Dexmedetomidine v/s clonidine as adjuvants to bupivacaine in supraclavicular brachial plexus block

Dr. Ganga G.
Associate Professor, Department of Anesthesiology Govt. Medical College, Kottayam
Email: gangagdr@gmail.com

Dr. Amrutha K.
Senior Resident, Department of Anesthesiology Govt. Medical College, Kottayam
Email: dramruthak007@gmail.com

Dr. Thomas Joseph
Assistant professor, department of Anesthesiology Govt medical college, Kottayam
Email: drthomaspushlikunnel@gmail.com

Abstracts—Background & Objectives: Regional nerve blocks with local anaesthetics provide intra operative anaesthesia as well as postoperative analgesia. Certain drugs like opioids, alpha2 adrenergic agonist, sodium bicarbonate, adrenaline, etc. are used as an adjuvant to local anaesthetics. This enhances the analgesic efficacy, reduces the requirement of the local anaesthetics, improves the onset and duration of analgesia. Our study has been undertaken to compare the onset time, duration and analgesic efficacy of clonidine with dexmedetomidine when added as adjuvant to bupivacaine (0.25%) for brachial plexus block by supraclavicular approach. Methodology: 60 patients aged 18-65 years belonging to ASA PS –I &II of both sexes undergoing elective upperlimb surgeries under Brachialplexus block were included in our study. Patients satisfying the inclusion criteria were allotted into 2 groups of 40 each. Group 1: Bupivacaine 0.25% (35 cc) + clonidine 1 mcg/kg. Group 2: Bupivacaine 0.25% (35 cc) +dexmedetomidine 1mcg/kg. Results The mean time for onset of sensory block in group A was (20.23 ±1.104) mins and that observed in group B was (14.83±1.744) mins. The mean time for onset of motor block in group A was (18.43 ±1.135) mins and (12.67±1.539) mins in group B. Mean duration of sensory block in group A was (476.77±9.313) mins and in group B was (730.13±52.208) mins. The mean duration of motor block in group A was (420.60±8.896) mins and in group B was (649.6±45.040) mins.
The mean duration of analgesia in group A was (522.23±11.047) and in group B was (757.13±44.044). All the above differences were statistically significant with a p value<0.05%. However, there was no significant differences in the hemodynamic parameters of the two study population. Conclusion: From our study we conclude that, dexmedetomidine when added to bupivacaine compared to clonidine has 1. Faster onset of sensory block 2. Faster onset of motor block 3. Prolonged duration of sensory block 4. Prolonged duration of motor block 5. Prolonged duration of analgesia 6. Comfortable sedation where the patient can be arousable at any time 7. No significant difference in hemodynamic variables.

Keywords—Brachial plexus block, clonidine, dexmedetomidine.

Introduction

Peripheral nerve blocks not only provide intra operative anaesthesia, but also extend analgesia in the post operative period without any systemic side effects. The brachial plexus block is one among the most popular regional nerve blocks performed for upper limb surgeries. Supraclavicular approach for brachial plexus block is being done for surgeries on the elbow, forearm and hand. Local anaesthetic drugs like lignocaine, bupivacaine and levobupivacaine are used in peripheral nerve block. Its increased popularity is because of the advancement in regional anaesthesia techniques in terms of local anaesthetic drugs, newer adjuvant drugs and the use of ultrasound for safe and successful conduct of block. It helps in reduced hospital stay, less financial burden and also leads to avoidance of undesirable side effects of general anaesthesia.

Since the introduction of first brachial plexus block using cocaine by Halsted in 1884, the technique of brachial plexus block has evolved from classical blind technique to the use of nerve stimulator and ultrasound guidance for supraclavicular brachial plexus block. However the benefits of brachial plexus block can be short lasting, if the duration of action of the local anaesthetics are short. This may result in conversion to general anaesthesia which may sometimes be difficult to provide during the course of the surgery especially in lateral positions. Various methods have been used to extend the duration of analgesia like using higher volume of local anaesthetics, but it may also increase the risk of LA toxicity.

Many additives to local anaesthetics such as opioids, clonidine, tramadol have been used to increase the duration of the block, and to improve the post operative pain management. Alpha2 adrenergic receptor agonist have been the focus of interest for their sedative, analgesic, perioperative sympatholytic and cardiovascular stabilizing effects with reduced anaesthetic requirements. Alpha 2 adrenergic agents have been tried either alone or in combination with other drugs in epidural, intrathecal and peripheral nerve blocks. Clonidine, an alpha-2 agonist which had been used initially as an antihypertensive has sedative, sympatholytic and analgesic properties. Clonidine is 200 times more selective to alpha 2 receptors when compared to alpha1 receptor. Dexmedetomidine, a novel
highly potent alpha-2 agonist, is also a sedative, anxiolytic and analgesic agent similar to clonidine. The peculiar features of dexmedetomidine is its high selectivity for alpha-2 receptors and its ability to produce sedation and analgesia while still maintaining patient arousability and respiratory function.

Dexmedetomidine is approximately 8 times more selective towards alpha 2 receptors than clonidine. The current study was designed to test the hypothesis that dexmedetomidine when used as an adjuvant to local anaesthetic in supraclavicular brachial plexus block enhanced duration of both sensory and motor blockade, hastened the onset of action and prolonged the duration of analgesia when compared to clonidine.

Objectives

The objective of this study is to compare the effects of dexmedetomidine and clonidine when used as an adjuvant to 0.25% bupivacaine in supraclavicular brachial plexus block for elective upperlimb surgeries. The effects will be studied in terms of duration of motor and sensory block (primary objective), onset of sensory and motor blockade, duration of analgesia and occurrence of adverse side effects (hypotension, bradycardia and sedation).

Materials and Methods

Study design

Descriptive Study

Study Duration

12 months

Study Setting

Major operation theatre, Government Medical College, Kottayam

Study Population

ASA I and ASA II patients of either sex, aged 18-65 years undergoing various upperlimb surgeries under supraclavicular brachial plexus block at government medical college, kottayam during the year 2018-2019.

Sample Size

Estimated sample size was 30 in each group, from the study conducted from Sri devaraj medical college, India by Don Sebastian, Ravi M, Dinesh K

Study Tool

- ECG, NIBP monitor, pulse oxymeter
- Drugs and equipments for brachial plexus block.
• Peripheral Nerve stimulator

Inclusion Criteria

Adult patients aged 18 -65 years of both sex undergoing various orthopaedic surgeries of the upper limb.

Exclusion Criteria

- Known case of hypersensitivity to local anaesthetics
- Patient on adrenoreceptor agonist/antagonist therapy
- Patient with bleeding disorders
- Patient with history of cardiac, respiratory, hepatic or renal disorders
- Emergency surgeries
- Patient on anticoagulant therapy
- Uncontrolled DM
- Pregnant women
- Pre existing peripheral neuropathy.

Study Procedure

The study will be conducted on 60 ASA grade I and II patients of either sex aged 18-65 years undergoing various elective surgeries of the upper limb under supraclavicular brachial plexus block. The study will be conducted in two groups of 30 patients each.

GROUP A: BUPIVACAINE 0.25% (35 cc) + clonidine 1 mcg/kg
GROUP B: BUPIVACAINE 0.25% (35 cc) + dexmedetomidine 1 mcg/kg

All patients received brachial plexus block through the supraclavicular approach. Following negative aspiration 35 ml of a solution containing local anaesthetic (0.25% bupivacaine) combined with clonidine and dexmedetomidine as mentioned above will be injected. A 3 min massage will be performed to facilitate even drug distribution. After research methodology and ethical committee approval for the study, study subjects were selected from those coming for upperlimb surgeries during the period of study at medical college hospital. Written informed consent was taken from all the subjects. All patients fasted for 6 to 8 hrs before surgery. Study subjects were divided in to two groups A and B

GROUP A: 0.25% bupivacaine 35 cc + 1 mcg/kg clonidine
GROUP B: 0.25% bupivacaine 35 cc + 1 mcg/kg dexmedetomidine

The patients were premedicated with midazolam 0.02mg per kg. Baseline measurement of NoninvasiveBP, HR and SpO₂ were recorded before performing the block. Under aseptic precaution, supraclavicular brachial plexus block was performed. Neural localisation is by a peripheral nerve locator connected to a 22 G, 50 mm long stimulating needle. The Location end point is a distal motor response with an output lower than 0.5 mA in the median nerve region. Following negative aspiration, 35 ml of a solution containing local anaesthetic combined
with clonidine or dexmedetomidine were injected. In case of incomplete block, patients were supplemented with intravenous fentanyl (1 mcg/kg) and midazolam 0.02 mg/kg. In case of failed block, general anaesthesia was given intraoperatively. The duration of analgesia, onset and duration of sensory block, onset and duration of motor block were assessed. Vital parameters were recorded every 0 minutes, 1 minutes, 5 minutes, 10 minutes, 30 minutes, 60 minutes, 120 minutes, 180 minutes, 240 minutes, 360 minutes, and 480 minutes.

Assessment of sensory block was done at each minute after completion of drug injection in the dermatomal areas corresponding to median, radial, ulnar and musculocutaneous nerve till complete sensory blockade. Sensory block will be graded as:

- Grade 0: sharp pin felt
- Grade 1: analgesia, dull sensation felt
- Grade 2: anaesthesia, no sensation felt

Sensory block onset is defined as reduction in sensibility to 30% or less. If, at the completion of 30 minutes after injection, any of the major nerves involved in the area of planned surgical intervention has a sensibility of more than 30%, they were blocked separately or alternate method of anesthesia were selected and the patients were excluded from further investigations under this study. Assessment of motor block will be determined according to a modified bromage scale for upper extremities on a 3 point scale.

- Grade 0: normal motor function with full flexion and extension of elbow, wrist and fingers
- Grade 1: decreased motor strength with ability to move fingers only
- Grade 2: complete motor block with inability to move fingers

Motor block onset is defined as a reduction in power to grade 1.

Duration of sensory block: Time interval between the onset of sensory block and complete resolution of anaesthesia on all nerves.

Duration of motor block: Time interval between the onset of motor block and recovery of motor function of hand and forearm.

Analgesic effect was measured by assessing the duration between the local anaesthetic administration and the requirement of first dose of the analgesics. Post operative pain was assessed by Numerical Rating Scale (NRS). The data will be numerically coded and cited in Microsoft excel spread sheet. Further analysis was done using SPSS software. Chi square tests were applied for demographic data, Independent t test was applied for hemodynamic parameters, onset and duration of sensory and motor blockade and duration of analgesia. P value will be considered significant if <0.05 and highly significant if <0.001.

Results

A total of 60 patients were included in the study. 30 patients were allocated group A and 30 patients were allocated group B. Age, gender ASA grading and weight were comparable in both the groups.
Table 1
Comparison of group based on onset of sensory block, motor block, duration of sensory block and motor block, duration of analgesia and sedation score

<table>
<thead>
<tr>
<th></th>
<th>GRO UP</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>T</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSORY ONSET</td>
<td>A</td>
<td>30</td>
<td>20.23</td>
<td>1.104</td>
<td>14.33</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>30</td>
<td>14.83</td>
<td>1.744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR ONSET</td>
<td>A</td>
<td>30</td>
<td>18.43</td>
<td>1.135</td>
<td>16.51</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>30</td>
<td>12.67</td>
<td>1.539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENSORY DURATION</td>
<td>A</td>
<td>30</td>
<td>476.77</td>
<td>9.313</td>
<td>26.13</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>30</td>
<td>730.13</td>
<td>52.208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR DURATION</td>
<td>A</td>
<td>30</td>
<td>420.60</td>
<td>8.896</td>
<td>27.31</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>30</td>
<td>649.67</td>
<td>45.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANALGESIA DURATION</td>
<td>A</td>
<td>30</td>
<td>522.23</td>
<td>11.047</td>
<td>28.31</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>30</td>
<td>757.13</td>
<td>44.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEDATION SCORE</td>
<td>A</td>
<td>30</td>
<td>1.57</td>
<td>.504</td>
<td>3.47</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>30</td>
<td>1.17</td>
<td>.379</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Bar diagram showing comparison of onset, duration of block, duration of analgesia and sedation score

From the above two figures, mean time for onset of sensory block in group A was 20.23±1.104 while in group B was 14.83±1.744. The data was analysed using t test and yielded a P value <0.05 which is significant. The mean time for onset of motor block in group A was 18.43±1.135 and in group B was 12.67±1.539. The analysis by t test yielded a P value < 0.05 which shows that there is a significant difference in the onset of motor block between the two groups. The mean time for duration of sensory block in group A was 476.77±9.313 and in group B was 730.13±52.208. The mean duration of motor block in group A 420.60±8.896 and that in group B was 649.67±45.070. The data was analysed using t test and
yielded a P value of <0.05 in both the cases which means that there is a significant difference between the two groups in terms of duration of sensory and motor block. The mean time for duration of analgesia in group A and group B was 522.23±11.047 and 757.13 ±44.044 respectively. The analysis of this data by t test yielded a P value < 0.05 which is significant.

The baseline hemodynamic parameters HR, SBP, and DBP were analysed using t test. The mean baseline HR of the study population in group A was 75.70± 8.056 and in group B was 75.17±7.047 with a p value >0.05. The mean baseline SBP in both groups were 123.27±14.408 and 124.43±10.523 respectively. The mean baseline DBP in both the groups were 78.67 ±10.148 and 80.60±8.139 respectively. The analysis of the above data using t test yielded a p value >0.05. Thus the baseline HR, SBP and DBP in both the groups were comparable.

The mean heart rate in both the groups did not show much difference and the statistical analysis of the above data yielded a p value >0.05 which is insignificant.
Figure 4. Bar diagram showing comparison of systolic blood pressure

From the above diagram it is clear that the SBP in both the groups did not show much variation and the statistical analysis using t test was not found to be significant.

Fig 5. line diagram showing comparison of diastolic blood pressure

The above line diagram shows that there was no significant difference in the diastolic BP of the two groups. The mean time for onset of sensory block in group A was (20.23 ±1.104) mins and that observed in group B was (14.83±1.744) mins. The mean time for onset of motor block in group A was (18.43 ±1.135) mins and (12.67±1.539) mins in group B. Mean duration of sensory block in
group A was (476.77±9.313) mins and in group B was (730.13±52.208) mins. The mean duration of motor block in group A was (420.60±8.896) mins and in group B was (649.6±45.040) mins. The mean duration of analgesia in group A was (522.23±11.047) and in group B was (757.13± 44.044) All the above differences were statistically significant with a p value<0.05%. We found that P value was found to be significant when the two groups were compared in terms of onset of block, duration of block, and duration of analgesia. Patients in group D had a rapid onset of motor and sensory block, improved duration of motor and sensory block and prolonged duration of analgesia when compared to clonidine group. However, there was no significant difference in the hemodynamic parameters between the two groups.

Discussion

Brachial plexus block provides intra operative anaesthesia as well as post operative analgesia. Various adjuvants like opioids, alpha 2 adrenergic agonists, midazolam, neostigmine, etc have been found to prolong the duration of analgesia. The alpha 2 adrenergic agonists like clonidine and dexmedetomidine are known for their analgesic, sedative and sympatholytic properties. They improve the quality of block when added as an adjuvant to local anaesthetic in regional nerve blocks. Our study was aimed at comparing the effects of dexmedetomidine and clonidine when used as an adjuvant to 0.25% bupivacaine in supraclavicular brachial plexus block. A total of 60 patients in the age group of 18-65yrs were included in the study, 30 in each group.

Demographic variables like Age, gender, weight, ASA were comparable in both the groups. In our study, it was found that the onset of sensory block and motor block were significantly faster in patients who received a combination of bupivacaine and dexmedetomidine than the combination of bupivacaine and clonidine. The mean time for onset of sensory block in group A was (20.23 ±1.104) mins and that observed in group B was (14.83±1.744) mins. The mean time for onset of motor block in group A was (18.43 ±1.135) mins and (12.67±1.539) mins in group B. The mean duration of sensory block in group A was (476.77±9.313) mins and in group B was (730.13±52.208) mins. The mean duration of motor block in group A was (420.60±8.896) mins and in group B was (649.6±45.040) mins. The mean duration of analgesia in group A was (522.23±11.047) mins and in group B was (757.13± 44.044). All the above differences were statistically significant with a p value<0.05%.

The sensory onset was shortened by a mean of 5.76 minutes. The motor onset was shortened by a mean of 5.4 minutes. The motor duration was prolonged by a mean of 229.07 minutes. The sensory duration was prolonged by a mean of 253.36 minutes. The analgesia duration was prolonged by mean of 234.9 minutes. Sedation was more in clonidine group by a mean of 0.40 minute. However, there was no significant differences in the hemodynamic parameters of the two study population. In the study conducted by Archanatripati, khusboo Sharma et al, compared the effects of addition of clonidine (1 μg/kg) and dexmedetomidine (1 μg/kg) to bupivacaine supraclavicular brachial plexus block in 60 ASA I and II patients. The results were analysed in terms of the onset time for both sensory and motor blockade, duration of sensory and motor
blockade and duration of analgesia. There was no statistically significant difference in the onset of sensory and motor block in both the groups. However, dexmedetomidine provided longer duration of both motor and sensory blocks and prolonged duration of analgesia. Moreover, dexmedetomidine group had better quality of anaesthesia.

Yoshitomi et al. found that addition of clonidine or dexmedetomidine to lignocaine enhances local analgesic effect. They postulated that improved analgesic effect of clonidine and dexmedetomidine was mediated through α-2adrenoreceptors. Memis et al. compared between adding dexmedetomidine to bupivacaine in peribulbar block and intravenous dexmedetomidine during peribulbar block for cataract surgery. Study was conducted on 90 patients for cataract surgery under peribulbar anaesthesia. They concluded that dexmedetomidine as an additive, shortens onset time, prolongs block duration and significantly reduces the intraoperative pain with minimal side effects. IV dexmedetomidine, in addition produces intraoperative sedation with hemodynamic stability.

Esmaoglu et al. study was done on 40 patients scheduled for elective hand surgeries. IVRA was achieved using 3ml/kg lidocaine diluted with saline to a total volume of 40 ml in the control group or 1 mcg/kg of dexmedetomidine +3 mg/kg lidocaine diluted to a total volume of 40 ml in dexmedetomidine group. The onset and regression times for sensory and motor blocks were recorded. Quality of anaesthesia, intraoperative and postoperative analgesic requirements were noted. They concluded that addition of dexmedetomidine to local anaesthetic solution in IVRA improved the quality of anesthesia and decreased analgesic requirements, but had no effect on the sensory and motor block onset and regression times.

A study by Brumett et al. showed that dexmedetomidine enhances duration of bupivacaine anaesthesia and analgesia of sciatic nerve block in rats without any damage to the nerve. Bajwa et al. had compared the dexmedetomidine and clonidine in epidural anesthesia and concluded that dexmedetomidine is a better neuraxial adjuvant compared with clonidine for providing an early onset of sensory analgesia and prolonged postoperative analgesia. However, El-Hennawy et al. found no difference in duration of analgesia between dexmedetomidine or clonidine when added to bupivacaine during paediatric caudal anesthesia.

The study conducted by Sandhya Aggarwal, compared the effects of adding dexmedetomidine to a 30 ml solution of 0.325% bupivacaine in supravacular brachial plexus block. Onset and duration of sensory and motor block along with duration of analgesia were the primary end points. Study was conducted on 50 ASA I and II patients posted for elective upperlimb surgeries. They concluded that, dexmedetomidine when added as an adjuvant to bupivacaine for supraclavicular brachial plexus block significantly shortens the onset time and prolongs the duration of motor and sensory block and duration of analgesia.

Limitation of the study

- Since we are including relatively young patients belonging to ASA I and II status in our study, the efficacy of both the adjuvants are not validated in old as well as non ASA I and II patients.
• Unavailability of USG machine in the department during the study period. With USG, we could have used less volume of local anaesthetic drug.

Conclusion

From our study, we conclude that Dexmedetomidine is a better adjuvant to 0.25% Bupivacaine in supraclavicular brachial plexus block in terms of onset of block, duration of block, analgesic efficacy and is not associated with major side effects.

References

8. Brummett CM, Hong EK, Janda AM, Amodeo FS, Lydic R. Perineuraldexmedetomidine added to ropivacaine for sciatic nerve block in rats prolongs the duration of analgesia by blocking the hyperpolarization-activated cation current. Anaesthesiology 2011;115:836-43