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Abstract---Cellular Manufacturing System (CMS) is an alternative to 
production systems based on process and product layout that 

combines the advantage of high throughput rate of flow shop system 

with the flexibility of job shop layout. CMS design has four steps: 1) 

Cell formation: grouping the parts with similar geometric design 

features and processing requirements in part families to use 
similarities to build, manufacture and assemble machines in machine 

lines and cells, 2) group layout: placing machines in each cell that 

includes intra-cell and inter-cell layout, 3) group scheduling: part 

family scheduling, and 4) source allocation: allocation of tools and 

primary resources and human force. Dynamic CMS (DCMS) can be 

divided into smaller periods, each of which is different from the 
previous one as these periods have various demands and 

compositions. The study presented a mixed-integer programming 

model for DCMS. The model considered some significant real-world 

conditions. In this model, the first objective function tries to minimize 

the costs related to the machines purchase cost, machines variable 
cost, the cost of movement workers, the cost of cell formation, the cost 

of inter-cell and intra-cell part movement, the cost of overtime, and 

the cost of reconfiguration. Moreover, the deviation of cell workload in 

each period is minimized in the second objective function. The model 

is then resolved and validated in GAMS 25.1.3 the exact method of 

Benders Decomposition solving on the problem was implemented 
given the NP-hard nature of DCMS problems. 
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Introduction  

 

Nowadays, cellular manufacturing is a production approach to reduce costs and 
increase system flexibility in the environment of converting small to medium-sized 

production groups. The advantage of cell production reported from the literature 

is related to reduce inventory under construction, preparation time, improved 

flexibility, better production control, and shorter delivery time (Askin & Estrada, 

1999). With the introduction of the machine-part grouping problem by Burbidge 

(1984), which was the first step in the analysis of production flow, the problem of 
cell formation was considered by scholars with many advances in the theory, 

tools, and techniques of this problem since then. DCMS  involves several 

operational and structural problems. Besides the problem of cell formation, 

another key step to consider is designing the machine and cellular layout. 

 
The efficient design of this step greatly relies on considering related design 

dimensions. As proposed by Arvindh and Irani (1994), an integrated approach in 

designing CMS has to be considered, since the design characteristics of a system 

are interdependent in various ways. Accordingly, this section will present a new 

integrated mathematical model for the problem of cell formation in DCMS. 

Extensive studies have been carried out on the problem of cell manufacturing and 
many solutions have been proposed to this problem. The comprehensive 

classifications of the studies conducted on designing cellulite production systems 

have been done by many scholars. 

 

Defersha and Chen (2006) incorporated the dynamic cell configuration, 
alternative routing, operation sequencing, workload balancing, lot splitting, 

machine adjacency, subcontracting, and tool consumption in an integrated 

problem. Ahi et al. (2009) applied the concept of multi-criteria decision-making 

and suggested a two-step method for cellular layout, intra-cell layout, and inter-

cell layout, as the three basic characteristics in designing a CMS. Ahkioon (2009) 

modeled the problem of designing cell manufacturing along with multi-cycle 
product planning, cell reconfiguration, operation sequence, multiple machine 

versions, machine capacity, and introducing the processing path flexibility by 

forming possible processing paths in modeled alongside alternating main 

processing paths. 

 
Ahkioon et al. (2009) formulated a hybrid approach to CMS design as a nonlinear 

mixed-integer model with production planning and system reconfiguration 

decisions with alternative process routing, operation sequence, machine capacity, 

and component divisibility. Deljou et al. (2010) solved the problem of dynamic cell 

formation using genetic algorithm (GA). They presented a mathematical 

formulation that eliminated some of the shortcomings of previous mathematical 
models (Arianjad et al., 2009). A new mathematics method was developed to 

simultaneously interact with the problem of dynamic cell formation and labor 

allocation by considering processing path flexibility, machine flexibility, and 

worker upgrading from one skill level to another. Objective functions include cost 

components like production, transportation between cellular materials, machine 
overhead, salaries, recruitment, dismissal, and training of human force. 
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Aramoon Bajestani (2009) suggested a dynamic multi-objective model of cell 

formation, where the sum of the costs of changes in cell formation and the sum of 

miscellaneous costs (machine cost, inter-cell movement cost, and machine 

relocation cost) are minimized simultaneously. They designed a multi-purpose 
model of a scattered search to find the optimal boundary. Ghotboddini and al. 

(2011) suggested a dynamic cell formation and human resource assignment, they 

focused on process routing, firing and hiring labors, inter-cell and intra-cell 

movement of parts, and cell formation during planning periods, and they 

presented an exact Benders’ decomposition approach to generate an optimal 

solution for intended (DCMS) model.  
 

Saxena and Jain (2011) suggested a DCMS model that integrates the problem of 

reliability by considering the effect of machine failure and production planning 

with consideration of inventory maintenance, domestic production, and 

outsourcing. Design features include production batch size, intra-cell motion 
batch size, production batch division, alternative processing path, operation 

sequence, multiple machine versions, machine capacity, cutting tool 

requirements, workload balance, machine proximity constraints, machine 

purchase, and cellular reconfiguration. 

 

Previous studies by King and Nakornchai (1982) and Ballakur (1985) have 
revealed that cell formation  problem belongs to NP-hard group problems. Thus, 

the model considered in the study, developed from previous studies on cell 

formation, is of this sort. Liu, Wang, and Leung JYT (2018) studied the 

advantages and disadvantages of lot splitting in the dynamic CMS (Liu et al.). The 

study used the problem presented by (Rafiei and Ghodsi, 2013) to solve the model 
of the cell formation problem. As the model is considered to be a dynamic bi-

objective model for cell formation, in similar studies, a precise approach to solving 

the model is not presented and only meta-heuristic methods are used. This is the 

first time that an exact solution approach is designed to solve this model. Hence, 

the main research question is “Are there logical reasons and causes for using 

Benders Decomposition algorithm in the problem of bi-objective cell formation? 
 

Methods 

 

The proposed mathematical model 

 
The study proposed a new mathematical model to design the problem of cell 

formation in dynamic conditions. Given the structure governing the problem - 

linearization of the objective function and existing constraints, as well as 

conversion to a single-objective mode using the standardization approach - one 

can use GAMS Software and run Benders solution algorithm in this software to 

solve the model in the following conditions. This example was solved in GAMS 
25.1.3 on a dual-core Intel 3.2 GHz processor with 4 GB of RAM on a personal 

computer to validate this proposed model. Objective functions have different 

units, so combining them without standardization is useless. Thus, dividing each 

objective function by its optimal value is an effective way to overcome this 

problem. The first objective function is of the total cost type and the second is of 
the time type, so by standardizing them we will have a new objective function 
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without any complex units. Thus, we have to solve each objective function once 

considering all available constraints. 

 
Model features 

 

In the first objective function, we have tried to minimize costs like purchase cost, 

cost of inter-cell labor moving, inter-cell, and intra-cell transfer costs of parts, 

overtime costs, and cost of cell manufacturing. Moreover, the second objective 

function is associated with the total load deviation of the cells to balance manual 
workload (by labor force) and machine (time done by machine), reduce inventory 

in work-in-progress (WIP), modification of the flow of parts between or inside the 

cell and prevention of cell-related abuse (overuse or less than the expectation) 

(Baykasoglu et al., 2001). The section presents a bi-objective programming model 

mixed-integer programming (MIP) from a DCMS. 
 

Parameters  

 

H The number of planning periods 

P The number of part types  

Op The number of operations related to the part 

M The number of machine types 

L Total number of labor (human force) 

C The maximum number of working cells that can be formed 

𝐷𝑝ℎ Demand for Part p in time h 

𝑣𝑝ℎ 

 

If the Part p is programmed to be produced in period h 1, otherwise 

it gets a value of zero 

𝐵𝑝
𝑖𝑛𝑡𝑒𝑟 The size of the Part p clusters in inter-cell movements 

𝐵𝑝
𝑖𝑛𝑡𝑟𝑎 The size of the Partp clusters in intra-cell movements 

Ɣ𝑝
𝑖𝑛𝑡𝑒𝑟 The cost of moving component packages between work cells 

Ɣ𝑝
𝑖𝑛𝑡𝑟𝑎 The cost of moving parts packages inside work cells 

ᶲ m Cost of buying an m-type machine 

Wm The sale price of the m-type machine 

𝝰m Fixed cost of m-type machines in each planning period 

𝜌ℎ Cost of inter-cell labor moving  

𝝱m 
The variable cost of m-type machines for each unit of time in 

normal working time 

δm The cost of moving an m-type machine 

Tmh 
Time capacity of m-type machines in period h at normal working 

time 

𝑇𝑚ℎ
′  Time capacity of m-type machines in period h in overtime 

Ө𝑚ℎ 
 

The variable cost of processing operations on m-type machines per 

hour during overtime in period h 

UB Maximum cell size 

LB Minimum cell size 

𝑡𝑗𝑝𝑚 

 

The processing time needed to perform operation j from Part p on 

machine m 

𝑡′𝑗𝑝𝑚 Manual processing time (loading) needed to perform operation j 

Part from p on m-type machines 
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𝑎𝑗𝑝𝑚 

 

If the operation j can be performed from the Part p on m-type 

machine 1, otherwise it gets a zero 

𝐹𝐶ℎ Cost of cell manufacturing in period h 

𝑊𝑇ℎ 
Working time available to operators (human force) during the 

period h 

 

Decision variables 

 

𝑁𝑚𝑐ℎ The number of m-type machines assigned to cell c over a period  

𝐾𝑚𝑐ℎ
+  The number of m-type machines added to cell c in period h 

𝐾𝑚𝑐ℎ
−  The number of m-type machines removed from cell c in period h 

𝐼𝑚ℎ
+  The number of m-type machines purchased in period h 

𝐼𝑚ℎ
−  The number of m-type machines sold in period h 

𝑋𝑗𝑝𝑚𝑐ℎ 

 

If operation j is performed from Part p on machine m in period 1, 

otherwise it gets a zero 

𝐿𝑐ℎ The number of human forces assigned to cell c in period h 

𝑌𝑐ℎ If the cell is formed 1 otherwise it gets a zero 

𝑇𝑚𝑐ℎ
′  Extra time needed for the m-type machine in cell c in period h 

 
A linearized model of the objective function 

 

Here, we rewrite the proposed formula as a linear programming model mixed with 

integers. This re-formulation needs several alternative uses and various 

operations that end in a precise deformation of the problem. The following bi-
objective model is formulated as follows. 

 

Min Z1= 

 
(1) 

∑ ∑ ∑ 𝑁𝑚𝑐ℎα𝑚

𝐶

𝑐

𝑀

𝑚

𝐻

ℎ

 

 

(2) 
+ ∑ ∑ 𝐼𝑚ℎ

+

𝑀

𝑚

ᶲ𝑚

𝐻

ℎ

 

 

(3) 
− ∑ ∑ 𝐼𝑚ℎ

−

𝑀

𝑚

𝑤𝑚

𝐻

ℎ

 

 

(4) 
+ ∑ ∑ ∑ ∑ β𝑚

𝑂𝑝

𝑗

𝐷𝑝ℎ

𝑃

𝑝

𝑡𝑗𝑝𝑚

𝐶

𝑐

𝑋𝑗𝑝𝑚𝑐ℎ

𝐻

ℎ

 

 

(5) 
+

1

2
∑ ∑ Ɣp

inter ⌈
Dph

𝐵𝑝
𝑖𝑛𝑡𝑒𝑟

⌉ ∑ ∑(

𝐶

𝑐

𝑂𝑝−1

𝑗

𝑃

𝑝

𝐻

ℎ

𝑧𝑗𝑝𝑐ℎ
1 + 𝑧𝑗𝑝𝑐ℎ

2 ) 

 

(6) 
+

1

2
∑ ∑ Ɣp

intra ⌈
Dph

𝐵𝑝
𝑖𝑛𝑡𝑟𝑎

⌉ ∑ ∑(

𝐶

𝑐

𝑂𝑝−1

𝑗

𝑃

𝑝

𝐻

ℎ

(𝑦𝑗𝑝𝑚𝑐ℎ
1 + 𝑦𝑗𝑝𝑚𝑐ℎ

2 )) − (𝑧𝑗𝑝𝑐ℎ
1 + 𝑧𝑗𝑝𝑐ℎ

2 )) 
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(7) + ∑ ∑ ∑ 𝑇𝑚𝑐ℎ
′

𝐶

𝑐

𝑀

𝑚

𝐻

ℎ

Ө𝑚ℎ 

 

(8) 
+

1

2
∑ ∑ 𝜌ℎ

𝐶

𝑐

𝐻

ℎ

(𝑤𝑐ℎ
1 + 𝑤𝑐ℎ

2 ) 

 

(9) 
+

1

2
∑ ∑ ∑ δm

𝑀

𝑚

𝐶

𝑐

𝐻

ℎ

(𝐾𝑚𝑐ℎ
+ + 𝐾𝑚𝑐ℎ

− ) 

 

(10) 
+ ∑ ∑ 𝑌𝑐ℎ𝐹𝐶ℎ

𝐻

ℎ

𝐶

𝑐

 

 
Min Z2= 

 
(11) 

∑ ∑(

𝐻

ℎ

𝐶

𝑐

𝐹𝑐ℎ
1 + 𝐹𝑐ℎ

2 ) 

However, the new variables are added to the previous variables  
  𝑍𝑗𝑝𝑐ℎ

1  , 𝑍𝑗𝑝𝑐ℎ
2   , 𝑌𝑗𝑝𝑚𝑐ℎ

1    , 𝑌𝑗𝑝𝑚𝑐ℎ
2   , 𝑊𝑐ℎ

1   , 𝑊𝑐ℎ
2   ≥ 0   and integer 

𝐹𝑐ℎ
1   , 𝐹𝑐ℎ

2  ≥   0 

 

In the first objective function, numbered from (1) to (10), simultaneous cost 

minimization is the question. The total fixed and variable costs of the machine, 

the costs of inter-cell and intra-cell movement, costs including overtime, labor, 

purchasing, and cell manufacturing are included in the planning period. Section 
(1) considers the total fixed costs of the machine-like energy and maintenance 

used in each planning period. Section (2) is the total cost of purchasing machines 

in all planning periods. Section (3) avoids imposing additional costs on the same 

machine (maximizing sales revenue). 
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Section (4) is all the variable costs of the machine in all cells and programming 

cycles. This cost, calculated from the time of operation on the machine, can be 

calculated for each machine in each period. There are direct relationships 
between machine fixed and variable costs. Sections (5) and (6), the costs of intra-

cell and inter-cell movement of parts, can be expressed from the sequence of 

operations of the desired part on various or similar machines in the planned 

periods, comprehensively described by Safaei et al. (2008). Section (7) calculates 

the cost of overtime needed to generate a small fraction of demand. Section (8) 

calculates the set of cost of inter-cell labor moving during the planning period, 
including different parameters like training, incoming rate, skill, and the inter-cell 

labor movement. Section (9) shows the set of machine relocation costs for 

reconfiguration. Section (10) is the set of costs related to the manufacturing of a 

work cell in each planning period. The coefficients (1.2) given in Sections (5), (6), 

(8), and (9) are because each movement in the model is calculated twice. Section 
(11) in the second objective function is related to the total loading deviation of the 

cells. 

 

(12) 
 

∀ 𝑗, 𝑝, 𝑚, 𝑐, ℎ ∑ ∑ 𝑎𝑗𝑝𝑚 𝑋𝑗𝑝𝑚𝑐 ℎ = 𝑣𝑝ℎ

𝑀

𝑚

𝐶

𝑐

 

(13) 
 

∀ 𝑗, 𝑝, 𝑚, 𝑐, ℎ 
 

𝑋𝑗𝑝𝑚𝑐 ℎ ≤ 𝑎𝑗𝑝𝑚  

(14) 
 

∀ 𝑗, 𝑝, 𝑚, 𝑐, ℎ 
 

𝑋𝑗𝑝𝑚𝑐 ℎ ≤ 𝑁𝑚𝑐 ℎ  

(15) 

 

∀ 𝑚, 𝑐, ℎ ∑ ∑ 𝐷𝑝ℎ 𝑡𝑗𝑝𝑚 𝑋𝑗𝑝𝑚𝑐 ℎ ≤ 𝑇𝑚ℎ 𝑁𝑚𝑐 ℎ + 𝑇𝑚𝑐 ℎ
′

𝑂𝑝

𝑗

𝑃

𝑝

 

(16) 
 

∀𝑚, ℎ 
∑ 𝑁𝑚𝑐 ℎ

𝐶

𝑐

− ∑ 𝑁𝑚𝑐 (ℎ−1)

𝐶

𝑐

= 𝐼𝑚ℎ
+ − 𝐼𝑚 ℎ

−  

(17) 
 

∀ 𝑚, ℎ 
∑ 𝑇𝑚𝑐 ℎ

′ ≤ 𝑇𝑚ℎ
′

𝐶

𝑐

 

(18) 
 

∀ ℎ 
∑ 𝐿𝑐ℎ = 𝐿

𝐶

𝑐

 

(19) 
 

∀ 𝑐, ℎ 
∑ 𝑁𝑚𝑐 ℎ

𝐶

𝑐

≤ 𝑈𝐵 ×  𝑌𝑐ℎ  

(20) 
 

∀ 𝑐, ℎ 
∑ 𝑁𝑚𝑐 ℎ

𝐶

𝑐

≥ 𝐿𝐵 ×  𝑌𝑐ℎ  

(21) 
 

∀ 𝑚, 𝑐, ℎ 

 

𝑁𝑚𝑐 (ℎ−1) + 𝐾𝑚𝑐 ℎ
+ − 𝐾𝑚𝑐 ℎ

− = 𝑁𝑚𝑐 ℎ  

(22) ∀ 𝑚, 𝑐, ℎ ∑ ∑ 𝐷𝑝ℎ 𝑡𝑗𝑝𝑚
′ 𝑋𝑗𝑝𝑚𝑐 ℎ ≤ 𝐿𝑐ℎ  𝑊𝑇ℎ

𝑂𝑝

𝑗

𝑃

𝑝
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Constraints 

 

𝐿𝑐ℎ , 𝑁𝑚𝑐ℎ , 𝐾𝑚𝑐ℎ
+  , 𝐾𝑚𝑐ℎ 

− , 𝐼𝑚ℎ 
+ , 𝐼𝑚ℎ

− ≥ 0 and integer 

𝑌𝑐ℎ ∋ 𝑋𝑗𝑝𝑚𝑐ℎ و  {0,1} 

𝑇𝑚𝑐ℎ
′ ≥ 0 

 
Constraint (12) ensures that each operation is assigned to only one machine and 

one cell. Moreover, if the left constraint is equal to one, the whole part production 

operation is carried out on the machine in the cell in the same period and no 

combination is possible. Constraint (13) will not allow the variable x to take a 

value if a parameter like a (previously defined) has a value of zero. This means 
that variable x can take a value if the desired operation of the Part p can be 

performed on machine m. Constraint (14) ensures that operations related to Part 

p component are assigned to a machine in the cell in question, either during 

normal working hours or during overtime. Constraint (15) ensures that the 

operation time to meet the demand does not exceed the capacity of the machine. 

In this model, two types of time capacity are considered for the machine, one of 
which is associated with the capacity in normal working time and the other with 

the capacity in overtime.  If an operation cannot be done in the usual time, it will 

be done in overtime. Constraint (16) is the number of machines purchased or sold 

during each planning period, which is related to the cost of sections (3) and (2) of 

the objective function. Constraint (17) is the total time allocated to each cell on 
any type of machine that cannot exceed the capacity of that machine during 

overtime, in this model; overtime is defined for each machine. 

 

Section (18) of this constraint shows the sum of the number of labor forces 

available in all planning periods (already known). Constraints (19) and (20) apply 

to the upper and lower borders of the cell (cell size) in a case formed. Constraint 
(21) states that the number of machine types in the current period in a particular 

cell is equal to the number of one machine type in the previous period, plus the 

number of machines added minus the number of machines deducted from the 

same cell. Constraint (22) states that the loading time for the production of parts 

in period h does not exceed the time available to the labor forces. 
 

Multi-objective solution approach 

 

The standardized method is proposed as a solution to convert multiple objective 

functions to single-objective functions. At the beginning of each of the solution 

approaches stated, each objective function has to be solved independently, by 
considering all the constraints and then using the real value of all objective 

functions to build a standardized objective function. Considering the following 

example function, we have: 

 

Min 𝑓1(𝑥), 
Min 𝑓2(𝑥),  
𝑥 ∈  𝑠 

 

We can have the standardized model as follows where s is a space that is possible 

and fi (x) is the ith of our objective function. 
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𝑀𝑖𝑛𝑓(𝑥) =
1

𝑓1
∗(𝑥)

× 𝑓1(𝑥) +
1

𝑓2
∗(𝑥)

× 𝑓2(𝑥), 

 

Here, because of the existence of two objective functions, the maximum value for i 

is two, and 𝑓𝑖
∗(𝑥) is the optimal value of the ith objective function. 

 

Benders  solution approach (Benders Decomposition) 
 

In this approach, the correct answer is obtained from the master problem and 
sent to the problem of the sub-dual function, and then the sub-dual function 

produces a scalable or optimal solution for the corresponding correct solution 

that may be added to the master problem. These iterations continue so that the 

top and bottom are equal or the answers are as close as we want. Moreover, in 

each iteration, we do not need to solve the master problem to reach the optimal 

solution, yet in each iteration, we need only one solvable (Kot and Lawton, 1984). 
The general state of MIP problems can be presented as follows: 

 

Pmain  :Min C1X+C2Y 

𝐴𝑋 ≥ b1 

𝐵𝑋 + 𝐷𝑌 ≥ b2 

𝑋 ∈ 𝑍+
 , 𝑌 ∈  𝑅+ 

 
In the model above A (m1 × n1), B (m2 × n1), and D (m2 × n2) are considered as 

matrices with real numbers, and C1 and C2 are cost vectors, and b1 and b2 are 

defined values on the right, defined as matrices with real numbers. The master 

problem is written as follows: 

 

PmasterMinC1X+Z 
𝐴𝑋 ≥ b1 

𝑤𝑘
𝑡(b2 − BX) ≤ Z     𝑘 = 1, … , |𝑘| 

Ω𝑓
𝑡 (b2 − BX) ≤ 0                        𝑓 = 1, … , |𝑓| 

𝑋 ∈ 𝑍+
 , 𝑍 ∈  𝑅 

 

F and K present a set of feasible and optimal cuts, and Z is a continuous variable 

acting as a continuous part of the main objective function (C2Y). By solving the 

master problem, we bring the integer variables to a constant value and obtain an 

LP problem as a sub-dual function. We use the symbol ( ) above the variables 

that have been fixed in their value. 

 
PsubMin C2Y 

DY ≥ b2 − B𝑋 

, 𝑌 ∈  𝑅+ 
 

The problem of sub-dual function is as follows: 
 

Psub-dual Max w𝑇(𝑏2 − B𝑋) 
w𝑇𝐷 ≤ C2 

W≥ 0 
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The master problem may be destroyed if the problem is a function of infinite 

duality. Thus, any small value of infinity Ω will be selected and added to F to be 

cut by Benders. 
 

Ω𝑓
𝑡 (b2 − BX) ≤ 0 

 

In other words, if the problem is a double-bounded function, an optimal solution 

of the optimal bands section will be added to the set K. 
 

𝑤𝑘
𝑡(b2 − BX) ≤ Z 

 

This algorithm may be iterated and end in computational time related to the 

software or will be carried out in the needed number of iterations. The method of 

deriving the master problem and the sub-dual function of the basic problem as 

stated in the previous section, we have to separate the problem into two master 
problems and a sub-dual function to run the Benders Decomposition algorithm. 

This is initially done based on the circumstances of the forthcoming MIP problem. 

 

Sub-problem  

 

To write the sub-problem of the problem of the terms and constraints, we delete 
the ones that contain only the integer variable and write the remaining terms. 

 

Min Z= 

(1/𝑜𝑝𝑡1) × ∑ ∑ ∑ 𝑇𝑚𝑐ℎ
′

𝐶

𝑐

𝑀

𝑚

𝐻

ℎ

Ө𝑚ℎ + (1/𝑜𝑝𝑡2) ∑ ∑(𝐹𝑐ℎ
1

𝐻

ℎ

+ 𝐹𝑐ℎ
2

𝐶

𝑐

) 

 

Constraints  
 

 

(23) 
 

m,c,h 𝑇𝑚𝑐ℎ
′ ≥ ∑ ∑ �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚𝐷𝑝ℎ − 𝑇𝑚ℎ  N̅ 𝑚𝑐ℎ   , 𝑄𝑚𝑐ℎ

𝑂𝑝

𝑗

𝑃

𝑝

 

 

(24) 
 

m,h 
− ∑ 𝑇𝑚𝑐ℎ

′

𝐶

𝑐

≥ −𝑇𝑚ℎ
′    , 𝑈𝑚ℎ 

 

(25) 
 

c,h 𝐹𝑐ℎ
1 − 𝐹𝑐ℎ

2 = ∑ ∑ ∑ 𝐷𝑝ℎ

𝑀

𝑚

𝑃

𝑝

𝑂𝑝

𝑗

�̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

−
∑ ∑ ∑ 𝐷𝑝ℎ

𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

𝑁𝐶ℎ

   , 𝑅𝑐ℎ  

 

 

Constraint 25 breaks into the following two constraints to standardize for writing 
a sub-dual model. 
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(26) 

 

c,h 𝐹𝑐ℎ
1 − 𝐹𝑐ℎ

2 ≥ ∑ ∑ ∑ 𝐷𝑝ℎ

𝑀

𝑚

𝑃

𝑝

𝑂𝑝

𝑗

�̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

−
∑ ∑ ∑ 𝐷𝑝ℎ

𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

𝑁𝐶ℎ

   , 𝑅𝑐ℎ
1

 

 
(27) 

 

c,h 
𝐹𝑐ℎ

1 − 𝐹𝑐ℎ
2 ≥

∑ ∑ ∑ 𝐷𝑝ℎ
𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

𝑁𝐶ℎ

− ∑ ∑ ∑ 𝐷𝑝ℎ

𝑀

𝑚

𝑃

𝑝

𝑂𝑝

𝑗

�̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚   , 𝑅𝑐ℎ
2

 

 

The sub-dual variables are added as follows. 
 

𝑄𝑚𝑐ℎ  , 𝑈𝑚ℎ      , 𝑅𝑐ℎ
1     , 𝑅𝑐ℎ

2 ≥ 0 

 

In the standard model of the problem (in the minimal state) and considering the 

definition of the sub-dual variables (Qmch   ، Umh ،R1𝑐ℎ ، R2𝑐ℎ ) defined, one can write 

the sub-dual of the mentioned problem. Sub-dual function problem: Based on the 

sub-dual variables defined above, we use the usual method in sub-dual writing 

based on operations research. The problem is maximized and we will have 
constraints as many as the number of problem variables and problem 

constraints, obtained as follows 

 

Max Z= 

∑ ∑ ∑ 𝑄𝑚𝑐ℎ[∑ ∑ �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚𝐷𝑝ℎ − 𝑇𝑚ℎ  N̅ 𝑚𝑐ℎ]

𝑃

𝑝

𝑂𝑝

𝑗

𝐻

ℎ

𝐶

𝑐

𝑀

𝑚

 

− ∑ ∑ 𝑇𝑚ℎ
′

𝐻

ℎ

𝑈𝑚ℎ

𝑀

𝑚

  

+ ∑ ∑ 𝑅𝑐ℎ
1 [∑ ∑ ∑ 𝐷𝑝ℎ

𝑀

𝑚

𝑃

𝑝

𝑂𝑝

𝑗

�̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚 −
∑ ∑ ∑ 𝐷𝑝ℎ

𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

𝑁𝐶ℎ

] 

𝐻

ℎ

𝐶

𝑐
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+ ∑ ∑ 𝑅𝑐ℎ
2 [

∑ ∑ ∑ 𝐷𝑝ℎ
𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

𝑁𝐶ℎ

− ∑ ∑ ∑ 𝐷𝑝ℎ

𝑀

𝑚

𝑃

𝑝

𝑂𝑝

𝑗

�̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚 ] 

𝐻

ℎ

𝐶

𝑐

 

 

Constraints 

 

𝑄𝑚𝑐ℎ − 𝑈𝑚ℎ ≤ (1/𝑜𝑝𝑡1) × Ө𝑚ℎ m,c,h 

𝑅𝑐ℎ
1 − 𝑅𝑐ℎ

2 ≤ (1/𝑜𝑝𝑡2)  c,h 

𝑅𝑐ℎ
2 − 𝑅𝑐ℎ

1 ≤ (1/𝑜𝑝𝑡2)  c,h 

The inherent constraints of the problem are expressed as follows. 

 

𝑄𝑚𝑐ℎ  , 𝑈𝑚ℎ      , 𝑅𝑐ℎ
1     , 𝑅𝑐ℎ

2 ≥ 0 

 
The master problem  

 
In the basic model, we write all the constraints of integer type with the remainder 

as follows: Here is the master problem with cut or optimizing that should be 

added in each iteration: 

 

 Min Z 

j,p,h 
∑ ∑ 𝑎𝑗𝑝𝑚𝑋𝑗𝑝𝑚𝑐ℎ = 𝑣𝑝ℎ

𝑀

𝑚

𝐶

𝑐

 

j,p,m,c,h 
 

𝑋𝑗𝑝𝑚𝑐ℎ ≤ 𝑎𝑗𝑝𝑚 

j,p,m,c,h 

𝑋𝑗𝑝𝑚𝑐ℎ ≤ 𝑁𝑚𝑐ℎ  

m,h 
 

∑ 𝑁𝑚𝑐ℎ

𝐶

𝑐

− ∑ 𝑁𝑚𝑐(ℎ−1)

𝐶

𝑐

= 𝐼𝑚ℎ
+ − 𝐼𝑚ℎ

−
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h 
 

∑ 𝐿𝑐ℎ = 𝐿

𝐶

𝑐

 

c,h 
 

∑ 𝑁𝑚𝑐ℎ

𝐶

𝑐

≤ 𝑈𝐵 ×  𝑌𝑐ℎ 

c,h 
 

∑ 𝑁𝑚𝑐ℎ

𝐶

𝑐

≥ 𝐿𝐵 ×  𝑌𝑐ℎ  

m,c,h 
 

𝑁𝑚𝑐(ℎ−1) + 𝐾𝑚𝑐ℎ
+ − 𝐾𝑚𝑐ℎ

− = 𝑁𝑚𝑐ℎ 

j,p,c,h 
 

𝑧𝑗𝑝𝑐ℎ
1 − 𝑧𝑗𝑝𝑐ℎ

2 = ∑ 𝑋(𝑗+1)𝑝𝑚𝑐ℎ

𝑀

𝑚

− ∑ 𝑋𝑗𝑝𝑚𝑐ℎ

𝑀

𝑚

 

j,p,m,c,h 
 

𝑦𝑗𝑝𝑚𝑐ℎ
1 − 𝑦𝑗𝑝𝑚𝑐ℎ

1 = 𝑋(𝑗+1)𝑝𝑚𝑐ℎ − 𝑋𝑗𝑝𝑚𝑐ℎ 

𝑐, ℎ ≠ 𝐻 

𝑤𝑐ℎ
1 − 𝑤𝑐ℎ

2 = 𝐿𝑐(ℎ+1) − 𝐿𝑐ℎ 

 

Feasibility cut restriction which might be added in any iteration: 

 

Z≥  ∑ ∑ ∑ 𝑄𝑚𝑐ℎ[∑ ∑ �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚𝐷𝑝ℎ − 𝑇𝑚ℎ  N̅ 𝑚𝑐ℎ]𝑃
𝑝

𝑂𝑝
𝑗

𝐻
ℎ

𝐶
𝑐

𝑀
𝑚 − ∑ ∑ 𝑇𝑚ℎ

′𝐻
ℎ 𝑈𝑚ℎ

𝑀
𝑚 +

∑ ∑ 𝑅𝑐ℎ
1 [∑ ∑ ∑ 𝐷𝑝ℎ

𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚 −

∑ ∑ ∑ 𝐷𝑝ℎ
𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

𝑁𝐶ℎ
] 𝐻

ℎ
𝐶
𝑐 +

∑ ∑ 𝑅𝑐ℎ
2 [

∑ ∑ ∑ 𝐷𝑝ℎ
𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚

𝑁𝐶ℎ
− ∑ ∑ ∑ 𝐷𝑝ℎ

𝑀
𝑚

𝑃
𝑝

𝑂𝑝
𝑗 �̅�𝑗𝑝𝑚𝑐ℎ𝑡𝑗𝑝𝑚 ] 𝐻

ℎ
𝐶
𝑐  

 

Results 
 

A numerical example for the proposed model 

 

Table (1) shows the flow path of parts and the value of demand for the Part during 

each period. The last two rows show the size of the batch of parts for the inter-cell 
and intra-cell movement. Tables 2 is the value of model parameters and 

information about the machines. 
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Table 1 

 Sample problem input information (material flow path and operation time, 

demand for Parts, batch size in intercellular and intracellular movements) 
 

 
Information and parameters related to machines 

 

Table 2 

 The value of model input parameters and machine information and parameters 

 

 
 

Examining the solution of the proposed model 
 

First, considering all the existing constraints and the initial objective function 

related to cost alone in GAMS software with the conditions of MIP with integers 

has been solved by Cplex Solver to solve the mentioned dynamic cell 

manufacturing model. The result of solving this model is as shown in Table (1). 

Moreover, this work has been performed again on the second objective function, 

The value of the model input parameters 

Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter 

U(10,50)Unit 𝐵𝑝
𝑖𝑛𝑡𝑒𝑟 100$ 𝜌ℎ U(100,1000) Dph 3 Op 3 H 

𝐵𝑝
𝑖𝑛𝑡𝑒𝑟/10 𝐵𝑝

𝑖𝑛𝑡𝑟𝑎 U(0,10)$ 𝝱m U(10000,20000) ᶲ m ᶲ m /10 𝝰m 5 L 

50$ Ɣ pinter U(0,1)h tjpm 2 /𝝰m δm 4 UB 3 C 

5$ Ɣp intra
 tjpm/10 𝑡′𝑗𝑝𝑚 1.78* Өmh 2 LB 6 M 

* The cost of the machines during normal work hours U(7000,10000) FCh 50 𝑊𝑇ℎ 

)$(mhӨ  )$(𝝱m Wm ($) ᶲ m($) 
T ′mh  h Tmh h 

Machines 

15 6 8400 12000 200 500 Machine 1 

10.35 3 9800 14000 200 500 Machine 2 

17.85 7 10500 15000 200 500 Machine 3 

12.15 4 9800 14000 200 500 Machine 4 

7.85 2 8400 12000 200 500 Machine 5 

20 8 11200 16000 200 500 Machine 6 
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and the result of solving this model is written as mentioned in Table (2). 

Moreover, the model is solved again and is shown in Table (2) after standardizing 

the objective function described earlier. The results obtained in the tables are 

associated with the best values for the objective functions z1 and z2 plus costs 
available in the objective function is as follows: The fixed cost of machines, the 

cost of machine purchase, the variable cost of machines, cost of inter-cell 

movement of parts, cost of intra-cell movement of parts, cost of overtime 

machines, cost of inter-cell labor moving, cost of reconfiguring cells, cost of cell 

manufacturing as well as the revenue from the sale of machines, which is 

considered a negative sign in the objective function. 
 

Table 3 

Optimal solutions of the objective function 

 

First objective function 

 

Standard objective function 
 

 
 
Moreover, GAMS Software output is given in two forms in the figure associated 

with the standard model. Table 4 is the best configuration and flow of materials 

(parts) obtained from the output of GAMS Software. In the figure, the numbers 

inside the matrix show the sequence of operations and the numbers on the right 

the needed overtime hours, and the numbers on the left, the number of machines 
and human force inside the cell, as well as the cell number, formed. Only two 

cells will be formed for each planned period as already stated 
 

 

 

 
 

 

 

 

 
 

 

 

Cell 

formation 

cost

Reconfiguring 

 cells

Labor 

moving

Overtime 

cost

Intra-cell 

movement

Inter-cell 

movement

The 

variable 

cost of 

machines

Machine 

sales cost

Machine 

purchase 

cost

Machine 

fixed cost
Z2

Best Z1 

value

50000 3125 0 6731.775 12265 2750 39065 9800 111000 31900 5323.5 247036.78

Cell 

formation 

cost

Reconfiguring 

 cells

Labor 

moving

Overtime 

cost

Intra-cell 

movement

Inter-cell 

movement

The 

variable 

cost of 

machines

Machine 

sales cost

Machine 

purchase 

cost

Machine 

fixed cost

Best Z2 

value
Z1

57000 6475 300 6778.3 8060 10350 40726.5 0 143000 36900 5100.5 309590

Machine 

purchase 

cost

50000 3125 0 7256.1 12440 1500 40945.5 9800 111000 31900 5215.5 248380 2.028

The 

variable 

cost of 

machines

Machine 

sales cost

Machine 

fixed cost
Z2 Z1

Best standardized 

Z value

Cell 

formation 

cost

Reconfiguring 

 cells

Labor 

moving

Overtime 

cost

Intra-cell 

movement

Inter-cell 

movement
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Table 4 

 The best cell configuration in the periods plus overtime hours considering the 

model output in standard mode 
 

 
 

 
 

 
 

Implementation of Benders Decomposition solution  

 
It is necessary to code according to the master problem and the sub-dual problem 

function previously distributed to solve the model of cell formation in dynamic 

conditions for implementing the Benders Decomposition algorithm in the GAMS 

Software environment. This coding is provided in the second appendix of the 

study. Primary is derived. These iterations continue until the master problem and 
the sub-dual function problem are as close as possible when the value of the 

variables extracted from the software is shown as the desired output. Table 5 is 

the output of GAMS Software with sample numbers as a matrix after running the 

Benders algorithm. 

 

Cell1 Cell1 Cell1 Cell2 Cell2 Cell2

Part5 Part6 Part8 Part1 Part4 Part7

Cell 1 1 Machine 2 1 2 2 and 1 34 hours

Cell 1 2 1 Machine 3 3 3

Cell 1 1 Machine 5 3 and 1 3 1 Cell 2

Cell 1 1 Machine 6 2 2

Cell 2 2 Machine 2 2 2 and 1 2 10.5 hours

Cell 2 3 1 Machine 4 3 3 3

Cell 2 1 Machine 5 1 Cell 2 1 197 hours

Number o f 

manual labo r 

fo rce

The number 

of machines

First 

period

Machine 

overtime
Machines

Cell1 Cell1 Cell1 Cell2 Piece 3 Cell2

Part5 Part6 Part8 Part1 Part2 Part7

Cell 1 1 Machine 2 3 and 2 1 2 3 and 1 148 hours

Cell 1 2 1 Machine 3 3 Cell2

Cell 1 1 Machine 5 1 3 1 5.5 hours

Cell 1 1 Machine 6 2 2 and 1

Cell 2 2 Machine 2 2 3 3 and 1 14 hours

Cell 2 3 1 Machine 4 3 2

Cell 2 1 Machine 5 1

second 

 period

Number o f 

manual labo r 

fo rce

The number 

of machines
Machines

Machine 

overtime

Cell1 Cell1 Cell1 Cell1 Cell 2 Cell2

Part1 Part8 Part5 Part6 Part 3 Part7

Cell 1 1 Machine 2 2 2 2 3 9.5 hours

Cell 1 1 Machine 3 3 3 3
80.5 

hours

Cell 1 2 1 Machine 5 1 1 1 3 2
69.5 

hours

Cell 1 1 Machine 6 2 2 3 and 1 5.5 hours

Cell 2 1 Machine 2 1 1

Cell 2 1 Machine 4 2 67 hours

Cell 2 1 Machine 5 3

Number o f 

manual labo r 

fo rce

The number 

of machines

Third 

period
Machines

Machine 

overtime



         898 

Table 5 

 The best cell configuration in periods plus overtime hours, after the 

implementation of the Benders Decomposition algorithm 

 

 
 

 
 

 
 

Efficiency analysis of Benders Decomposition method 

 

The numerical example stated in Chapter 3 was retested to evaluate the 

performance of the Benders Decomposition algorithm to solve the dynamic cell 
model. In this method, the solution to the problem of minimizing a possible 

distance for the optimal objective function value (Z*) is established that is 

constrained by LB and UB where 𝐿𝐵 ≤ 𝑍∗ ≤ 𝑈𝐵. As already stated, LB is the lower 

bound that the software will be able to reach, and conversely, UB is the upper 

bound. In the execution of the Benders Decomposition algorithm in Gomez 

software as is seen in the second appendix, the value of the sub-dual function 

problem and the master problem, as the lower bound and the upper bound for 

the basic problem, respectively, are obtained. The solution time for the 

Cell1 Cell1 Cell1 Cell1 Cell1 Cell2

Part5 Part1 Part4 Part6 Part8 Part7

Cell 1 3 1 Machine2 1 2 183.25 ho urs

Cell 1 1 Machine3 2,3 3 43 ho urs

Cell 1 1 Machine5 1 3 3 1 5 ho urs

Cell 1 1 Machine6 3 2 138.5 ho urs

Cell 2 2 3 Machine2 1 2 1 1,3 57 ho urs

Cell2 2 Machine4 2 2 59.25 ho urs

Machine 

overtime

Number o f 

manual labo r 

fo rce

The number 

of machines

First 

period
Machines

Cell1 Cell1 Cell1 Cell2 Cell2 Cell2

Part1 Part7 Part4 Part8 Part6 Part2

Cell 1 3 1 Machine2 3 1 2 45 ho urs

Cell 1 1 Machine3 2 3 40 ho urs

Cell 1 1 Machine4 3 2 66.5 ho urs

Cell 1 1 Machine5 1 3 1 3 192.5 ho urs

Cell 2 2 3 Machine2 1 2 1
3, 2 

and 1
7.5 ho urs

Cell2 1 Machine6 2

Number o f 

manual labo r 

fo rce

The number 

of machines

Second 

 period
Machines

Machine 

overtime

Cell1 Cell1 Cell1 Cell1 Cell2 Cell2

Part7 Part1 Part8 Part3 Part5 Part6

Cell 1 3 1 Machine2 1 2 2 1 183.5 ho urs

Cell 1 1 Machine3 2 3 119.5 ho urs

Cell 1 2 Machine4 2 3 3 and 1 158 ho urs

Cell 2 2 3 Machine5 3 1 1 3 and 1 3 122.5 ho urs

Cell 2 1 Machine6 2 2 174.25 ho urs

Machine 

overtime

Number o f 

manual labo r 

fo rce

The number 

of machines

Third 

period
Machines
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standardized MIP problem is about 570 seconds reduced to one-third in Benders 

solution. The costs of the objective function of the basic problem are shown in 

Table 5. This problem (Benders Decomposition) has 5000 constraints and 4824 
decision variables. It has to be stated that it has succeeded in obtaining one of the 

upper and lower bounds for the optimal value of Z*, which will be further 

analyzed on the next page while implementing the Benders algorithm in GAMS 

software on the report. 

 

Table 6 
 Upper and lower bounds for the optimal value of Z * and the costs of the objective 

function after solving Benders algorithm 
 

Machine 

variable 

cost 

Machine selling 

price 

The cost of 

buying a 

machine 

Fixed 

machine 

cost 

Z2, upper 

bound for 

Z * 

Z1, lower 

bound for 

Z * 

40954.5 
 

9800 
 

111000 31900 5215.5 
 

248380 

 

Cell 

formation 

cost 

Reconfiguration Labor 

relocation 

Overtime 

cost 

Intra-cell 

movement 

Inter-cell 

movement 

50000 3125 

 

0 7256.1 

 

12440 

 

1500 

 

 

As Table (6) shows, z* value must be obtained between two values (5215.5 and 
248380) that is in line with the standardized value of z, 2.028, in Table (5); with 

this approach to Solve this bi-objective Cell Formation problem, compiling time is 

reduced to one third. Therefore, one can conclude that the performance of the 

Benders  solution approach is confirmed for the proposed model. Based on the 

questions raised in the study, one has to state that necessary to mention the 

reason for using a precise solution algorithm such as Benders to solve CMS 
problems as proposed in this study to provide an innovative approach to 

conventional innovative approaches like a genetic, ant colony and so on. 

Moreover, the way of solving Benders Decomposition has been explained in detail 

in this chapter. The advantages of the current solution approach are its strong 

mathematical base, which has become very prevalent in recent years for solving 
MIP models in engineering and mathematics, as well as the optimality of the 

expected answers to NP-hard problems. 

 

Conclusion 

 

The paper presented a new model of cell formation  under dynamic conditions, 
which is finally solved using the Benders  decomposition approach. In the current 

model, items like real-world costs like human resources, cell formation, inter-cell, 

and intra-cell movements, machine purchase and revenue costs, reconfiguration 

costs, machinery fixed/variables costs, and the costs related to machinery over 

time were taken into account. Then objective function linearization and the 
constraints were performed as described in Chapter 3. In the next step, 

standardization was performed with a multi-objective approach and the bi-

objective function was transformed into a single objective. Then the model in 

question has been validated with GAMS software and its implementation was 
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carried out with specific conditions in Benders  exact solution approach, then the 

answer and its results were shown. 

 

A review of the literature of CMS research in most studies revealed that because 
of the complexities of solving integrated models, it tends to integrate some of the 

design-related features. However, the features are interdependent, and reaching 

optimization in designing a system calls for a holistic solution approach. Indeed, 

one can state that in this type of system, only one part of the design features are 

included; however, the study tried to include more design features compared to 

the previous studies. For instance, the proposed model tries to consider more 
design features: a cost was considered for cell formation, = not previously 

considered in this type of model. Besides the cases stated in this model, it has 

been tried to reduce the inter-cell working hours deviation in the objective 

function. 

 
Concerning the size of the formed cell, the lower bound is considered too, which is 

the real meaning of cell formation  in the desired period, as at least two machines 

have to be allocated to form each cell. As a recommendation commonly seen in 

CMS problems in papers, one can state the problem of better and more 

comprehensive consideration of design features in CMS. 

 

• Integrating goals closer to the real world more and comprehensively for 
optimization and solution by optimal multi-objective solving approaches. 

• More significance to the human force sphere (like working hours, training, 

hiring/firing, skills, and so on) to reduce the associated costs in CMS 

models. 

• Solving CMS models with precise algorithms and metaheuristics with larger 

aspects if possible. 

• Modification and improvement of Benders  exact solution and similar 

approaches to reach more accurate values for solving CMS models better 

could be useful. 
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