists are increasingly concerned about the rise in *S. aureus* MLS\(_B\) (macrolide, lincosamide, streptogramin B) drug resistance. Clindamycin has been effective in treating infections by *S. aureus*, and the variations in clindamycin sensitivity patterns cause treatment to fail. Inducible clindamycin resistance in *S. aureus* is expressed via erythromycin ribosome methylase genes. In the current study, 25 *S. aureus* isolates were identified by conventional chemical tests and the Vitek\(^\text{®}\)2 system. Specific primers were used for the amplification of Macrolide genes by PCR. Among 25 *S. aureus* isolates, 23\(92\%\) isolates were methicillin resistant and 2\(8\%\) isolates were methicillin sensitive. The 5\(20\%\) isolates showed resistance to Erythromycin and sensitivity to Clindamycin with a positive D test which was identified as inducible MLS\(_B\), while 2\(8\%\) isolates showed resistance criteria for both Erythromycin and Clindamycin which identity as a constitutive MLS\(_B\) and 18\(92\%\) isolates were given the sensitivity for both Erythromycin and Clindamycin. The *erm* resistance genes (*ermA, ermB, ermC, ermF, and ermG*) were detected in 5\(20\%), 17\(68\%), 25\(100\%), 24\(96\%), 11\(44\%)\) respectively. The D-test, and Vitek \(*2\) system should be routinely done to avoid treatment failure due to clindamycin resistance.

Keywords—D- test, *erm* genes, MRSA.

Introduction

Antibiotics of the MLS\(_B\) family are frequently used to treat staphylococcal infections. But due to their extensive use, MLS\(_B\) antibiotics have seen an increase
in the number of staphylococcal strains that are developing resistance to them (Anon et al., 2020). A class of protein synthesis inhibitors with a broad spectrum of activity is known as macrolides (Mokta et al., 2015). The antibiotics known as macrolides included (erythromycin, clarithromycin, azithromycin), lincosamides (clindamycin) and streptogrammins B (quinupristin) (MLS₉) they are associated microbiologically because of their comparable modes of action (Kow and Hasan 2020). Macrolides inhibit protein synthesis by attaching to the bacterial 50S ribosomal subunit’s 23S ribosomal RNA, which causes unstable growth of the peptide chain by inhibiting translocation (Bhomi et al., 2016).

Three different mechanisms of resistance of MLS₉ antibiotics in staphylococci; The first mechanism is modification of the ribosomal target and is encoded by erythromycin ribosome methylase (erm) gene which drives to the forming of enzyme methylase (Modukuru et al. 2021). The enzyme attaches one or two methyl groups to the adenine residue in 23S rRNA of the 50S ribosomal subunit and preventsthe binding of MLS₉ antibiotics to their ribosomal targets (Sarrou et al., 2019; Ferreira et al., 2021). The resistance in the S. aureus isolates is due to the MLS₉ antibiotics which are possible to be inducible (iMLS₉) or constitutive (cMLS₉) constitution. In the situation of inducible MLS₉ resistance, the bacteria synthesized non-functional mRNA which is not capable of encoding methylase (Heyar et al. 2020). Therefore, solely in the presence of a macrolide inducer mRNA could be activated.

On the contrary in cMLS₉ resistance, functional methylase mRNA is all the time synthesized even in the lack of an inducer. The strains with cMLS₉ are nonsensitive to erythromycin and clindamycin whereas strains with iMLS₉ phenotype are resistant to erythromycin and sensitive to clindamycin in-vitro (Moosavian et al., 2014 ; Papkou et al., 2020). The second mechanism of resistance involves an efflux system that encodes the macrolide streptogramin B resistance (msrA) gene. The msrA gene gives rise to resistance to macrolides and streptogramin B antibiotics (Grgičević et al., 2020). The third mechanism involves enzyme inactivation of antibiotics such as hydrolase, phosphotransferase, nucleotidyltransferase, and lyases (Keenan et al., 2019). Therefore, current researchused the D-test Vitek ®2 system, and PCR to detect the frequency of inducible clindamycin resistance among S.aureus isolated isolates from different wounds amples from Al-Basrah governorate, Iraq.

Materials and Methods

Collection of specimens

From October - 2021 to January - 2022, a total of 200 samples in the current study were collected from wound patients that were distributed (50 surgical wounds, 50 burn wounds, 50 gunshot wounds, and 50 broken bones injured) from Al Basrah Teaching and Al Sadder Teaching Hospital in Al-Basrah governorate, Iraq.
Isolation and Identification

The traditional laboratory procedures such as colony morphology, catalase test, slide and tube coagulase testing, and growth on Mannitol Salt agar were used to identify the S. aureus isolated. The confirmed identification was done by the Vitek ®2 system.

Antibiotic susceptibility test

Antibiotic susceptibility testing was performed by the Kirby Bauer disk diffusion method by using cefoxitin (30 µg), oxacillin (1 µg), erythromycin (15 µg), clindamycin (2 µg), Azithromycin (15 µg), and interpreted according to CLSI - (2018) guidelines.

Phenotypic detection of Methicillin resistance

Methicillin resistance was detected by using Cefoxitin (30µg) diskdiffusion (CDD) method, according to CLSI - (2018) guidelines.

Constitutive and inducible clindamycin resistance

Erythromycin (15 µg), and (2 µg), and clindamycin antibiotic disc was used to detect inducible and constitutive resistance to clindamycin according to guidelines of CLSI - (2011, 2012, and 2013), (Nikamet al., 2017 ; Arjyal and Neupane 2020).

Genotypic detection of erm genes

Extraction of Bacterial DNA

Genomic DNA was extracted from the bacterial isolates by using the DNA Presto Mini g DNA Bacteria kit (Geneaid, USA), then DNA bands were detected by using agarose gel electrophoresis (1%).

Detection of Macrolide and lincosamides Genes

Results

From 200 samples that were collected between October 2021 to January 2022, 58 (29%) samples revealed a positive bacterial growth, whereas 142 (71%) samples revealed a negative bacterial growth. The positive culture was distributed to 25 (43.1%) isolated was S. aureus and 33 (56.9%) isolates for different bacterial species include *Psedomonase spp.* 16 (48.5%), *Staphylococcus spp.* 6 (18.18%), *Klebsiella spp.* 5 (15.2%), *E.coli* 4 (12.12%) and *Proteus spp.* 2 (6%) (Fig.1).
The results of the antibiotic-resistant test was showing that 23 (92%) *S. aureus* isolates were methicillin-resistant while 2 (8%) were methicillin-sensitive. The 5 (20%) isolates showed resistance to Erythromycin and sensitive to Clindamycin with positive D test which was identify as inducible MLSB (iMLS\(_B\)). While the 2(8%) isolates were showed resistance criteria for both Erythromycin and Clindamycin which identify as a constitutive MLS\(_B\) (cMLS\(_B\)). Additionally, the 18 (92%) isolates were given the sensitivity for both Erythromycin and Clindamycin Table (1). The resistance encoding genes *ermA, ermB, ermC, ermA, ermF, and ermG* genes results was showed 5 (20%), 17(68%), 25 (100%), 24 (96%), 11 (44%) respectively.

<table>
<thead>
<tr>
<th>Susceptibility pattern</th>
<th>Phenotype</th>
<th>Number & Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERY resistant and CLI sensitive with (D test negative)</td>
<td>MS phenotype</td>
<td>–</td>
</tr>
<tr>
<td>ERY resistant and CLI sensitive with (D test positive)</td>
<td>iMLS(_B) phenotype</td>
<td>5(20%)</td>
</tr>
<tr>
<td>ERY resistant and CLI resistant</td>
<td>cMLS(_B) phenotype</td>
<td>2(8%)</td>
</tr>
<tr>
<td>ERY sensitive and CLI sensitive</td>
<td>_</td>
<td>18(72%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25 100%</td>
</tr>
</tbody>
</table>

Discussion

The emergence of drug resistance in methicillin resistance *S. aureus* (MRSA) has resulted in the widespread usage of antibiotics such as macrolide, lincosamide, and streptogramin B (MLS\(_B\)). The extensive use of MLS\(_B\) antibiotics in severe *staphylococcal* infections has resulted in an outbreak of *S. aureus* resistance to MLS\(_B\) antibiotics (Ghanbari et al. 2016). The macrolide antibiotics, which act as
protein synthesis inhibitors, are often used to treat *staphylococcal* infections. Resistance mechanisms against macrolides include alteration of the ribosomal binding site encoded by the *erm* genes has been found that confers resistance to MLSB (Nezhad et al. 2017 ; Sarrou et al. 2019). The study by Bazzi et al., (2017) reported the Vitek ® 2 system was demonstrated to be a method for evaluating the accuracy and speed of direct identification and antibiotic susceptibility testing, also the study by Al-Amara, (2022) was reported Among 28 CoNS isolated, the *S. aureus* 11(39.29%), *Staphylococcus epidermidis* 7(25 %), *Staphylococcus haemolyticus* 4(14.29%) and *Staphylococcus saprophyticus* 3 (10.71%) were predominant isolated species. Out of 28 CoNS isolates, 15(53.57%) were methicillin resistant coagulase-negative staphylococci (MRCoNS) isolates and 13(46.43%) were methicillin sensitive coagulase-negative staphylococci (MSCoNS) isolates. The 15(53.57%) isolates out of 28 CoNS, showed erythromycin resistance while 6(40%) isolates out of 15 CoNS, showed inducible macrolide-lincosamide-streptograminB (iMLSB) and 2(13.3%) of CONS isolated showed constitutive macrolide-lincosamide-streptogramin B (cMLSBI)

Clindamycin is an excellent and preferred agent to treat superficial infections with *S. aureus* and a preferred antibiotic in patients allergic to penicillin. Resistance to clindamycin in *S. aureus* strains with inducible phenotype may be reported as sensitive if not tested by D-test giving a false sensitive report which could result in treatment failure and also the emergence of constitutive *erm* mutants (Modukuru et al. 2021). The CLSI proposed in 2013 that the D-zone test, a phenotypic approach, be used to screen for inducible clindamycin resistance. All erythromycin-resistant *S. aureus* is also recommended for testing of inducible clindamycin resistance to clindamycin treatment failures and reporting of prevalence-resistant phenotypes (Jha et al. 2019).

In the present study, the result of MLSB was shown the prevalence of iMLSBI followed by cMLSB and not detected any isolated handling of the MS resistance when tested by using the phenotypic method. PCR investigation for detecting the macrolide antibiotics resistant genes was shown the *ermC* genes as dominant in all isolates, followed by *ermF*, *msrA*, *msrB*, *ermB*, and *ermG* in 25 (100%), 24 (96%), 17 (68%), 11 (44%) and, 5 (20%) respectively. The variable presence of erythromycin resistance may explain differences in the prevalence rate of different investigations of MLSB resistance genes (Khoshnood et al. 2019)

The D-zone test results in the study of Fasihi et al., (2017) revealed the inducible clindamycin resistance in 12.5% (21/170) and *S. aureus* were harboring *mecA, erm(A), erm(B),and erm(C) (39.5% (69/170), 11% (19/170), 3.5% (6/170), and 20.5% (35/170)) respectively. The study by Ghanbari et al.; (2016) reported the frequency of cMLSB, and iMLSB phenotypes as 58 (26.9%), and 9 (4.18%) respectively. Furthermore, the frequency of *ermC*, *ermB*, and *ermA* genes among *S. aureus* isolates with iMLSB was 44.4%, 22.2%, and 11.1% respectively. In a study by Khashei et al.; (2018) it had been detected that the prevalence of cMLSB and iMLSB phenotypes in *S. aureus* isolated from various clinical samples was 29 (82.9%) respectively. Also identified were the predominant *ermC* genes in 29 (82.9%), and *ermA* genes in 20 (57.1%). In Iran the study of Khoshnood et al., (2019) revealed that the MRSA isolates were examined for the presence of *ermB, ermA, and ermC* genes as the primary cause of macrolide resistance.
occurrence rates of, \textit{ermA}, and \textit{ermC} genes in MRSA isolates were 28 (46.7%), and 22 (36.7%), respectively. Also, The study by Cevahir and Kaleli, (2015) found that among 120 \textit{S. aureus} isolates, 85 (70.8%) were methicillin-resistant \textit{S. aureus} (MRSA), and 35 (29.2%) were methicillin-sensitive \textit{S. aureus} (MSSA). The tested isolates contained resistance genes, including \textit{ermA} (26.7%), \textit{ermB} (10.8%), \textit{ermC} (11.7%).

The study by Goudarzi, Eslami, et al., (2019) found among 120 \textit{S. aureus} isolates, 85 (70.8%) were methicillin-resistant \textit{S. aureus} (MRSA), and 35 (29.2%) were methicillin sensitive \textit{S. aureus} (MSSA). The tested isolates contained resistance genes, including \textit{ermA} (26.7%), \textit{ermB} (10.8%), \textit{ermC} (11.7%). Also, The study of Elsayed et al., (2019) demonstrated the high antimicrobial resistance of the investigated isolates. A total of 20 methicillin-resistant \textit{S. aureus} (MRSA) isolates. The 12 MRSA isolates harbored the methicillin resistance genes \textit{mecA} 9/12 (75%). The distributions of \textit{erm(A)}, \textit{erm(B)}, \textit{erm(C)}, \textit{erm(F)}, and \textit{erm(G)} were 8/12 (66.7%), 5/12 (41.7%), 12/12 (100%), 2/12 (16.7%), and 0/12 (0.0%) respectively.

Conclusions

The D-test, and Vitek 2 system should be routinely done to avoid treatment failure due to clindamycin resistance. In addition, the PCR technique should be performed for the detection of genes responsible for erythromycin resistance as it is a quick and most sensitive method.

Acknowledgments

This work was supported by the Department of Biology, College of Science, University of Basrah, Iraq. The author declares that they have no competing interests.

References

Isolates from Tertiary Care Hospital, Bettiah, India.” International Journal of Contemporary Medical Research [IJCMR] 6(11): 1–5.