Return rates for opioid versus nonopoid management of patients with abdominal pain in the emergency department

Ossama Sayedahmed Sobhi Ali Sayedahmed
Corresponding author email: osamaezdahmed@yahoo.com

Mahmood Mohammed Ghanaim
Email: mmghanaim@dha.gov.ae

Abstract---Given the nationwide opioid epidemic, EM clinicians are in a unique position to address it by increasing the use of non-opioid analgesia, prescribing parenteral & oral opioids in ED & at discharge with care, & identifying & treating studied cases with opioid use disorder while they are still in ED. In a side-by-side study of NSAIDs (valdecoxib) and opioid/acetaminophen combinations, individuals with acute MSK pain in the ED experienced comparable pain reduction for short-term analgesia (up to sixty minutes). NSAIDs had comparable analgesic efficacy to acetaminophen at one to two hours & two to three days in studied cases with acute STIs as well as opioids at 1 hour (moderate certainty evidence) & four to seven days (low certainty evidence). Studied cases who present to ED with range of acute painful syndromes, various chronic painful syndromes, or pain syndromes connected to cancer receive quick & efficient pain treatment using opioid analgesics. When it is determined that the chance of analgesic benefit outweighs likelihood of harm, opioids ought to be utilized in EDs as part of multimodal analgesia in conjunction with non-pharmacological & non-opioid therapy.

Keywords---opioid, nonopoid, abdominal pain.

Introduction

1 of the most frequent causes for people to go to the emergency department is pain. Emergency medicine physicians & midlevel providers ought to be professionals in providing safe, efficient, & timely pain management because of a significant volume of ED visits linked to pain. Given the nationwide opioid epidemic, EM clinicians are in a unique position to address it by increasing the use of non-opioid analgesia, prescribing parenteral & oral opioids in ED & at discharge with care, & identifying & treating studied cases with opioid use disorder while they are still in ED. Over the past ten years, ED analgesia research...
has evolved tremendously, frequently contradicting dogmatic perspectives on pain & several prevalent pain treatment techniques. (1).

Because of their synergistic impacts on pain management, non-opioid therapeutic drugs (acetaminophen & NSAIDs) & opioids are routinely given together to cases with MSK & soft tissue injuries and pain in the emergency department & at discharge. Effectiveness of combination therapy & superiority of one class of analgesics has lately been questioned by several clinical investigations. In handling acute MSK pain & back pain, it has been discovered that combination of acetaminophen (one g) & ibuprofen (four hundred mg) lacks analgesic & functional superiority. Similarly, in ED-studied cases with modest acute MSK injuries, this combination had been no better than paracetamol alone. In ED studied cases with acute MSK pain, involving fractures, ibuprofen/acetaminophen combination had been discovered to be just as efficacious as oxycodone/acetaminophen, hydrocodone/acetaminophen, & codeine/acetaminophen. In a side-by-side study of NSAIDs (valdecoxb) and opioid/acetaminophen combinations, individuals with acute MSK pain in the ED experienced comparable pain reduction for short-term analgesia (up to sixty minutes) (2).

NSAIDs had comparable analgesic efficacy to acetaminophen at one to two hours & two to three days in studied cases with acute STIs as well as opioids at 1 hour (moderate certainty evidence) & four to seven days (low certainty evidence). For ED-studied cases with mild to severe STI discomfort, oral paracetamol, paracetamol, or a combination of two produced comparable analgesic effectiveness in the first two hours & first three days (3).

Studied cases who present to ED with range of acute painful syndromes, various chronic painful syndromes, or pain syndromes connected to cancer receive quick & efficient pain treatment using opioid analgesics. When it is determined that the chance of analgesic benefit outweighs likelihood of harm, opioids ought to be utilized in EDs as part of multimodal analgesia in conjunction with non-pharmacological & non-opioid therapy. In emergency room or when discharging studied cases with acute back pain, acute headache, acute MSK pain (aside from fractures), & acute dental pain, opioids shouldn't be used as first-line analgesics because risks of misuse, overdose, & addiction outweigh minimal, if any, the pain relief they provide (4).

Clinicians in ED must be aware that most often prescribed opioids in ED significantly differ from one another in terms of their capacity to cause euphoria that could develop into addiction. opioid of preference ought to be morphine sulfate, which should be delivered either parenterally or orally in emergency department & at discharge since it offers a better balance of sufficient analgesia & lessened euphoria. In cases where opioid analgesia is still necessary even though morphine is contraindicated, parenteral fentanyl & oral hydrocodone have been acceptable substitutes in the emergency department & at discharge (5).

Because of its significantly higher rates of respiratory & central nervous system depression (relative to morphine) & it’s extremely euphorigenic qualities, parenteral & oral hydromorphone ought to be avoided as the 1st line opioid in
ED. Because of its greater risk for abuse, diversion, overdose, & addiction development as well as its inferior analgesic properties compared to morphine & hydrocodone, oxycodone shouldn't be administered in the emergency department or after discharge. The same goes for tramadol, which has low analgesic efficacy at best, significant potential for abuse, & variety of negative side effects (such as hypoglycemia, hyponatremia, seizures, & serotonergic syndrome). Finally, due to its suboptimal pain relief and high genetic variability in analgesic response, codeine has no place in management of pain in emergency department (6).

Pure mu-receptor agonists don't have analgesic upper limit; thus, their doses may be increased until the pain has been under control or side effects are uncomfortable or harmful. Intravenous way of administering parenteral opioids produces quick, titratable, & efficient pain relief in the emergency department & is used as the preferred method of administering opioids. The intranasal route (fentanyl, hydromorphone), inhalation (via nebulizer) route (fentanyl, morphine), subcutaneous injection (morphine, hydromorphone), and transmucosal (rapidly dissolvable fentanyl tablets) routes should all be considered by ED clinicians when intravascular access is not easily accessible. Intramuscular (IM) distribution of opioids in emergency department ought to be avoided because it is linked to a higher risk of side effects & dose escalation, as well as variable absorption rates, soft tissue infection, & myelofibrosis. Even though oral route of opioid administration in ED has poor oral bioavailability (except oxycodone) & delayed start of analgesia in ED, limiting its utility for fast pain control, it ought to be considered when practical (7).

Pregnancy-related opioid use has drastically increased in recent years, mirroring an epidemic seen in the general population. More than 259 million opioid prescriptions were written by U.S. healthcare professionals in 2012, which is twice as much as in 1998. In 2002 & 2012, the number of people using prescription opioids improperly more than doubled, & in 2000 & 2014, the number of people dying from opioid analgesics grew by almost 400 percent. Misuse of prescription opioids has increased, and heroin use has increased dramatically at the same time. From little over 3,000 in 2010 to more than 10,500 in 2014, the number of overdose deaths involving heroin soared by over 300 percent in less than five years (8).

In forty-six states, 22.8 percent of Medicaid-eligible women completed opioid prescriptions while pregnant in 2007. Prenatal maternal opioid use surged roughly five-fold between 2000 and 2009, according to research that looked at hospital discharge diagnosis codes. Neonatal abstinence syndrome has sharply increased due to rising prevalence of opioid use during pregnancy, going from 1.5 cases per 1,000 hospital births in 1999 to 6.0 cases per 1,000 hospital births in 2013, with associated $1.5 billion in related annual hospital costs. Neonatal abstinence syndrome is more prevalent in states with higher rates of opioid prescription. Additionally, substance abuse has been found to be a significant risk factor for pregnancy-related deaths in various state maternal mortality studies (1).

The pattern of opioid use known as opioid use disorder has been characterized by tolerance, craving, inability to manage usage, & continuing use despite negative
effects. Opioid use disorder has been a chronic, manageable condition that may be successfully treated by combining drugs with behavioral therapy & support for recovery, allowing persons who suffer from it to regain control over their health & their lives. Abstinence-focused short-term treatment programs have significant rates of recurrence & typically do not help studied cases achieve sustained long-term recovery. This emphasizes how crucial it is for ongoing care to be available & accessible in opioid treatment programs (9).

Specific factors, like unsuccessful attempts to reduce or manage usage, use leading to social issues & failure to meet duties at work, school, or home are used to make a diagnosis. The term "opioid use disorder" has taken the place of phrases "opioid abuse" & "opioid dependence" in the Diagnostic & Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). DSM-5 lists eleven primary symptoms of opioid use disorder & bases the condition’s severity on several recurrent symptoms encountered over the year. Mild (two to three symptoms), moderate (four to five symptoms), & severe (six or more symptoms) are 3 levels of severity. Terms for abuse & dependence do not quite correspond to new classifications of mild, moderate, & severe opioid use disorder. Previous nomenclature, like abuse & dependency, is still utilized when mentioning such sources because it is still widely used in earlier research, recommendations, & regulatory requirements in this sector despite the shift in diagnostic terminology (10).

One of the most significant contributions ED professionals can make is to treat studied cases’ discomfort. Analgesia is prime—& reachable—a target for improving studied case’s ED care due to the regularity with which pain serves as a reason for visit, the importance of pain relief to specific studied cases (& family), & relative ease with which pain can frequently be alleviated. Some broad guidelines are addressed in the first section of this talk and ought to be kept in mind while thinking about pain care in ED. The requirement for discussing pain management during ED is another factor to consider. Findings of a review of current ED analgesic practices support the argument for emphasis on pain treatment. The discussion will cover suggestions for removing obstacles to proper pain care in addition to pointing out areas in which ED practitioners are not operating at their best. Regarding diverse studied case categories whose analgesia care has historically been subpar or contentious, specific analgesic techniques will be covered (11).

Nearly eight million visits to the emergency department in the United States were made in 2005 for the sole purpose of acute stomach pain. While historically it had been believed that the use of analgesia for symptom control in emergency department studied cases with abdominal pain would conceal indicators of peritonitis & possibly postpone care, multiple studies have demonstrated that this practice has no negative effects. As a result, prompt analgesic administration to studied cases that request symptom control is now a requirement of emergency treatment. Studied cases with acute painful illnesses who wait too long to receive analgesics simply experience increased discomfort (12).

Oligoanalgesia, or underuse of painkillers, is a widespread & well-researched phenomenon in emergency departments. Several patient-level variables, such as
age, gender, ethnicity, triage acuity, & diagnosis, have been linked to oligoanalgesia. A system-level component called ED crowding has also been linked in recent studies to the effectiveness of pain management. In 2 of these earlier investigations, general ED populations & older adult populations with hip fractures both showed a correlation between crowding & worse pain control. As far as we are aware, no research has looked at the relationship between ED crowding & analgesia in studied cases with stomach discomfort (13).

For many crowding measurements, there is nonlinear relationship among crowding & delays in triage to analgesia. Adults with abdominal pain had been more likely to face delay once they arrived at the room once crowding reached certain threshold (2nd quartile of patient hours, 3rd quartile of inpatient number, & 2nd quartile of waiting room number). Because crowding had no bearing on delay once studied cases arrived at their rooms, this ceiling impact can represent thresholds in studied case-to-nurse or studied case-to-resident physician ratio, which rises at low crowding levels & tends to level off when maximum capacity has been reached. Alternatively, it may represent waiting time (14).

This may mean that studied cases with abdominal discomfort are given priority over other studied cases that are more likely to experience delays throughout periods of high crowding, given linear relationship among room and analgesia in our earlier analysis of the larger sample. Further proof that occupancy can be the best operational indicator of ED crowding comes from the fact that occupancy showed a somewhat linear connection with delays, suggesting that it can be better able to discern the quality of emergency care at all levels. The impact of studied case hours, on the other hand, can saturate at lower levels since it measures the total burden in the emergency department, especially the workload of nurses who care for both large numbers of boarders and those boarders for extended periods. Data from earlier research with threshold values larger than or equal to the fiftieth percentile have been reported; nevertheless, these analyses did not investigate whether relationship had been linear (15).

The vast body of literature supports the widespread use of several non-opioid options in ED for the management of many painful conditions. American College of Emergency Physicians & American Academy of Emergency Medicine support ketamine as non-competitive N-methyl-D-aspartate / glutamate receptor complex antagonist & strong analgesic suited for therapy of acute & chronic pain in ED. Typical IV dosing protocol for sub-dissociative (SDK) doses is 0.1 to 0.3 mg/kg, or a fixed dose of fifteen to thirty mg given over fifteen minutes to minimize psycho-perceptual side effects. For treating pain in emergency department, it has been demonstrated that SDK at0.3 mg/kg IV has comparable efficacy to morphine at 0.1 mg/kg IV. Without IV access, SDK may be given IN at0.5 to 1mg/kg with analgesia comparable to opioids given IM & IN. Additionally, it was discovered that nebulized ketamine, given at doses between 0.75 & 1.5 mg/kg, was successful in lowering acute pain in both adult & pediatric ED patients with painful diseases. Recently, randomized clinical research including 120 studied cases showed that nebulized ketamine administered at 3 distinct dose regimens—0.75, 1, & 1.5 mg/kg—had comparable analgesic effects (16).
Data about SDK for the treatment of chronic pain is only available as case reports & case series. In individuals with tolerance or opioid dependency who need therapy for acute or chronic pain, ketamine may be a possible option as part of the opioid-sparing strategy. Present EM literature supports administration of SDK as safe & effective agent for use in ED pain management (15).

References

