Benefits of Fatimah grass for women's health

Amik Rahayu Wahyudi
Department of Midwifery, Graduate School, Hasanuddin University, Indonesia

Andi Nilawati Usman
Department of Midwifery, Graduate School, Hasanuddin University, Indonesia
Corresponding Author email: andinilawati@pasca.unhas.ac.id

Deviana Riu
Department of Pathology Clinic, Faculty of Medicine, Hasanuddin University, Indonesia

Mardiana Ahmad
Department of Midwifery, Graduate School, Hasanuddin University, Indonesia

Prihantono
Department of Microbiology, Faculty of Medicine, Hasanuddin University, Indonesia

Sri Ramadhani
Department of Pathology Clinic, Faculty of Medicine, Hasanuddin University, Indonesia

Abstract---Introduction: Traditionally, fatimah grass water bath is consumed to help induce labor, but until now there is not enough scientific evidence regarding its safety. Although there are many studies that explain the benefits of Fatimah grass for the female life cycle. For this reason, understanding the benefits of Fatimah grass scientifically for women's life cycles is very important. Methods: The author searches for articles from the databases: PubMed, Scient Direct, MDPI, Google Schololar, Research Gate, and Semantic Scholar published from January 2007 to May 2021 to find out potential studies that are appropriate and meet the inclusion criteria requirements. From the six electronic databases, 47 articles were identified and reduced to 27 relevant articles. The authors summarize the sample size, study design, research results, conclusions, and recommendations. The keywords used are: 'Fatimah grass' or 'kacip Fatimah' or 'Labisia pumila' or 'Benefits of Labisia Pumila For Women' or 'fatimah grass and its benefits' Results: The authors identified 27 relevant articles that were significantly related to the content of phytochemicals that are beneficial to health, such as the content of...
flavonoid compounds, saponins, phenolics, phytoestrogenics or natural estrogen benzoquinones, alkenyls. In vitro studies show that Fatimah grass extract with ethanol can increase the hormone oxytocin and alkaline phosphatase secretion. Conclusion: The many phytochemical benefits of the Fatimah Grass plant include antioxidant, anti-inflammatory, antimicrobial, and produce the hormone estrogen which can be used as hormone replacement therapy (HRT), estrogen replacement therapy (ERT) for postmenopausal women.

Keywords---Fatimah Grass, review, Fatimah Grass, Women's Health.

Introduction

Indonesia is a country rich in biodiversity. There are about 30,000 plant species (species) that have been identified and 950 plants are known to have biopharmacological functions or benefits, which have potential as food and medicine. Some tribes in Indonesia still entrust their health naturally by utilizing existing plants. Of the many plants, the most frequently used by Indonesian women is Fatimah grass (labisia pumila/ kacip fatimah) Anastatica Hierochuntica, a plant from the Myrsinacea family 1. Traditionally, Fatimah grass soaks from the dried roots, stems and leaves are consumed by women to assist in labor induction, however, until now there is not enough scientific evidence regarding its safety, the mechanism that forms the basis for facilitating labor induction and the dose of use, safety. So that medical personnel forbid its use for fear of causing uterine atony and uterine rupture.

Previous research has proven the effects of fatimah grass water immersion, including increasing the hormone oxytocin, antioxidant, anti-inflammatory, reducing the risk of dyslipidemia, phytoestrogenics, skin collagen synthesis, playing a role in the process of estrogen hormone therapy in menopause, improving lipid profiles, therapy for dysentery, dysmenorrhea2,3,4,5. Therefore, the use of Fatimah grass soaking water is still used today because it is considered to have great benefits, especially for women who are more interested in herbal or natural medicines. So understanding the benefits of consuming fatimah grass scientifically is very important.

Apart from the various benefits of fatimah grass that have been known in the health sciences, there are only a few studies that systematically examine the prevalence and biological activities of Fatimah grass in the health sector, especially for women's health. The research questions that guide this review are: "What are the benefits of Fatimah Grass in the female life cycle, what chemical classification and biological activities does Fatimah Grass have?".

Method

The author obtained articles from the PubMed, Scient Direct, MDPI, Google Scholar, Research Gate, and Semantic scholar databases to find out which potential studies were appropriate and met the requirements as inclusion criteria.
This review discusses articles published starting from 2007 to May 2021, articles published in English and Indonesian. The keywords used are: 'Fatimah grass' or 'kacip Fatimah' or 'Labisia pumila' or 'Benefits of Labisia Pumila For Women' or 'fatimah grass and its benefits' The search was conducted from April to June 2021.

The authors adopted the scoping review methodology by Arksey and O'Malley. Scoping review is a descriptive literature review by mapping key concepts in a particular literature area. Therefore, the authors use a five-step approach to conducting a scoping review: 1) Identify the research question (see Introduction); 2) Identify relevant studies; 3) Select relevant studies; 4) Mapping data; and 5) Compile, summarize, and report the results.

Identify relevant studies

Several electronic databases were searched to identify studies relevant to June 2021: PubMed, Scient Direct, MDPI, Google Schoolar, Research Gate, and Semantic Scholar. The keyword selected in the search is 'fatimah grass' (and its variations, for example, labisia pumila, fatimah grass benefits, fatimah grass phytochemicals). The search strategy is customized for each database and title. A total of 47 articles were identified as PubMed: 5, Scient Direct: 10, MDPI:2, Google Schoolar:16, Research Gate:4, and Semantic scholar: 10. Removing articles deemed irrelevant reduces the number of articles to 36 eligible for title and abstract review. Articles were evaluated with the following inclusion criteria: 1) Articles must discuss the fatimah grass (eg studies involving the phytochemicals of fatimah grass, labisia pumila, but articles on the toxicity of Fatimah grass were excluded). 2) Articles must report specific results about the benefits of Fatimah grass that can be taken; and 3) Articles are available in full-text. A total of 27 articles met these criteria (figure 1).

Mapping data

The author extensively went through the spreadsheet to identify inclusion criteria and select articles. A review was carried out on several articles that had met the inclusion criteria and data were extracted and mapped related to chemical classification, research design, interventions provided, research results, and biological activities. The authors reviewed all the data reported in Tables 1 and 2.

Result

The final result of the review where the identification process has been carried out, there are 27 review articles that are included. Several electronic databases were searched and relevant studies were identified until June 2021: PubMed, Science Direct, Google Schoolar, MDPI, Research Gate, Semantic scholar. This article reports the results of laboratory analysis and discusses the benefits of Fatimah grass.

Regarding the research location, 27 studies were spread over 2 countries. The studies were from each of the following countries: Twenty-one studies were conducted in Malaysia 1, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 21, 22, 23, 24,
25, 26, 27, 28, and Indonesia 3, 4, 9, 14, 19, 20. See Figure 1 for details on study settings.

Figure 1. Search strategy flowchart

After searching for journals in PubMed, Science Direct, Google Scholar, MDPI, Research Gate, Semantic scholar, several journals were screened according to inclusion and exclusion criteria. So there are 27 research articles that are relevant to the research objectives. The 27 research articles are reviewed in table 1.

Favonols, Phenolic acids (benzoic and cinnamic acid) and skin collagen synthesis promoting herb, *Filatropia (Malaysia)*, 2012.

Pumila Labisia Extract

EIAA Laboratory observations

The extract has been shown for its growth-promoting efficiency in human skin fibroblasts and keratinocytes.

Antioxidant, anti-inflammatory and immune deficiency, skin collagen synthesis. Anti-aging/anti-aging

Pure estrogen

Experiment with Post Only Control Group Test

The sample was 20 pregnant BabB/C mice which were randomly divided into 4 groups (group control, P1, P2, P3, and P4)

P1 was administered on day 18 ± 20 of gestation. P2 was administered on day 16 ± 20 of gestation, and P3 was administered on day 14 ± 20 of gestation. On day 20th the mice were hysterecetomized, the uterus was taken and histology slides were made (stained with HE) and read in 5 fields of view.

The first group had false surgery (Sham), second group ovarioctomized (OVX), third group (P1), and fourth group (P2).

Laboratory histological observations

ANOVA

Compared with the control, P1 showed no significant difference in uterine gland damage (p>0.213). P2 showed no significant difference in uterine gland damage (p>0.019). P3 showed a non-significant difference in uterine gland damage (p>0.070).

Antioxidant and Anti-cancer

Phenolic flavonoids, saponins, Gallic acid, pyrogallol, epicatechin, look up, diacetylenic, quercetin, myricetin

Experimental design

Seedlings that are healthy and the same in terms of the number of leaves are selected, cleaned, separated, dried and stored for further analysis. The experiment lasted for 15 weeks.

EIAA Kit Laboratory histological observations

Phenolic content increased in leaves and stems of Betula pendula growing below 700 mol mol-1CDI.

Antioxidant and Anti-cancer

Phenolic flavonoids

Experimental Design Sample: Labisia Pumila

The leaves, stems and roots of L. pumila Benth were cleaned, separated, and freeze-dried for further analysis.

Extract preparation. The dry crude extract was weighed and dissolved in methanol and stored at -20°C for further experiments.

ANOVA

Leaves of L. pumila var. Alata contains antioxidants (2.65 mg gallic acid equivalent/g DW) of var. pumila (2.56 mg gallic acid equivalent/g DW) and var. lancet (2.44 mg gallic acid equivalent/g DW).

Antioxidant and Anti-cancer

Estragon, Haen.. Experimental samples; Test animal mice

Pregnant mice were divided into three groups: (1) control group, treated with 0.5% CMC solution, 3.0 mg/kg bw/day; (2) two treatment groups were given extracts of A. hierochuntica at a dose of 100 mg/kg bw/day each. Urine tissue

EIAA Kit ANOVA Analysis

Doses of 100 mg/kg bw/day had a greater effect on myometrial hypertrophy than 150 mg/kg bw/day, resulting in higher levels of PGE2 and PGF2a.

Increased levels of Prostaglandin
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Study Design</th>
<th>Results/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nourhashemi MN et al</td>
<td>Efficacy and Safety of Fabilaba Pumila var. variegata Water Extract Among Pre- and Postmenopausal Women. (Malaysia, 2014)</td>
<td>Double-blind, placebo-controlled, parallel groups. Samples: pre and postmenopausal healthy women aged 40-60 years. A total of 197 subjects.</td>
<td>A total of 197 subjects were analyzed. (L. pumila, 100; placebo, 95). Showing the baseline demographic characteristics of L. pumila and placebo groups there was no significant difference between two groups.</td>
</tr>
<tr>
<td>Van Meersberge et al</td>
<td>Beneficial metabolic effects of the traditional herb Labilisa pumila var. variegata in a rat model of polyethylene glycol induced diabetes. (Malaysia, 2009)</td>
<td>True experimental design, post test only control group design. Sample: rat test animals with FGOS.</td>
<td>At 9 weeks of age, FGOS mice were randomly divided into two groups; FGOS Control, Labilisa Pumila var. variegata (Lpvs) and FGOS Lpvs mice received daily oral dose of FGOS (50 mg/kg body weight) for 4-6 weeks. Female rats and divided into 3 groups. Fat mass index was given for 8 weeks and administered using a probe with different doses, namely 20, 40, 60 mg/kg/BW/day, and 90 mg/kg/BW/day.</td>
</tr>
<tr>
<td>Mariati, N.</td>
<td>Effects of Giving Fatimah Grass Extract (Labilisa Pumila) on Serum Cortisol and Urine Deoxycorticosterone in Post Menopausal Rats. (Malaysia, 2013)</td>
<td>True experimental design, post test only control group design. Sample: Female rats and divided into 3 groups.</td>
<td>The average (deoxyribonucleic acid) expression was highest in the group given fatimah grass extract with a concentration of 40 mg/kg/BW/day. The lowest average expression of osteocalcin was given fatimah grass extract with a concentration of 20 mg/kg/BW/day. Biochemical properties of LP were antioxidant plants grown in vitro, and callus L. pumila var. alata is the best source of antioxidants.</td>
</tr>
<tr>
<td>M. Yunus et al.</td>
<td>Shoot Multiplication and Callus Induction of Labilisa pumila var. variegata as influenced by Different Plant Growth Regulators and to Preliminary Activities Compared with the Wild Plant. (Malaysia, 2013)</td>
<td>In vitro Experimental Design. Sample: labus pumuli for 4 weeks and subcultured at 4 weeks intervals before the next experiment.</td>
<td>The average weight loss of female white mice after treatment was 4.06 mg/kg/BW.</td>
</tr>
<tr>
<td>Marini et al.</td>
<td>Kacip Fatimah Extract as a Postpartum Uterine Recovery Material. (2019)</td>
<td>Laboratory experimental design randomized post test only control group design. Sample: 28 female “mus musculus” mice were obtained using the Abo Cronzali formula.</td>
<td>Drying fatimah grass material, making ethanol extract, chemical content analysis and treatment by giving fatimah grass extract orally to post partum female white mice with doses of 250, 350, 500, 750, 1000, and 1500 mg/kg/bw.</td>
</tr>
<tr>
<td>Effendi NM. et al</td>
<td>Time and Dose-Dependent Effects of Labilisa pumila on Bone Osteoblast Status of Postmenopausal Osteoporotic Rat Model. (Malaysia, 2014)</td>
<td>in vitro experimental design. Sample: Ninety-six female Sprague-Dawley rats were randomly assigned into six groups, characterized (DVA) and given 64.5 g/kg Premarin (ERT), ovariectomized and given 20 mg/kg ERT (LP2) and ovariectomized and given 100 mg/kg LP (LP00).</td>
<td>Laboratory observations</td>
</tr>
<tr>
<td>Abdullah N. et al.</td>
<td>Labilisa pumila at Review on its Traditional Phytochemical and Biological Uses. (Malaysia, 2013)</td>
<td>Experimental Design in vitro. Sample using text animal.</td>
<td>Laboratory observations</td>
</tr>
<tr>
<td>Hermann RK. et al.</td>
<td>Effect of Giving Water of Fatimah Grass (Asanatica hierochuntica) Toward The Level of Estrone, Hormone and Pregnant Albino Rats (Rattus norvegicus). (Accts, 2017)</td>
<td>Experimental design with the Post Test Only Control Group design. The sample consisted of 24 pregnant white rats</td>
<td>EUSA Kit</td>
</tr>
<tr>
<td>Rakhmonova NM. et al.</td>
<td>Pharmacological Action of Fatimah Grass (Asanatica hierochuntica) Toward The Level of Estrone, Hormone and Pregnant Albino Rats (Rattus norvegicus). (Accts, 2017)</td>
<td>Experimental design with the Post Test Only Control Group design. The sample consisted of 24 pregnant white rats</td>
<td>EUSA Kit</td>
</tr>
</tbody>
</table>
Scientific research on Fatimah Grass or Labisia Pumila was conducted to identify bioactive phytochemicals that contribute to its pharmacological properties. The
chemical classification study identified flavonoids, isoflavonoids, estrogens, galic acid, benzoquinoids and phenolic compounds as bioactive ingredients in the plant extracts of Grass Fatimah or Labisia Pumila. Phytochemical assessment was carried out using in vivo rodent tests, with different doses at mg/kg body weight, fatimah grass extract showed potential bioactive phytochemicals. Clinical trials in humans have also been carried out, although still limited, to show that this plant extract is safe from a hematological and biochemical profile. Long-term studies are needed to assess the safety of consuming Fatimah grass plant extracts (Table 1).

Table 2. Biological Activity of Fatimah Grass

<table>
<thead>
<tr>
<th>Biological Activity</th>
<th>Supporting Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Oxidant</td>
<td>1, 5, 7, 8, 10, 11, 15, 16, 17, 18, 24, 26, 28</td>
</tr>
<tr>
<td>Anti Inflammation</td>
<td>1, 5, 6, 7, 12, 17, 18, 23</td>
</tr>
<tr>
<td>Uterotonic Agent</td>
<td>3, 19, 22</td>
</tr>
<tr>
<td>Anti Osteoporosis</td>
<td>20, 27</td>
</tr>
<tr>
<td>Anti-estrogenic</td>
<td>8, 13</td>
</tr>
<tr>
<td>Anti-Cancer, Anti-Tumor</td>
<td>10, 18</td>
</tr>
<tr>
<td>Anti Aging</td>
<td>8</td>
</tr>
<tr>
<td>Anti-Microbial, Anti-Fungal</td>
<td>18</td>
</tr>
<tr>
<td>Bronchodilators</td>
<td>17</td>
</tr>
<tr>
<td>Vasorelaxant Effect</td>
<td>21</td>
</tr>
<tr>
<td>Cardioprotective Effect</td>
<td>25</td>
</tr>
<tr>
<td>Lowering osteocalcin levels</td>
<td>14</td>
</tr>
<tr>
<td>Increase Prostaglandin levels</td>
<td>4</td>
</tr>
</tbody>
</table>

Assessment of biological activity was carried out in 27 studies using in vivo rodent tests and clinical trials in humans, although still limited. There are 13 biological activities that have been identified, including anti-oxidant, anti-inflammatory, uterotonic agent, anti-estrogen, anti-cancer, anti-osteoporosis, anti-aging, antimicrobial, anti-fungal, anti-tumor, bronchodilator, vasorelaxant effect, cardioprotective effect, and increased osteocalcin levels. The most widely reported biological activities were: Anti-oxidant 1, 5, 7, 8, 10, 11, 15, 16, 17, 18, 24, 26, 28; anti-inflammatory agents 1, 5, 6, 7, 12, 17, 18, 23 and uterotonic agents 3, 19, 22. (Table 2).

Phytochemicals, Teratogenicity

In vitro and in vivo studies report the content of bioactive phytochemicals consisting of phenolic compounds, flavonoids, saponins, alkenyls and benzoquinones, research conducted by Abdulllah et al., (2013) which functions as follows.
1. **Antioxidant and anti-inflammatory**

There are phenol levels ranging from 2.53 to 2.55 mg/g in various types of fatimah grass. Flavonoids or polyphenols, have potential as anti-allergic, antiviral, anti-platelet, anti-diarrheal, anti-inflammatory and anti-tumor properties. Phenolics are compounds that have antioxidant potential, phenolic acids are easily absorbed by the digestive system and are useful as anti-aging compounds.

Based on Karimi, Jaafar and Ahmad (2011) reported that saponins have medicinal properties including anticarcinogenic, hypocholesterolemic, anti-inflammatory, antioxidant and antimicrobial activity. In the roots, stems and leaves of Fatimah grass has one of the saponin compounds, namely triterpenoids, Ardisicrenoside B and ardis-iacrispin A, 3-O- which have functions as anti-cancer, anti-bacterial, and anti-neoplastic.

Antimicrobial

Alkenyl resorcinol which in fatimah grass includes groups (Z) -5- (pentadec-4-enyl) -resorcinol, (Z) -5- (pentadec-8'-enyl) -resorcinol and (Z) -5- (pentadec10 `-enyl)-resorcinol based on an epidemiological study conducted by Al-Wahabi., et al., was reported to be useful in the treatment of gastrointestinal cancer as well as cardiovascular disease. Meanwhile, Karimi E et al., (2011) reported that benzoquinone derivatives in the leaves and roots of fatimah grass have antibacterial benefits.

To assess the dose range by assessing the teratogenic potential of the fatimah grass water immersion extract administered to pregnant rats Sprague Dawley, with doses of 0 in the control group, and 2, 20, 200, 400, 1000 mg/kg/day in the treatment group. Administration started on day 6 to day 16 of pregnancy and was started to be given or sacrificed on day 21 of pregnancy. The results of the study said that there was no significant effect except in the administration of low-dose extract (2 mg/kg/day) there was a change in body weight in pregnant rats Sprague Dawley.

Statistically, uterine weight in pregnant rats tested, number of live fetuses, number of implantation sites, percentage of fetal resorption, number of corpora lutea, fetal weight and fetal sex ratio did not show any significant differences. The conclusion is that the water extract of fatimah grass soaked statistically up to 1000 mg/kg/day did not show any significant toxic or teratogenic effect.

Benefits and Effects of Fatimah Grass in the Life Cycle of Women

Changes in the Amplitude of Uterine Contractions

Fatimah grass is a natural ingredient that contains natural estrogen or is called phytoestrogenic which has natural estrogen-containing activity, Fatimah grass has a Calcium membrane that is able to increase the synthesis of connexin 43 and form gap junctions in the myometrium which is much needed. In intracellular communication, it can also stimulate the production of prostaglandins F2 E and E2 which can function as stimulants for uterine contractions.
In previous studies conducted on experimental animals, namely female Sprague Dawley rats, weighing 150-250 grams, aged 10-14 weeks in the estrus phase (the physiological state of female animals ready to accept mating with male animals), subjects were divided into 5 groups given orally using a pipette, among others, in group 1, namely the control group (given water solvent), group 2 (given estradiol), group 3 (given 10 grams of fatimah grass root decoction (labisia pumila), group 4 (given 20 grams of fatima grass soaking water).) and group 5 (given 40 grams of fatima grass soaking water) as shown in Figure 2.

Figure 2. Changes in the amplitude of uterine contractions

Information:
K = Control group
Estr = estradiol group
RF = Fatima grass

Nani (2009) found that the fatimah grass group was given a concentration of 20 grams of grass water that had been soaked in 350 cc of water at an initial temperature of 70°C. The results showed an increase in the response of the uterine muscles to oxytocin stimulation. Fatimah grass increases the number of oxytocin receptors and -adrenergic agents that modulate calcium membrane channels. Fatimah grass is a natural ingredient that contains phytoestrogenics or natural estrogens.

Fatimah Grass Extract As A Postpartum Uterus Recovery Material

The main function of estrogen is to cause cell proliferation and tissue growth in the sex organs and other tissues related to the reproductive system. Estrogen (17α-estradiol) is a steroid hormone in women which functions for the development of the mammary ducts together with oxytocin and PGF 2α which can increase the frequency of uterine contractions. Estrogen with oxytocin has an effect on uterine contractions so that it is useful in accelerating the recovery of the postpartum uterus. Based on the results of studies that reported a positive correlation between the number of uterine oxytocin receptors and the concentration of estradiol.
Mitayani, (2019) reported that the average uterine weight loss of female white mice after the different treatments was 4.06 mg/kg/BW. Based on the statistical tests performed, it can be seen that the comparison of the control group with the treatment group at doses of 250mg/kg/BW and 500mg/kg/BW did not show any significant difference, where p>0.05. The difference will be seen significantly in the treatment group given a dose of 1000 mg/kg/BW and 1500 mg/kg/BW where p<0.05.

Treatment Effects of Serum Osteocalcin and Deoxyirydinolin Urine on Post Ovariectomy Rats

The study used ovariectomized rats, conducted at the Pharmacology and Physiology Laboratory, Faculty of Medicine, Universitas Brawijaya Malang, East Java. Reported the results that there was an increase in urinary deoxypyrididine and a decrease in serum osteocalcin in post-ovariectomized rats. Giving fatimah grass affects the expression of deoxypyridinolin about 53.46% and osteocalcin expression about 66.97%

The Effect of Fatimah Grass on Menopausal Women (Before And After)

Hussain., et al (2013) reported that a study was conducted on 63 pre and postmenopausal healthy women, the results showed that subjects given fatimah grass experienced an increase in concentration or memory. Indicates that the safety profile is normal and improvements are seen in cardiovascular parameters. Postmenopausal women who consumed fatimah grass did not show changes in gynecologically relevant hormones, folliculating hormone (FSH), luteinizing hormone (LH), and 17b-Estradiol. Water extract of fatimah grass is proven safe and very effective to improve quality of life parameters and lower risk factors for cardiovascular events (total cholesterol [TC] and density lipoprotein cholesterol [LDL-C])

Phytoestrogenic effects: fatimah grass is believed to have phytoestrogens that function as the main producer of sex hormones in women, especially the hormone estrogen. Phytoestrogens can be either isoflavones, or flavonoids and coumestans. An in vitro study conducted by Nor-Ashila Aladdin., et, al (2020) reported that the ethanolic extract of Fatimah grass root in estrogen-free basal media was able to increase the secretion of alkaline phosphatase in endometrial adenocarcinoma cells in humans. Several researchers also reported the results that fatimah grass plant extract has estrogenic properties that act as an estrogen receptor modulator.

Fatimah grass has the ability of extracts to modulate postmenopausal adiposity. This finding is based on the results of the observations of Ehsan Karimi.et, al (2016) who conducted in vivo research on ovariectomized rats. It was found that aqueous extract of fatimah grass (10-50 mg/kg/day) can modulate postmenopausal adiposity similar to the outcome of ERT treatment by initiating lipolysis in adipose tissue, thereby reducing symptoms of obesity or overweight. Plasma leptin from fatimah grass water extract was comparable in ovarian frequency that had received ERT treatment.
Manneras et al., (2009) reported the results of research that there is a promising effect of Fatimah grass. This has been proven from the body composition and metabolic picture of test rats that have been given dihydrotestosterone to be used as an induction of polycystic ovary syndrome (PCOS). It was reported that 50 mg/kg/day of water extract of fatimah grass increased insulin sensitivity by 36%, increased uterine weight by 27%, and increased lipid profile in PCOS without affecting body composition in mice.

Effendy et al., (2014) also report that giving Fatimah grass soaked water as much as 17.5 mg/kg/day can prevent osteoporosis after menopause. In addition, menopause always causes the aortic wall to become stiff. This stiffness of the aorta leads to the risk of cardiovascular disease.

Nadia Mohd Effendy et al., (2012) This study has confirmed that Labisia Pumila or Fatimah grass has the potential to reduce oxidative stress in postmenopausal rat models that lack estrogen and can increase anti-oxidative enzymes. Because the effect is comparable to that of ERT and the presence of a good safety profile, Labisia Pumila or Fatimah grass is reported to have the potential to be used as an alternative treatment for the prevention of postmenopausal osteoporosis. This is because the mechanism may be contributed by the anti-oxidative properties of Labisia Pumila or Fatimah grass. Dianita et al., (2016) also reported that the phytoestrogenic properties of fatimah grass can maintain the elasticity of the aortic architecture in ovariectomized mice.

Discussion

Based on reviews from several articles, it is known that Fatimah grass or Labisia Pumila has many bioactive phytochemicals that are beneficial to human health, especially for women’s health, as reported by Ehsan Karimi.et.al (2016) in the article Chemical composition, antioxidant and anticancer potential of Labisia pumila variety alata under CO2 enrichment that the benefits of Fatimah grass are very potential for cancer therapy and estrogen replacement therapy (ERT) which was carried out in an in vivo study on ovariectomized rats that had been given water extract of fatimah grass 17.5 mg/kg/day orally and 120 mg/kg/day as estrogen replacement therapy (ERT) as a positive control. It was found that aqueous extract of fatimah grass (10-50 mg/kg/day) can modulate post-menopausal adiposity similar to the outcome of ERT treatment by initiating lipolysis in adipose tissue, thereby reducing symptoms of obesity or overweight. Plasma leptin from fatimah grass water extract was comparable in ovarian frequency that had received ERT treatment.

In postmenopausal women are also very susceptible to osteoporosis, which results in discomfort in the body. Nurdiana, et al (2018) reported the Biological Activity of Fatimah grass that post-menopausal women can use to reduce serum osteocalcin levels so as to prevent osteoporosis. This was proven by the treatment of 25 female Wistar rats divided into five groups (n 5), treated with L. pumila extract of various doses (10 mg/kg; 20 mg/kg and 40 mg/kg) given every day for 8 weeks, proven with results to normalize osteoblastic bone formation in a mouse model of post-menopausal osteoporosis.
In terms of beauty, Fatimah grass extract also plays a very important role. It is interesting to know that aging can be slowed down only by consuming Fatimah grass extract. Meanwhile, by definition, aging is a time-dependent stage of progressive, intrinsic, cumulative, destructive functional and structural changes that usually begin at reproductive maturity or aging and eventually lead to death. The fact is that aging is a natural biological process, due to chronological genetic changes in the body. Endocrine is a system of organisms that will gradually degrade and change so that they reflect endogenous aging. Aging is also caused by environmental factors such as pollution, climate, disease, emotional stress, and ultraviolet radiation (UVA AND UVB) is a major factor in contributing to the onset of premature aging. Excessive exposure to ultraviolet radiation is very worrying living in the tropics. One of the most well-known methods to delay slow down the aging process of the skin is to improve the condition of the collagen in the skin layers. In a study reported by Chua, L. S. et al (2012), that extract of Labisia Pumila or Grass Fatimah can be a promoter of collagen synthesis that can restore pro-collagen skin that has been destroyed by ultraviolet radiation. In addition, the content of Phytotherapy Extract of Fatimah grass or labisia pumila allows it to reduce the secretion of inflammatory pro-cytokines. The biological activity of Fatimah grass as an anti-aging agent provides a protective effect and dermatological benefits, so that the appearance of aging can be slowed down. Thus, Fatimah Grass extract is very suitable for cosmetic purposes.

With modern management systems and the dissemination of correct information related to products, the dose of use and how to use fatimah grass extract can be the basis for changing the behavior of people who often use fatimah grass extract as a natural or traditional therapy for the birth process, even though scientific evidence applied to all biological activities is only studied in vitro using in vivo and cell lines in laboratory test animals and not yet in humans, it was proven in a study by Dianita, et al., 2016 reported that the serum of mice treated with LPva showed a significant reduction in serum aspartate aminotransferase (AST) levels. and abdominal aorta showed a significant reduction of atheroma lesions in treated rats, but this still requires further research in humans, so that the pharmacological potential of Fatimah grass can be utilized or used to its full potential. Although from several research results it has been reported very clearly that fatimah grass has many benefits and holds extraordinary potential for humans, especially for the life cycle of women for the future that needs to be discovered.

Conclusion

Fatimah grass or Labisia Pumila based on research results have proven to have many phytochemical benefits which have been identified to date and most of the researchers have reported or demonstrated beneficial biological activities of Fatimah grass plants such as antimicrobial, anti-inflammatory, antioxidant compounds, to maintain the reproductive system, and women's health. Therefore, fatimah grass extract has great potential to be used as the main ingredient in the cosmetic and pharmacology industry.
Reference

5. Azrie AM., Abdullah Luqman., Pin KY. Effect of solvents on the extraction of Kacip Fatimah (Labisia pumila) leaves Effect of solvents on the extraction of Kacip Fatimah (Labisia pumila) leaves. 2014;(January).

14. Mariati N. EFEK PEMBERIAN EKSTRAK RUMPUT FATIMAH (LABISIA PUMILA) TERHADAP OSTEOKALSIN SERUM DAN DEOXYPIRIDINOLIN URIN
15. M., at Yunus Najah 1, Hawa Z. E. Jaafar 1 JNJ 1 and MH. Shoot Multiplication and Callus Induction of Labisia pumila var. alata as Influenced by Different Plant Growth Regulators Treatments and Its Polyphenolic Activities Compared with the Wild Plant. 2021.

