Characterization of clinical and community acquired staphylococcus aureus, local isolates.

Ahmed J. Obaid*
Ministry of Health, Health Department, Wasit, Kut, Iraq
Email: ahmed99lab@gmail.com

Melad K. Mohammed**, Department of Biology, College of Sciences, University of Wasit, Kut, Iraq.
Email: jana.alawsy@gmail.com

Ahmed D. Jabbar***
Department of Biology, College of Sciences, University of Wasit, Kut, Iraq
Email: bio.ahmed@gmail.com

Abstract---It was found that 46.6% of S. aureus were collected from nose swabs followed by ear (41.6%) and catheter tubes (11.8%). Results showed the highest resistance 100% for both classes of Aminopenicillins (Amoxicillin), cephalosporins 3Gr (Cefotaxime, Ceftriaxone, and Cefexime, and Carboxypencillin, as well as one group as 93.5% for class the β-lactam combination agents (Amoxicillin/clavulanic acid). Many virulence factors and antibiotics resistance genes also being considered in this study, including erm, luk, hlg, fbl, Sea, MecA, seb, vat and tet. The highest frequency was in MecA genes 53 (88%) followed by sea genes 20 (33%), hlg and seb genes 18 (30%) for each one, erm genes 14 (23.3%) and luk genes 2 (3.3%), genes fbl, vat and tet were not detected in any isolate. Results shows no correlation concerning age, gender or the site of infection with either antimicrobial resistance or virulence factors genes.

Keywords---Staphylococcus aureus, antibiotic resistance, virulence genes, pathogenicity.

Introduction

One of the most aggressive antibiotic resistant bacteria strains is multidrug resistant Staphylococcus aureus as well as methicillin resistant ones (Gordon et al., 2021). Methicillin-resistant Staphylococcus aureus is a strain of Staphylococcus aureus that is resistant to beta-lactam antibiotics (Lowy , 2003). Over the last decade, the prevalence of S. aureus infections has apparently
increased due to higher rates of colonization, immunosuppression, a greater use of surgical implants, and dramatic increases in antibiotic resistance (Belthur et al., 2012 and Montanaro et al., 2011). The source of S. aureus as pathogens is still not fully diagnosed whether it is endogenous or exogenous particularly with regard to the extent of its resistance to antibiotics. Survey of literature showed little information about studies focused on the epidemiology of Staphylococcus infection of otitis media, and catheters contamination (Roemer et al., 2013). Hence, this project aimed to both evaluate the bacterial etiology of otitis media, catheters and the antibiotic resistance patterns of S. aureus and investigate the molecular features and genetic background of S. aureus from Wasit/Iraq to understanding the role of different virulence factors in the development of staphylococcal infections. These findings will certainly help to understand the pathogenicity and proper management, thus decreasing the improper use of antibiotics. This paper was intended to determine the prevalence of S. aureus and its resistance to antimicrobials and the presence of virulence genes.

Methods

Clinical samples were collected from 160 males and 30 females as controls. The emergence of private clinics carriers and four health care hospitals Workers like staff, nurses and in these hospitals from both Different genders and ages. Sterile scarves were worn during sample collection to prevent bacterial skin contamination. Nose samples (both frontal carvings) and Tonsils, ears and catheters were collected using sterility swabs are located in the mode of transported to the lab Immediately.

Samples and Processing

In this study, (190) samples were obtained. Samples were collected from 160 males and 30 females (tonsils, ear, nasal swabs and catheter tubes swabs were taken from operations Hall, Inpatient Hall, Recovery room). Each swab was carefully taken from the infection sites and placed in tubes containing ready-made medium to keep the swab moist until it was brought to the lab then inoculated on blood agar medium and Mannitol Salt Agar (MSA) and incubated at 37°C for 24 hr. to study profile, consistency of growing colonies, capability of blood hemolysis and MSA turns to yellow color. (Makinde et al., 2019).

Bacterial isolation

Samples collected were cultivated on MacConkey and blood agar, then incubated at 37°C for 24 h. When a growth appears on the blood and MacConkey agar, the samples are diagnosed by the shape, size, color, odor, beta hemolytic on blood agar, pigment production and also by oxidase and catalase test (positive). And then take single colony from growth to culture on cetrimide agar Base contain Nalidixic acid (is bactericidal and inhibits gram negative bacteria but pseudomonas aeruginosa is usually resistant) aerobically incubated overnight at 37°C. pseudomonas aeruginosa diagnosis on this media by growth with or without the production of the bluish green dye. Then all selected colonies were subjected to Catalase, Oxidase, Haemolysis, Clumping factor tests.
Detection of resistances and virulence genes:

All primers (listed in table 1) used in this study were synthesized by (AlphDNA/Canada) they were diluted to give (10 pmol/ul) as final concentration.

<table>
<thead>
<tr>
<th>Primer(s)</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mecA gene</td>
<td>F: ACGAGTAGATGCTCAATATAA R: CTTAGTTCTTTAGCGATTGC</td>
<td>Al-Talib et al 2009</td>
</tr>
<tr>
<td>erm</td>
<td>F: AAG CGG TAA ACC CCT CTG A R: TTC GCA AAT CCC TTC TCA AC</td>
<td>Roberts et al 2011</td>
</tr>
<tr>
<td>tet K</td>
<td>F: GTA GCG ACA ATA GGT AAT AGT R: GTA GTG ACA ATA AAC CTC CTA</td>
<td>Strommenger et al 2003</td>
</tr>
<tr>
<td>vat A</td>
<td>F: TGG TCC CGG AAC AAC ATT TAT R: TCC ACC GAC AAT AGA ATA GGG</td>
<td></td>
</tr>
<tr>
<td>hlg</td>
<td>F: GCC AATCCGTTATTAGAAAATGC R: CCATAGACGTAGCAACGGAT</td>
<td></td>
</tr>
<tr>
<td>luk-pv</td>
<td>F: ATCATTAGGTTAAAATGTCTGGACATGATCCA R: GCATCAASTGTATTGGATAGCAAAAGC</td>
<td></td>
</tr>
<tr>
<td>SEA</td>
<td>F: TTGGAAACGGTTAAAACGAA R: GAACCTTCCCATCAAAAACA</td>
<td></td>
</tr>
<tr>
<td>SEB</td>
<td>F: TCGCATCAAACTGACAACGC R: GCAGGTACTCTATAAGTGCC</td>
<td></td>
</tr>
<tr>
<td>fbl</td>
<td>F: GTAAATAGCGAGGCACAAGC R: GGTAATCGTATCTGCCGCT</td>
<td></td>
</tr>
</tbody>
</table>

DNA Extraction and PCR conditions

The DNA was extracted depending on the instruction of Presto Mini Gdna bacteria Kit (Geneaid, USA): Initial denaturation 94C for 3min, 94 C for 30 sec, annealing according to primer set 30 sec followed by extension 72 C for 30 sec and finally extension 72 C for 4min.

Results and discussion

Resistance phenotypes and resistance genes
Our results revealed high antibiotic resistance, 100% for both classes of Aminopenicillins, cephalosporins third generation as well as Amoxicillin/clavulanic acid. On the other hand, isolates were sensitive to Tobramycin (100%), while other antibiotics shows higher activity against *S. aureus* isolates; Ciprofloxacin (95%); levofloxacin (86.67% sensitive isolate beside 10 % intermediate resistant). 90% of *S. aureus* found to be sensitive to trimethoprim, and a close result seen with amikacin (85%).

The percentage of resistant isolates for vancomycin antibiotic was (62.5%), this is may be due to frequent use of vancomycin as the drug of choice for treatment of infections caused by multidrug-resistant MRSA has putatively led to selection of the isolates with reduced susceptibility to vancomycin (Shariati *et al.*, 2020).

Results as illustrated in table 2, indicates AX, AMC, CRO, CTX, PY and CFM antibiotic were absolutely having no effect on *S. aureus* isolates, wither they originated from nose or ear, since there are no significant differences between them at P >0.05 as well as the significant differences in the effectiveness of each antibiotic against *S. aureus*. One can assign this resistance for the extensive use of these antibiotics since they were the first choice in treatment of different oral infections, sinusitis and otitis media. Certainly, in appropriate use of antibiotic will definitely leads to emerging of resistant isolates, due to selective pressure applied by antibiotic, diminishing all sensitive ones.
<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>LEV</th>
<th>CIP</th>
<th>TIP</th>
<th>TIP</th>
<th>TOP</th>
<th>TE</th>
<th>VA</th>
<th>CFIN</th>
<th>PV</th>
<th>E</th>
<th>CTX</th>
<th>CRO</th>
<th>AK</th>
<th>AMC</th>
<th>AX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.278</td>
<td>0.351</td>
<td>0.398</td>
<td>0.455</td>
<td>0.000</td>
<td>100</td>
<td>0.654</td>
<td>0.925</td>
<td>0.000</td>
<td>0.000</td>
<td>0.159</td>
<td>0.300</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>P value</td>
<td></td>
</tr>
<tr>
<td>No. %</td>
<td></td>
</tr>
<tr>
<td>Nose swap</td>
<td></td>
</tr>
<tr>
<td>Ear swap</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Percentage of antibiotic resistance for nose and ear S. aureus isolates.
Virulence genes

In order to examine these isolates genotypically, a multiplex PCR technique was applied to detect some virulence factors and antibiotic resistance for all (60) S. aureus isolates. The highest frequency of this study’s isolates was in MecA genes 53 (88%) followed by sea genes 20 (33%), hlg and seb genes 18 (30%) for each one, erm genes 14 (23%) and luk genes 2 (3.3%), genes fbi, vat and tet were not detected in any isolate, as shown in Table (2). Our work indicates that about 88% of S. aureus isolate were harboring this gene, which enables them to resist methicillin and other related drugs.

![figure (2): shows virulence gene frequencies.](image)

erm gene was detected in 14 isolates only, which is responsible to a large extent in resistance to macrolide, lincosamide, treptogramin B (MLSB). The rising frequency of methicillin resistant Staphylococcus aureus (MRSA) has led to an increased use of antibiotics such as macrolide, lincosamide, streptogramin B (MLSB) for the treatment of S. aureus infections, which in turn will leads to selection of erm gene.

Panton-Valentine leucocidin (PVL), which is encoded by luk gene, and has been touted as the cause of increased virulence in S. aureus (Voyich et al., 2006).

PVL toxin is strongly associated with severe skin and soft tissue infections and necrotizing pneumonia. Furthermore, the ability of S. aureus to cause infections in immunocompetent hosts seems to be due in part to S. aureus
strain causing necrosis which has been linked to the lysis of neutrophils, which are the primary target of luk (O’Hara et al., 2008). The evidence supporting the involvement of luk in the pathogenicity of S. aureus is largely circumstantial and the cause of much debate. It has been suggested that luk in combination with other virulence factors is what is causing increased S. aureus infections. (Deip et al., 2008) stated that it is not luk alone but in conjunction with other determinants that may indeed be the driving force behind the increased virulence of S. aureus. Sub-typing of the luk gene in S. aureus could be a useful tool for the identification and monitoring of the dissemination of this virulence trait in S. aureus (Achek et al., 2021). Molecular detection of luk gene was conducted on 60 S. aureus isolated, and it was seen in 2 (3%) isolates.

In terms of understanding pathogenicity, detection of virulence gene that can be exploited in laboratory studies, bioinformatics analyses and population studies. Through comparative genomics we are developing a better understanding of the ability of this organism to evolve and adapt. This work recommends doing antibiotic susceptibility profile tests periodically in order restrict spreading of antimicrobial resistance. As well as, attention should be paid to the infection control and surveillance in our hospitals to reduce nosocomial infections.

References

