How to Cite:

An empirical investigation of the relationship between consanguineous marriage and prevalence of β-thalassemia in Punjab, Pakistan: A cross-sectional study

Nadeem Masih
Senior Nursing Instructor, Aligarh College of Nursing, Lahore, Pakistan
Corresponding author email: nadeemmasih0128@gmail.com

Farzana Amir
Nursing Instructor, Aligarh College of Nursing, Lahore, Pakistan
Email: farzana.amir7@gmail.com

Rehana Tabbasum
Nursing Instructor, Aligarh College of Nursing, Lahore, Pakistan
Email: rehanatabbasum542@gmail.com

Ayesha Naz
Nursing Instructor, Aligarh College of Nursing, Lahore, Pakistan
Email: ayeshanaazpu@gmail.com

Arfa Nadeem
Nursing Instructor, Aligarh College of Nursing, Lahore, Pakistan
Email: arfaawan1122@gmail.com

Abstract--It is a striking fact that β-thalassemia has become a common single gene disorder among the children. Among the contributing factors, overwhelmed practice of consanguineous marriage is one of the most prominent reason of the high rate prevalence of β-thalassemia in Pakistan. Therefore, the present research was conducted to investigate the relationship between consanguineous marriage and prevalence of β-thalassemia in Punjab, Pakistan. The nature of study was cross-sectional and quantitative. The study was conducted in the Children’s Hospital, Lahore and Multan. Purposive sampling technique was used and sample of 300 parents was drawn. A well-structured research questionnaire was used to collect the data from the parents. The results indicate that rate of β–Thalassemia is significantly higher (76.7%) in first cousin marriage as compared to the second cousin marriage (23.3%). The
trend of thalassemia major among male patients is higher (76.31%) in first cousin marriage as compared to the second cousin marriage (23.69%). Similarly, the prevalence of thalassemia Intermedia is significantly prevalent higher (67.5%) among male patients in first cousin marriage as compared to the second cousin marriage. The above findings can be concluded that there was a strong relationship between consanguineous marriage and prevalence of β-thalassemia in Punjab, Pakistan. In the light of results, it can be recommended that premarital screening and counselling of the couples are highly essential to minimize the incidence of β-thalassemia in Punjab, Pakistan.

Keywords—β-thalassemia, consanguinity, blood disorder, premarital screening.

Introduction

Among the single gene disorders, β-thalassemia is the most common prevalent disease in Pakistan (Ishfaq & Hashmi, 2015). It is an alarming that rate of β-thalassemia is increasing day by day (Akter, Khatun, & Hossain, 2020). Previous research studies also indicate that there is a close relationship between the consanguineous marriage and the prevalence of β-thalassemia (Aziz, Sadaf & Kanwal, 2012). Speaking statistically, the rate of β-thalassemia in Pakistan is ranged between 5-7% in Pakistan. At present, more than 10 million are carriers and 5000 children are diagnosed with β-thalassemia every year (WHO, 2012).

It is an inherent genetic disorder transmit from one generation to coming generation (Hussain et al., 2021). The bitter fact is that practice of marriage in a similar family with homogenous characteristics is also a contributing factor in β-thalassemia (Baig et al., 2005). There are three common categories of the β-thalassemia have been characterized as under:

- Asymptomatic βeta-thalassemia (Carrier)
- βeta-thalassemia intermedia (Moderate anemia requiring intermittent transfusions)
- βeta-thalassemia major (Severe anemia requiring lifelong transfusions and iron chelation therapy)

Absent production or decreased production of hemoglobin chains triggered by a marriage in a single group referred as thalassemia (Wetherall & Clegg, 2001). Alpha and Beta are characterized depending upon the production of Alpha and Beta Chains.

- Alpha Thalassemia- Decreased/Absent alpha globin chains (due to defective alpha genes)
- βeta Thalassemia- Decreased/Absent production of βeta globin chains (due to mutations or change in β-genes)
It is an established fact that 2 carriers get marriage, likely to have a chance of 25% of having child with thalassemia major, 25% of a chance of having a normal child and 50% of a chance of having a carrier child in each pregnancy (Shami & Tariq, 1999). Person with thalassemia traits should marry a non-carrier person then there is a chance of 50% of having a normal child, 50% of having a carrier child and zero chance of Thalassemia major during each pregnancy (Asadi & Doroudchi, 2004).

Objective of the research study

The objective of the research study is to investigate the relationship between Consanguineous Marriage and Prevalence of β-Thalassemia in Punjab, Pakistan.

Materials and Methods

The nature of the research study is quantitative and cross section. The present research was conducted in the Children’s Hospital Lahore and Multan. The purposive sampling technique was employed to draw the sample from these two settings. The inclusion criteria was as under

- The Married Couples have cousin marriage
- The Married Couples have a child with thalassemia and require blood transfusion support
- The Child with thalassemia should be registered Children’s Hospital Lahore and Multan

The target population of the present research was parents of children with thalassemia. A sample of 300 parents was drawn and equitable representation has been given to the Children’s Hospital Lahore and Multan. A well-structured research questionnaire was used to collect the data from the parents having child of thalassemia. The consanguinity marriage was operationalized into two categories (i) First Cousin, (ii) Second Cousin. The descriptive analysis i.e. percentage, Z-test and Standard errors of mean was employed to investigate the relationship between consanguinity marriage and prevalence of β-thalassemia in Punjab, Pakistan.

Results and Discussions

Table 1

<table>
<thead>
<tr>
<th>β-Thalassemia Type</th>
<th>Male Patients (%)</th>
<th>Female Patients (%)</th>
<th>Z-Test</th>
<th>p-Value</th>
<th>Sex Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>155 (86.1%)</td>
<td>90 (75%)</td>
<td>7.5</td>
<td><0.001</td>
<td>172.22</td>
</tr>
<tr>
<td>TI</td>
<td>25 (13.9%)</td>
<td>30 (25%)</td>
<td>2.31</td>
<td>0.0061</td>
<td>83.33</td>
</tr>
<tr>
<td>Total</td>
<td>180 (60%)</td>
<td>120 (40%)</td>
<td>7.39</td>
<td><0.001</td>
<td>150</td>
</tr>
</tbody>
</table>

The above table shows that male are highly affected with β-thalassemia major as compared with female children (60% vs 40%). And, there was a strong relationship between the male children and thalassemia major (p-Value <0.001).

Table 2

<table>
<thead>
<tr>
<th>β-Thalassemia Type</th>
<th>Birth Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TM</td>
<td>132 (94.3%)</td>
</tr>
<tr>
<td>TI</td>
<td>8 (5.7%)</td>
</tr>
<tr>
<td>Total</td>
<td>140 (34%)</td>
</tr>
</tbody>
</table>

The above table presents that rate of β-thalassemia was greater at 1st birth order (34%) and lower at 6th birth order (4.6%). Similarly, the patients of thalassemia major were also highest at 1st birth order (94.3%) and lowest at 6th birth order. On the other hand, patients with thalassemia intermedia were highest at 6th birth order (15.8%) and lowest at 1st birth order (5.7%).
Table 3
Percentage Distribution of β–Thalassemia Patients by Consanguinity Marriage

<table>
<thead>
<tr>
<th>β–Thalassemia Type</th>
<th>Gender</th>
<th>Consanguinity Marriage</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>First Cousin</td>
<td>Second Cousin</td>
</tr>
<tr>
<td>Thalassemia Major</td>
<td>Male</td>
<td>145 (76.31%)</td>
<td>45 (23.69%)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>55 (84.6%)</td>
<td>10 (15.4%)</td>
</tr>
<tr>
<td>Thalassemia Intermedia</td>
<td>Male</td>
<td>25 (67.6%)</td>
<td>12 (32.4%)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>5 (62.5%)</td>
<td>3 (37.5%)</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>230 (76.7%)</td>
<td>70 (23.3%)</td>
</tr>
</tbody>
</table>

The above table shows the percentage distribution of β–Thalassemia patients by consanguinity marriage. The rate of β–Thalassemia is significantly higher (76.7%) in first cousin marriage as compared to the second cousin marriage (23.3%). The trend of thalassemia major among male patients is higher (76.31%) in first cousin marriage as compared to the second cousin marriage (23.69%). Similarly, the prevalence of thalassemia Intermedia is significantly prevalent higher (67.5%) among male patients in first cousin marriage as compared to the second cousin marriage. The above results indicate that prevalence of β–Thalassemia is highly significant in first cousin marriage.

Conclusion

The above discussions can be concluded that there was a strong relationship between the consanguinity and prevalence of β–Thalassemia in children. The trend of prevailing β–Thalassemia in the first cousin marriage is highly alarming. The above results also show that prevalence of thalassemia major (TM) is significantly higher among male patients. It is the need of the hour to take revolutionary measures to curb the increasing prevalence of β–Thalassemia. It is also recommended that pre-marital screening and counselling can prove very instrumental to minimize the prevalence of β–Thalassemia in Punjab, Pakistan.

References

