
How to Cite: 

Alkhalaf, A. K. A., Alkhateeb, S. A. S., & Alshammari, M. M. (2024). Integration of artificial 

intelligence in histopathological and radiological image analysis: Enhancements in diagnostic 
workflow. International Journal of Health Sciences, 8(S1), 938–953. 
https://doi.org/10.53730/ijhs.v8nS1.15010   

 

 

 

International Journal of Health Sciences E-ISSN 2550-696X © 2024.  

Manuscript submitted: 01 Jan 2024, Manuscript revised: 09 Jan 2024, Accepted for publication: 15 Jan 2024 

938 

Integration of artificial intelligence in 
histopathological and radiological image 
analysis: Enhancements in diagnostic workflow 
 

 

Abdulmohsen Khalaf Ali Alkhalaf 
KSA, National Guard Health Affairs 

 

Sulaiman Ali Sulaiman Alkhateeb 

KSA, National Guard Health Affairs 
  

Maha Mohammed Alshammari 

KSA, National Guard Health Affairs 
 

 

Abstract---Aim: This review explores the integration of artificial 
intelligence (AI) in both histopathological and radiological image 

analysis, focusing on its potential to enhance diagnostic workflows 

and patient outcomes. Methods: We examined recent advancements in 
AI technologies, particularly deep learning and computational 

pathology (CPath), highlighting methodologies such as multiple 

instance learning (MIL) and graph neural networks (GNNs) for 

analyzing whole slide images (WSIs) and radiological imaging 
techniques like MRI and CT scans. The review also discusses 

challenges in data privacy, ethical concerns, and regulatory needs. 

Results: AI-driven tools have demonstrated improved accuracy in 
detecting diseases such as cancers by automating image analysis and 

enhancing image quality. Techniques like virtual staining and 

segmentation facilitate the quantification of morphological traits, 
enabling better prognostic predictions. Radiological imaging 

techniques integrated with AI provide crucial complementary 

information on anatomical abnormalities and disease progression. 
Despite these advancements, challenges like the need for substantial 

human annotation and computational resources persist. Conclusion: 

The future of AI in histopathology and radiology looks promising, with 

ongoing innovations poised to refine diagnostic capabilities and foster 
personalized medicine. Addressing ethical and practical concerns will 

be critical for the responsible implementation of AI technologies in 

clinical settings. 
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Introduction  
 

Medical imaging has advanced significantly thanks to artificial intelligence (AI) 

technologies, which are revolutionizing the diagnostic and therapeutic 
procedures. Machine learning algorithms are widely used in image interpretation, 

where they demonstrate exceptional capabilities in identifying and diagnosing a 

range of medical diseases based on imaging data. AI-driven technologies have 
shown to be especially helpful in radiology, helping medical practitioners to more 

quickly and accurately detect problems in X-rays, MRIs, and CT (computed 

tomography) scans. Large volumes of imaging data can be processed by these 
technologies far more quickly than by human experts, which makes early 

detection and prompt action possible. AI is also essential for improving image 

quality and reducing noise in medical imaging. Diagnostic accuracy is increased 

by using AI-driven image augmentation algorithms, which provide sharper and 
more detailed images. These developments make it possible for medical 

practitioners to see anatomical features and anomalies more clearly, which helps 

them make better decisions. AI also facilitates the integration of several imaging 
modalities, providing a thorough picture of a patient's condition—a critical 

component of customized therapy planning. AI is being used in the field of 

medical imaging to automate repetitive processes, freeing up healthcare 
professionals to focus more on patient care. Radiologists and other medical 

practitioners have less work to do when patterns and anomalies are quickly 

identified through automated image analysis. This improved efficiency improves 
resource optimization and cost-effectiveness in healthcare systems in addition to 

speeding up diagnostics. 

 

Even with AI's potential to revolutionize medical imaging, problems including data 
privacy, moral dilemmas, and the need for legal frameworks still exist. In order to 

ensure responsible and ethical deployment as these technologies evolve, it is 

imperative that these challenges be addressed. Working together, data scientists, 
regulatory agencies, and healthcare practitioners may better utilize AI's potential 

in medical imaging while preserving patient confidentiality and protecting 

sensitive health data. Future developments in AI technology are anticipated to 
hone and expand their uses in medical imaging, eventually leading to better 

patient outcomes and a general progress in the field of healthcare diagnosis and 

treatment. A growing number of whole-slide images (WSIs) are being produced in 
clinical settings as a result of developments in scanning systems, imaging 

technologies, and storage solutions. These WSIs can be computationally 

processed through the use of deep learning and artificial intelligence (AI). 

Computational pathology (CPath), the automation and digitization of clinical 
pathology, provides more objective diagnoses and prognoses for patients and 

doctors, makes it easier to find new biomarkers, and improves the prediction of 

therapy responses [1] (Box 1). The origin of cancers with unknown primary can be 
ascertained [2], prostate cancer can be graded similarly to expert pathologists [3], 

colorectal cancer prognosis can be predicted more accurately than with 

conventional staging [4], and breast cancer lymph node metastases can be found 
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[5] with the aid of AI-assisted diagnosis and automatic classification of 

hematoxylin and eosin (H&E)-stained whole slide inoscopes. 
 

By digitizing their existing archives or incorporating slide scanning into regular 

procedures, institutions are building up enormous collections of digital slides. 
Public programs like the National Cancer Institute's The Cancer Genome Atlas 

(TCGA) Program aid in the gathering of sizable cohorts from a range of disease 

models. Labs can now perform extensive investigations involving thousands of 

samples thanks to the dramatic decrease in computer storage costs and the 
growing availability of powerful processors, especially graphics processing units 

(GPUs). Furthermore, deep learning has evolved to become the primary 

algorithmic framework in the majority of CPath systems as a result of the 
advancements in AI and deep learning integration in CPath. From the early days 

of the discipline, which started with basic statistical studies of nuclear 

morphology in the 1960s [6,7,8], to the current goal of changing clinical pathology 
practice, this shows a significant evolution. Hand-crafted, human-interpretable 

features (HIFs) retrieved from areas of interest might provide insightful 

information about diagnosis and prognosis, as pioneering machine learning 
studies have shown [9,10,11,12]. Deep learning is now being used to scale these 

ideas since it can recognize and extract pertinent morphological traits from 

complicated input data on its own. CPath has the potential to identify new 

biomarkers even though its main application is in job automation, which lowers 
interobserver variability and eases pathologists' workloads [13]. AI, for example, 

may analyze tissue to uncover new morphological traits relevant to diagnosis and 

prognosis [15,16] and expose numerous biological events [14]. In addition to its 
clinical uses, CPath can help in drug development and therapy [17] by 

automating the identification of morphological alterations in tissue specimens 

exposed to drugs during preclinical and clinical trials. 
 

There is still room for expansion for CPath in precision medicine and pathology 

research, notwithstanding these developments. New methods for improving CPath 
algorithms are being developed as a result of ongoing advancements in computer 

vision research. Examples of these methods include self-supervised learning (SSL) 

[19] and representation learning using vision transformers [18]. Furthermore, as 

precision medicine advances, more assays are required [20], which increases the 
amount of data gathered for each patient in order to incorporate it into the CPath 

workflow. Molecular and immunohistochemical tests are increasingly included in 

the diagnosis process in addition to histological analysis. This trend will be 
further accelerated by novel approaches like multiplex imaging [21], spatially 

resolved genomic tests [22], and 3D pathology [23], which will open up new 

possibilities for multimodal integration. Foreseeing future issues requires 
knowing which AI frameworks the CPath community will settle on. In addition to 

highlighting potential research fields devoted to creating reliable and generalizable 

representations of WSIs from large-scale, heterogeneous, multimodal, and 
privacy-preserving datasets, this review seeks to identify and summarize 

significant technical developments in WSI modeling. 

 
In conclusion, the integration of artificial intelligence (AI) in medical imaging, 

particularly through computational pathology (CPath), holds transformative 

potential for enhancing diagnostic and therapeutic practices. By automating 
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routine tasks and improving image analysis, AI technologies enable faster, more 

accurate detection of diseases, such as cancers, and facilitate personalized 

treatment planning through detailed insights into patient conditions. Despite 

significant advancements, challenges related to data privacy, ethical 
considerations, and the need for regulatory frameworks remain critical. 

Addressing these issues will be essential for the responsible deployment of AI in 

clinical settings. As research continues and new methodologies emerge, including 
self-supervised learning and multiplex imaging, the future of CPath looks 

promising, offering opportunities for improved patient outcomes and innovative 

approaches in healthcare diagnostics. This review underscores the importance of 
collaboration among healthcare professionals, data scientists, and regulatory 

bodies to harness AI's full potential while safeguarding patient trust. 

 
Computational Pathology via Deep Learning: 

 

Deep learning in computational pathology (CPath) has made methodological 

advances that fall into two categories: AI-assisted tools that help pathologists and 
researchers, like image segmentation techniques and virtual staining methods, 

and predictive models for clinical outcomes, like cancer subtype classification, 

patient survival predictions, or identification of genetic mutations from whole 
slide images (WSIs). 

 

Pre-Processing Tissue: 
 

Histological slide digitization entails creating a pyramidal representation of the 

tissue through the generation of photographs at several magnifications (or 
resolutions), usually between ×40 (~0.25 µm per pixel) and ×5 (~2 µm per pixel). 

Digitalized WSIs are first processed through tissue segmentation to remove 

background areas before any AI algorithms are applied. This can be done using 

deep learning techniques (e.g., segmentation networks) or traditional image 
processing methods (e.g., image thresholding) (24) on digital images. Direct 

processing requires a lot of computing power due to the size of WSIs, which can 

be up to 100,000 times bigger than an ImageNet sample consisting of 256 × 256 
pixels (26). Therefore, breaking up WSIs into smaller patches is a standard 

procedure. With the use of this patching technique, CPath frameworks can apply 

a divide-and-conquer method in which each patch is handled separately by a 
neural network, and the results are then combined to generate results at the slide 

or patient level. Image patches provide specific information, such as nuclear 

morphology, at high magnifications (e.g., ×40 or ×20); however, the model's ability 
to detect more general contextual patterns may be hindered by the small field of 

view. On the other hand, although resolution is lost, lower magnifications (such 

as ×10 or ×5) offer more contextual information on tissue architecture. Thus, 

context and resolution must be balanced for each application; for example, some 
cancer subtyping tasks (e.g., lung carcinoma classification) can be performed 

clinically accurately at ×5 magnification, while genetic mutation analysis usually 

requires magnifications of ×20 or higher (27). 
 

WSIs for Multiple Instance Learning: 

 



         

 

942 

WSI categorization, or predicting disease-related clinical outcomes from WSIs, is 

one of CPath's objectives. One approach to tackle the computing difficulties 
caused by the large size of WSIs and the associated large number of patches is to 

reframe slide classification as a supervised learning activity at the patch level. In 

this method, each patch is processed to produce a patch embedding using a 
feature extractor, such as a convolutional neural network (CNN). The predictor 

then uses these embeddings to infer the patch labels, which can be manually 

annotated by pathologists for areas of interest or applied uniformly to all patches 

on a slide. The scores are combined to produce a WSI-level prediction following 
patch-level categorization. A parameterized neural network or non-parameterized 

techniques like majority voting, maximizing, or averaging may be used in the 

aggregation process. Nevertheless, there are a number of disadvantages to the 
patch-level supervision approach. Initially, human annotation requires a lot of 

work and is challenging to scale over thousands of WSIs. Furthermore, where 

pathologists have little prior knowledge, the meaning of a patch label may become 
unclear in applications like prognostication or treatment response prediction. 

much among the same tumor locations, intratumoral heterogeneity (16, 28) 

makes the annotation procedure much more difficult. Furthermore, labeling every 
patch in a WSI uniformly is possible if the region of interest dominates the WSI 

(27, 29); when just a tiny portion of the image is relevant (such lymph node 

metastases), this approach becomes troublesome and leads to noisy patch-level 

labels (30). 
 

An alternative method for classifying WSIs is multiple instance learning (MIL) (31, 

32), in which a single supervisory label is applied to a group of patches that make 
up the WSI, with the expectation that only a portion of these patches would 

match that label. The large difference between the amount of patches and 

supervisory labels in this architecture leads to it being commonly referred to as 
weakly supervised learning. The three steps of the MIL methodology are as 

follows: first, a feature extractor creates a low-dimensional embedding (e.g., a 

1,024-dimensional embedding) for each patch; second, an aggregator gathers the 
patch embeddings to create a representation of the WSI; and third, a predictor 

maps this representation to the WSI label. In contrast to patch-level learning, the 

WSI-level label is applied to the aggregate set rather than to specific patches. The 

aggregator might be a parameterized function, like the attention mechanism, or a 
non-parameterized function, like maximizing or averaging patch embeddings (33). 

Attention-weighted sums of the patch embeddings can be easily derived in 

attention-based MIL (2, 30, 34), where each patch is assigned an attention score 
that indicates how important its embedding is in the prediction process. The 

ability of attention-based MIL to produce comprehensible heatmaps that support 

qualitative morphological assessments is a significant benefit. 
 

However, because a WSI has a large number of patches, the whole set of patches 

and the network that goes with it cannot be stored in GPU memory at once, which 
makes joint training of the feature extractor and predictor more difficult. Pre-

training the feature extractor on an auxiliary task to pre-extract patch 

embeddings is one such option. With this technique, the aggregator and predictor 
can function on patch embeddings that have already been compressed (e.g., 256 × 

256 patches are about 200 times smaller when using 1,024-dimensional 

embeddings). Presumably, the pre-training of the feature extractor can take place 
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on natural picture datasets like ImageNet (26) (using ResNet, for example), on 

histopathological images with auxiliary tasks (36, 37, 38), or via self-supervised 

learning (39, 40, 41). As an alternative, memory-optimization techniques such 

using gradient checkpointing (43, 44) or accessing host memory (42) can make it 
easier for the feature extractor and predictor to train together. However, the 

intricacy and high computing demand of these techniques hinder their extensive 

application. In a different approach, a subset of WSI patches is randomly sampled 
during training (45, 46), with the understanding that each sample will contain 

pertinent data. 

 
Model development will continue to be shaped by addressing computational 

constraints and modifying techniques to fit an expanding range of CPath 

applications. While recent benchmarks show that MIL and patch-level training 
perform comparably on a range of tasks (47), including tumor subtyping, we 

argue that MIL techniques will gain traction. This change is caused by the 

emergence of increasingly complex tasks (like survival prediction) that have weak 

training signals and are not well served by patch-level supervision. Additionally, 
hardware improvements will soon make it easier to jointly train the predictor, 

aggregator, and feature extractor with the full set of WSI patches in an easy-to-

understand manner, increasing MIL's ability to absorb more contextual data. 
 

Context-Aware Methodologies: 

 
Approaches that were previously outlined assume that WSI patches are self-

contained and do not possess any other contextual information. This viewpoint 

limits the ability to provide long-range context that is necessary for modeling 
tissue architecture (48), especially in situations when therapeutic response (49) 

and other outcomes cannot be predicted only by local cellular morphology. Lower 

magnifications may seem like an obvious fix, but they run the danger of hiding 

important cellular characteristics at a fine level of detail. Multiple instance 
learning (MIL) techniques could make use of a customized neural network to 

explicitly describe interactions across patch embeddings in order to overcome this 

restriction. This method requires the creation of a relational framework, in the 
form of a graph or a sequence, so that a network, such as a transformer or a 

graph neural network (GNN), may integrate and simulate the interactions 

according to the specified structure. As an alternative, patch embeddings from 
different magnifications can be aggregated by MIL techniques to implicitly 

integrate context. 

 
Graph Neural Nets and Graph Representations: 

 

A network (50, 51, 52) that shows interactions between various patches can be 

created by patch embeddings acting as nodes connected by edges. The locality 
concept, which states that adjacent regions are more likely to interact and should 

be linked as a result, is usually used to define connections (50, 51). A patch may, 

for example, connect to all neighboring patches or just its five nearest neighbors. 
The target of interest is then predicted using a GNN (53), which was created 

especially for learning on graph-structured data, by training it on the graph 

structure. Patch representations in GNNs spread along edges through neural 
signals, enabling nodes to share information with other nodes and change their 
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embeddings iteratively. A WSI embedding is then created using the combined 

contextualized node embeddings. GNNs are applicable to any WSI dataset, 
regardless of tissue size or shape, because they can handle graphs with different 

amounts of nodes and edges. Beyond patch-level analysis, graph-based MIL 

techniques can also depict nuclei as nodes and their connections as edges, 
creating a structure called a cell-graph (50, 54, 55, 56). Explicit cellular 

interactions and nuclear morphology are captured in the cell embeddings that are 

extracted around each nucleus, characterizing their appearance and revealing 

patterns of biological interaction. Similar to patch-graph techniques, GNNs are 
generally trained to map cell-graphs to clinical outcomes. The possibility of 

extremely high numbers of nuclei in a WSI (up to several million) makes 

scalability to broaden tissue regions difficult (57). 
 

Transformers and Sequence Representations: 

 
Transformers (18, 58) operate differently from GNNs in that they presume that all 

patches interact with one other regardless of their spatial placements. GNNs base 

interactions on locality. The transformer uses a process called self-attention to 
evaluate each patch embedding in terms of its relevance to all other patch 

embeddings. The set of patch embeddings is aggregated into a full global context-

aware WSI embedding after numerous self-attention layers. Patch embeddings are 

organized as a series in the transformer framework, and each patch's spatial 
location within the WSI is indicated by its sequence position. Since it connects all 

patches, this method can be thought of as a generalization of GNNs since it 

encompasses more contextual information than just local connections. However, 
considering the quadratic relationship between the number of contacts and 

patches, this strategy has a significant computing overhead that makes end-to-

end training with current hardware challenging. Transformers of lower complexity 
that reformulate or approximate patch interactions have been proposed as a way 

to relieve these computing demands (59, 60). Other approaches have also 

investigated interactions using transformer variations (62) or recurrent neural 
networks (36, 61). It is yet uncertain how effective transformer-based techniques 

are in comparison to graph-based techniques in terms of prediction accuracy, 

domain shift resilience, and generalization ability. Graph representations closely 

imitate biological system interactions and offer more control over patch 
interactions; on the one hand, they are useful in circumstances where interaction 

types are understood, such as when adhering to a localization principle. On the 

other hand, because transformers impose less inductive bias, network design is 
less constrained. Thus, transformers may be able to find novel long-range 

contextual biomarkers more effectively by using attention weights to learn graph 

connectivity. 
 

Multiscale Illustrations: 

 
Utilizing multiscale representations of WSIs, including ×5, ×10, and ×20, context 

can be incorporated utilizing late-fusion approaches instead of integrating it at a 

single magnification (4, 63, 64). This technology recovers concentric patches 
across several magnifications, or collects WSI representations from varying 

magnifications (e.g., by concatenation or summing) (64). Most importantly, these 

tactics operate regardless of the MIL framework that is being used. As an 
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alternative, mechanisms for learning to focus on diagnostically relevant regions 

can be created (65, 66, 67). This technique mimics the way pathologists examine 

diagnostic WSIs and optimizes computation by avoiding the processing of every 

patch at various magnification levels. 
AI-Powered Assistive Devices: Artificial intelligence (AI)-based assistive tools 

that extract useful information from whole slide images (WSIs) for clinical and 

scientific applications have been made possible by advances in deep learning in 
pathology. These instruments are mainly concerned with virtual staining methods 

and tissue and nucleus segmentation. 

 
Market Segmentation: Partitioning WSIs into discrete elements, like glands, 

tissue areas, or nuclei, is a crucial task for computational pathology (CPath). By 

permitting an objective and quantitative association of morphological traits with 
clinical outcomes, this segmentation is essential for improving clinical diagnosis. 

Segmentation can be divided into two categories: instance segmentation, which 

further assigns unique identifiers to each object, and semantic segmentation, 

which labels each pixel with a morphological class. Semantic segmentation has 
been used in situations including identifying Gleason patterns (70), histological 

tissues (71), and separating epithelium from stroma (68, 69). Nuclei (72) and 

glands (73), as well as mitotic cells (74, 75), are segmented using instances, and 
these boundaries are critical for quantifying histological properties from 

individual cells and glands. 

 
Since most deep learning-based segmentation techniques follow a fully supervised 

paradigm, precise segmentation requires thorough pixel-by-pixel annotations. 

Fully convolutional networks (76) and U-Net (77), in which tissue image patches 
are processed by a convolutional neural network (CNN) encoder into spatially 

aware embeddings that are subsequently decoded into segmentation masks, are 

common architectures for semantic segmentation. There are methods to 

transform the results of semantic segmentation into instance segmentation by 
adding branches or making post-hoc changes; Mask R-CNN (78) is one prominent 

method. Even though these deep learning frameworks are incredibly powerful, the 

annotation process still requires a lot of labor and specialized knowledge. In order 
to mitigate this, specific annotation tools (79, 80) and human-in-the-loop 

interactive model correction approaches (81) have been presented. Large patches 

or complete WSIs with coarse labels can be processed by weakly supervised 
semantic segmentation techniques (70, 71), however their effectiveness is usually 

inferior to fully supervised techniques. Moreover, segmentation methods are being 

modified for multiplex imaging and immunohistochemistry (IHC) (21, 81, 82, 83). 
 

The Virtual Staining: 

 

Two main uses of virtual staining in CPath are stain enhancement, which 
normalizes and amplifies staining effects, and stain transfer, which translates 

pictures between staining modalities. Virtual staining is defined as algorithmic 

changes of image appearances. Differential WSI appearances among institutions 
due to differences in tissue processing and digitalization can potentially hinder 

deep learning performance. By addressing these biases, stain normalization 

enhances the robustness and performance of the model against domain shifts (84, 
85). While stain-vector estimation has been used in traditional stain 
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normalization methods (86, 87), deep generative models can be trained to produce 

images that accurately reflect the staining intensity of reference datasets (88, 89, 
90). By producing high-quality sections quickly, these models can also transform 

H&E frozen sections into more dependable H&E formalin-fixed paraffin-embedded 

sections (91). This improves surgical results. Transforming images across staining 
modalities, such as switching from H&E to IHC or multiplex images (92, 93), or 

from UV microscopy to H&E (94), is possible with stain transfer using deep 

generative models. While registered picture pairings still yield the best results, 

recent developments allow the use of unpaired data (95, 96), which streamlines 
the data collecting procedures. Although there is ongoing discussion regarding 

the clinical application of virtually stained images (97), it is hoped that the field of 

computational pathology would benefit from the rapid improvements in generative 
models. 

 

CPath Interpretable: 
 

Building trust between pathologists and AI systems requires ensuring that deep 

learning decisions are interpretable (98). Comprehending the pivotal regions that 
impact forecasts facilitates their confirmation against proficient information and 

supports the automated identification of target locations. The identification of 

morphological features in salient regions can aid in the discovery of biomarkers in 

research contexts. However, this interpretive process is complicated by the 
inherent complexity of models. 

 

Saliency maps are produced using feature attribution techniques (99, 100, 101), 
such as gradient importance, which score input items according to their 

predictive significance. The goal of these techniques is to locate significant deep 

features by following them back to the input. Learned attention weights can be 
directly interpreted as important indicators by attention-based approaches (2, 14, 

30, 34, 102). Although these techniques are mostly applied in WSI classification 

to provide patch-level significance scores, they can also be applied to pixel- or 
nucleus-level studies in cell-graph or patch classification frameworks. High 

significance ratings do not, however, automatically imply the presence of a class, 

hence qualitative assessments of area selection are required. Reformulating MIL 

to obtain patch-level predictions from WSI-level labels is an alternate method 
(103). Saliency maps at patch-level resolution might not be able to clearly identify 

the morphological characteristics guiding forecasts due to the qualitative 

character of these techniques. As a result, for thorough interpretability, 
quantitative morphological evaluations based on segmentation frameworks and 

histological feature analyses (HIFs)—which include shape, size, chromaticity, and 

topological descriptors—are crucial (104). In the end, clinical prediction 
interpretation can combine quantitative HIF analysis with qualitative saliency 

map insights. Typically, this approach entails building saliency maps for test 

pictures, training a prediction model for tasks like cancer grading, and pooling 
HIFs in important map locations for in-depth morphological study across WSIs or 

cohorts. This procedure is still flexible enough to accommodate various staining 

protocols and feature attribution techniques (105-107).  
 

The Role of Radiologists 
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Radiologists play a pivotal role in the integration of AI into diagnostic workflows. 

They are crucial in validating AI-driven insights and ensuring their clinical 

relevance. Radiologists provide expert interpretations that guide the training and 

refinement of AI models, ensuring these technologies meet the high standards 
required for clinical application. By collaborating with AI developers, radiologists 

help identify the most impactful use cases and ensure the seamless integration of 

AI tools into clinical practice. Their expertise in anatomical and physiological 
imaging is essential for contextualizing AI findings within the broader clinical 

picture, ultimately enhancing diagnostic accuracy and patient care. 

 
Conclusion 

 

The integration of artificial intelligence (AI) into histopathological and radiological 
image analysis represents a significant advancement in the field of medical 

diagnostics. Through computational pathology (CPath) and advanced radiological 

imaging techniques, AI technologies facilitate the efficient processing and 

interpretation of whole slide images (WSIs) and radiological scans, enabling rapid 
and accurate disease detection, particularly in oncology. The automation of 

routine tasks allows pathologists and radiologists to focus on more complex 

analyses, ultimately enhancing the quality of patient care. Key innovations, 
including multiple instance learning (MIL) and graph neural networks (GNNs), 

have shown promise in managing the vast data generated by WSIs and 

radiological images. These methodologies improve diagnostic precision by 
capturing complex morphological features and contextual information that are 

vital for accurate prognostication. Furthermore, virtual staining techniques are 

addressing variations in image quality across institutions, thereby enhancing the 
robustness of AI models. Despite these advancements, significant challenges 

remain, particularly regarding data privacy and ethical considerations. Ensuring 

the responsible use of AI necessitates collaboration among healthcare 

professionals, data scientists, and regulatory bodies to develop frameworks that 
protect patient information while facilitating innovation. Looking ahead, 

continuous research and development in AI methodologies are expected to yield 

new applications within precision medicine. As AI technologies evolve, they will 
likely play an increasingly central role in improving diagnostic workflows and 

treatment strategies, ultimately leading to enhanced patient outcomes and a 

transformation in the landscape of healthcare diagnostics. 
 

References 

 
1. Abels, E. et al. Computational pathology definitions, best practices, and 

recommendations for regulatory guidance: a white paper from the digital 

pathology association. J. Pathol. 249, 286–294 (2019). 

2. Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown 
primary. Nature 594, 106–110 (2021).  

3. Bulten, W. et al. Artificial intelligence for diagnosis and Gleason grading of 

prostate cancer: the PANDA challenge. Nat. Med. 28, 154–163 (2022).  
4. Skrede, O.-J. et al. Deep learning for prediction of colorectal cancer outcome: 

a discovery and validation study. Lancet 395, 350–360 (2020). 



         

 

948 

5. Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning 

algorithms for detection of lymph node metastases in women with breast 
cancer. JAMA 318, 2199–2210 (2017).  

6. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 

(2015).  

7. Bostrom, R., Sawyer, H. & Tolles, W. Instrumentation for automatically 
prescreening cytological smears. Proc. IRE 47, 1895–1900 (1959). 

8. Prewitt, J. M. S. & Mendelsohn, M. L. The analysis of cell images. Ann. N. Y. 
Acad. Sci. 128, 1035–1053 (1966). 

9. Fuchs, T. J., Wild, P. J., Moch, H. & Buhmann, J. M. Computational 

pathology analysis of tissue microarrays predicts survival of renal clear cell 

carcinoma patients. Int. Med. Image Comput. Comput. Assist. Interv. 11, 1–8 

(2008). 
10. Beck, A. H. et al. Systematic analysis of breast cancer morphology uncovers 

stromal features associated with survival. Sci. Transl. Med. 3, 108ra113 

(2011). 
11. Madabhushi, A. & Lee, G. Image analysis and machine learning in digital 

pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 

(2016). 

12. Madabhushi, A., Agner, S., Basavanhally, A., Doyle, S. & Lee, G. Computer-
aided prognosis: predicting patient and disease outcome via quantitative 

fusion of multi-scale, multi-modal data. Comput. Med. Imaging Graph. 35, 

506–514 (2011). 
13. Tarantino, P., Mazzarella, L., Marra, A., Trapani, D. & Curigliano, G. The 

evolving paradigm of biomarker actionability: histology-agnosticism as a 

spectrum, rather than a binary quality. Cancer Treat. Rev. 94, 102169 (2021). 
14. Lee, Y. et al. Derivation of prognostic contextual histopathological features 

from whole-slide images of tumours via graph deep learning. Nat. Biomed. 
Eng. https://doi.org/10.1038/s41551-022-00923-0 (2022). 

15. Saltz, J. et al. Spatial organization and molecular correlation of tumor-
infiltrating lymphocytes using deep learning on pathology images. Cell 
Rep. 23, 181–193.e7 (2018). 

16. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the 
Rosetta Stone of therapy resistance. Cancer Cell 37, 471–484 (2020). 

17. Vamathevan, J. et al. Applications of machine learning in drug discovery and 

development. Nat. Rev. Drug Discov. 18, 463–477 (2019). 

18. Dosovitskiy, A. et al. An image is worth 16×16 words: transformers for image 
recognition at scale. In International Conference on Learning 
Representations (ICLR, 2021).  

19. Krishnan, R., Rajpurkar, P. & Topol, E. J. Self-supervised learning in 

medicine and healthcare. Nat. Biomed. Eng. 6, 1346–1352 (2022). 
20. Jiang, P. et al. Big data in basic and translational cancer research. Nat. Rev. 

Cancer 22, 625–639 (2022). 

21. Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in 
oncology. Nat. Biomed. Eng. 6, 527–540 (2022). 

22. Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. 
Methods 18, 9–14 (2021). 

23. Liu, J. T. et al. Harnessing non-destructive 3D pathology. Nat. Biomed. 
Eng. 5, 203–218 (2021). 

24. Stockman, G. & Shapiro, L. G. Computer Vision (Prentice Hall PTR, 2001). 

https://doi.org/10.1038/s41551-022-00923-0


 

 

 

949 

25. Bándi, P. et al. Resolution-agnostic tissue segmentation in whole-slide 

histopathology images with convolutional neural networks. PeerJ 7, e8242 

(2019). 

26. Deng, J. et al. in IEEE Conference on Computer Vision and Pattern 
Recognition. 248–255 (IEEE, 2009). 

27. Coudray, N. et al. Classification and mutation prediction from non-small cell 

lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–

1567 (2018). 
28. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in 

cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 

(2021). 
29. Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable 

genetic alterations. Nat. Cancer 1, 789–799 (2020). 

30. Ilse, M., Tomczak, J. & Welling, M. in Proc. 35th International Conference on 
Machine Learning (eds Dy, J. & Krause, A.) 2127–2136 (PMLR, 2018).  

31. Dietterich, T. G., Lathrop, R. H. & Lozano-Pérez, T. Solving the multiple 

instance problem with axis-parallel rectangles. Artif. Intell. 89, 31–71 (1997). 

32. Dundar, M. M. et al. in 20th International Conference on Pattern 
Recognition 2732–2735 (IEEE, 2010). 

33. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly 

learning to align and translate. In International Conference on Learning 
Representations (ICLR, 2015). 

34. Lu, M. Y. et al. Data-efficient and weakly supervised computational pathology 

on whole-slide images. Nat. Biomed. Eng. 5, 555–570 (2021). 

35. He, K., Zhang, X., Ren, S. & Sun, J. in Proc. IEEE Conference on Computer 
Vision and Pattern Recognition 770–778 (IEEE, 2016).  

36. Campanella, G. et al. Clinical-grade computational pathology using weakly 

supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 

(2019).  
37. Shaban, M. et al. Context-aware convolutional neural network for grading of 

colorectal cancer histology images. IEEE Trans. Med. Imaging 39, 2395–2405 

(2020). 
38. Tellez, D. et al. Neural image compression for gigapixel histopathology image 

analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43, 567–578 (2019). 

39. Wang, X. et al. Transformer-based unsupervised contrastive learning for 

histopathological image classification. Med. Image Anal. 81, 102559 (2022). 
40. Chen, R. J. et al. in Proc. IEEE/CVF Conference on Computer Vision and 

Pattern Recognition 16144–16155 (IEEE, 2022). 

41. Ciga, O., Xu, T. & Martel, A. L. Self supervised contrastive learning for digital 

histopathology. Mach. Learn. Appl. 7, 100198 (2022). 
42. Chen, C.-L. et al. An annotation-free whole-slide training approach to 

pathological classification of lung cancer types using deep learning. Nat. 
Commun. 12, 1193 (2021). 

43. Pinckaers, H., Van Ginneken, B. & Litjens, G. Streaming convolutional neural 

networks for end-to-end learning with multi-megapixel images. IEEE Trans. 
Pattern Anal. and Mach. Intell. 44 1581–1590 (2022). 

44. Huang, S.-C. et al. Deep neural network trained on gigapixel images improves 
lymph node metastasis detection in clinical settings. Nat. Commun. 13, 3347 

(2022). 



         

 

950 

45. Wulczyn, E. et al. Deep learning-based survival prediction for multiple cancer 

types using histopathology images. PLoS ONE 15, e0233678 (2020). 
46. Wulczyn, E. et al. Interpretable survival prediction for colorectal cancer using 

deep learning. NPJ Digit. Med. 4, 71 (2021).  

47. Laleh, N. G. et al. Benchmarking weakly-supervised deep learning pipelines 

for whole slide classification in computational pathology. Med. Image 
Anal. 79, 102474 (2022). 

48. Jaume, G., Song, A. & Mahmood, F. Integrating context for superior cancer 

prognosis. Nat. Biomed. Eng. 6, 1323–1325 (2022). 
49. Taube, J. M. et al. Implications of the tumor immune microenvironment for 

staging and therapeutics. Mod. Pathol. 31, 214–234 (2018). 

50. Pati, P. et al. Hierarchical graph representations in digital pathology. Med. 
Image Anal. 75, 102264 (2022). 

51. Zhao, Y. et al. in IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) 4836–4845 (IEEE, 2020). 

52. Adnan, M., Kalra, S. & Tizhoosh H. R. in IEEE/CVF Conference on Computer 
Vision and Pattern Recognition Workshops (CVPR) 4254–4261 (IEEE, 2020). 

53. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The 

graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2008). 

54. Gunduz, C., Yener, B. & Gultekin, S. H. The cell graphs of 
cancer. Bioinformatics 20, i145–i151 (2004). 

55. Chen, R. J. et al. Pathomic fusion: an integrated framework for fusing 

histopathology and genomic features for cancer diagnosis and 

prognosis. IEEE Trans. Med. Imaging 41, 757–770 (2022). 
56. Zhou, Y. et al. in IEEE/CVF International Conference on Computer Vision 

Workshop (ICCVW) 388–398 (IEEE, 2019). 

57. Ahmedt, D. et al. A survey on graph-based deep learning for computational 
histopathology. Comput. Med. Imaging Graph. 95, 102027 (2022). 

58. Vaswani, A. et al. in Advances in Neural Information Processing Systems (eds 

Guyon, I. et al.) (Curran Associates, Inc., 2017). 

59. Shao, Z. et al. TransMIL: transformer based correlated multiple instance 
learning for whole slide image classification. In Advances in Neural 
Information Processing Systems (eds Beygelzimer, A. et al.) (Curran 

Associates, Inc., 2021). 

60. Wu, H., Wu, J., Xu, J., Wang, J. & Long, M. in Proc. 39th International 
Conference on Machine Learning (eds Chaudhuri, K. et al.) 24226–24242 

(PMLR, 2022). 

61. Iizuka, O. et al. Deep learning models for histopathological classification of 
gastric and colonic epithelial tumours. Sci. Rep. 10, 1504 (2020). 

62. Kalra, S., Adnan, M., Taylor, G. & Tizhoosh, H. R. in European Conference on 
Computer Vision (eds Vedaldi, A. et al.) 677–693 (Springer, 2020). 

63. Lipkova, J. et al. Deep learning-enabled assessment of cardiac allograft 
rejection from endomyocardial biopsies. Nat. Med. 28, 575–582 (2022). 

64. Sirinukunwattana, K., Alhan, N. K., Verril, C. & Rittscher, J. in International 
Conference on Medical Image Computing and Computer-Assisted 
Intervention (eds Frangi, A. F. et al.) 192–200 (Springer, 2018). 

65. Thandiackal, K. et al. in European Conference on Computer Vision (eds 

Avidan, S. et al.) 699–715 (Springer, 2022). 

66. Katharopoulos, A. & Fleuret, F. in International Conference on Machine 
Learning (eds Chaudhuri, K. & Salakhutdinov R.) 3282–3291 (PMLR, 2019). 



 

 

 

951 

67. Kong, S. & Henao, R. in IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) 2374–2384 (IEEE/CVF, 2021). 

68. Malon, C., Miller, M., Burger, H. C., Cosatto, E. & Graf, H. P. in Proc. 5th 
International Conference on Soft Computing as Transdisciplinary Science and 
Technology 450–456 (ACM, 2008). 

69. Bulten, W. et al. Epithelium segmentation using deep learning in H&E-

stained prostate specimens with immunohistochemistry as reference 

standard. Sci. Rep. 9, 864 (2019). 
70. Anklin, V. et al. in International Conference on Medical Image Computing and 

Computer Assisted Intervention (eds de Bruijne, M. et al.) 636–646 (Springer, 

2021). 
71. Chan, L., Hosseini, M. S., Rowsell, C., Plataniotis, K. N. & Damaskinos, S. 

in Proc. IEEE/CVF International Conference on Computer Vision 10661–10670 

(IEEE/CVF, 2019). 

72. Graham, S. et al. Hover-Net: simultaneous segmentation and classification of 
nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019). 

73. Sirinukunwattana, K. et al. Gland segmentation in colon histology images: 

the GLAS challenge contest. Med. Image Anal. 35, 489–502 (2017). 
74. Cireşan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. 

in International Conference on Medical Image Computing and Computer-
Assisted Intervention (eds Mori, K. et al.) 411–418 (Springer, 2013). 

75. Li, C., Wang, X., Liu, W. & Latecki, L. J. DeepMitosis: mitosis detection via 
deep detection, verification and segmentation networks. Med. Image Anal. 45, 

121–133 (2018). 

76. Long, J., Shelhamer, E. & Darrell, T. in Proc. IEEE Conference on Computer 
Vision and Pattern Recognition 3431–3440 (IEEE, 2015). 

77. Ronneberger, O., Fischer, P. & Brox, T. in International Conference on Medical 
Image Computing and Computer-Assisted Intervention (eds Navab, N. et al.) 

234–241 (Springer, 2015). 
78. He, K., Gkioxari, G., Dollár, P. & Girshick, R. in Proc. IEEE International 

Conference on Computer Vision 2980–2988 (IEEE, 2017). 

79. Alemi Koohbanani, N., Jahanifar, M., Zamani Tajadin, N. & Rajpoot, N. 

NuClick: a deep learning framework for interactive segmentation of 
microscopic images. Med. Image Anal. 65, 101771 (2020). 

80. Kumar, N. et al. A dataset and a technique for generalized nuclear 

segmentation for computational pathology. IEEE Trans. Med. Imaging 36, 
1550–1560 (2017). 

81. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-

level performance using large-scale data annotation and deep learning. Nat. 
Biotechnol. 40, 555–565 (2022). 

82. Han, W., Cheung, A. M., Yaffe, M. J. & Martel, A. L. Cell segmentation for 

immunofluorescence multiplexed images using two-stage domain adaptation 

and weakly labeled data for pre-training. Sci. Rep. 12, 4399 (2022). 
83. Martinelli, A. L. & Rapsomaniki, M. A. ATHENA: analysis of tumor 

heterogeneity from spatial omics measurements. Bioinformatics 38, 3151–

3153 (2022). 

84. Tellez, D. et al. H and E stain augmentation improves generalization of 
convolutional networks for histopathological mitosis detection. In Medical 
Imaging 2018: Digital Pathology Vol. 10581 (eds Tomaszewski, J. E. & 

Gurcan, M. N.) (SPIE, 2018). 



         

 

952 

85. Zanjani, F. G., Zinger, S., Bejnordi, B. E., van der Laak, J. A. W. M. & de 

With, P. H. N. in IEEE 15th International Symposium on Biomedical 
Imaging 573–577 (IEEE, 2018). 

86. Macenko, M. et al. in IEEE International Symposium on Biomedical Imaging: 

From Nano to Macro 1107–1110 (IEEE, 2009). 

87. Vahadane, A. et al. Structure-preserving color normalization and sparse stain 
separation for histological images. IEEE Trans. Med. Imaging 35, 1962–1971 

(2016). 

88. Cho, H., Lim, S., Choi, G. & Min, H. Neural stain-style transfer learning using 
GAN for histopathological images. Preprint 

at arXiv https://doi.org/10.48550/arXiv.1710.08543 (2017). 

89. Zhou, N., Cai, D., Han, X. & Yao, J. in International Conference on Medical 
Image Computing and Computer-Assisted Intervention (eds Shen, D. et al.) 
694–702 (Springer, 2019). 

90. Kang, H. et al. StainNet: a fast and robust stain normalization network. Front. 
Med. 8, 746307 (2021). 

91. Ozyoruk, K. B. et al. A deep-learning model for transforming the style of 
tissue images from cryosectioned to formalin-fixed and paraffin-

embedded. Nat. Biomed. Eng. 6, 1407–1419 (2022). 

92. He, B. et al. AI-enabled in silico immunohistochemical characterization for 
Alzheimer’s disease. Cell Rep. Methods 2, 100191 (2022). 

93. Ghahremani, P. et al. Deep learning-inferred multiplex immunofluorescence 

for immunohistochemical image quantification. Nat. Mach. Intell. 4, 401–412 

(2022). 
94. Cao, R. et al. Label-free intraoperative histology of bone tissue via deep-

learning-assisted ultraviolet photoacoustic microscopy. Nat. Biomed. Eng. 7, 

124–134 (2023). 
95. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. in IEEE International Conference 

on Computer Vision (ICCV) 2242–2251 (IEEE, 2017). 

96. Park, T., Efros, A. A., Zhang, R. & Zhu, J.-Y. in European Conference on 
Computer Vision (eds Vedaldi, A. et al.) 319–345 (Springer, 2020). 

97. Vasiljević, J., Nisar, Z., Feuerhake, F., Wemmert, C. & Lampert, T. CycleGAN 

for virtual stain transfer: is seeing really believing? Artif. Intell. Med. 133, 

102420 (2022). 
98. Holzinger, A. et al. Towards the augmented pathologist: challenges of 

explainable-AI in digital pathology. Preprint 

at arXiv https://doi.org/10.48550/arXiv.1712.06657 (2017). 

99. Selvaraju, R. R. et al. in IEEE International Conference on Computer 
Vision 618–626 (IEEE, 2017). 

100. Sundararajan, M., Taly, A. & Yan, Q. in Proc. 34th International Conference 
on Machine Learning (eds Precup, D. & Teh, Y. W.) 3319–3328 (PMLR, 

2017). 
101. Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI): concepts, 

taxonomies, opportunities and challenges toward responsible AI. Inf. 
Fusion 58, 82–115 (2020). 

102. Chen, R. J. et al. Pan-cancer integrative histology-genomic analysis via 

multimodal deep learning. Cancer Cell 40, 865–878 (2022). 

103. Javed, S. A. et al. in Advances in Neural Information Processing Systems (eds 

Koyejo, S. et al.) vol. 35, 20689–20702 (Curran Associates, Inc., 2022). 

https://doi.org/10.48550/arXiv.1710.08543
https://doi.org/10.48550/arXiv.1712.06657


 

 

 

953 

104. Diao, J. A. et al. Human-interpretable image features derived from densely 

mapped cancer pathology slides predict diverse molecular phenotypes. Nat. 
Commun. 12, 1613 (2021). 

105. Song, A.H., Jaume, G., Williamson, D.F.K. et al. Artificial intelligence for 
digital and computational pathology. Nat Rev Bioeng 1, 930–949 (2023). 

https://doi.org/10.1038/s44222-023-00096-8 

106. Szilágyi, L., & Kovács, L. (2024). Artificial Intelligence Technology in Medical 

Image Analysis. Applied Sciences, 14(5), 2180. 
107. Obuchowicz, R., Strzelecki, M., & Piórkowski, A. (2024). Clinical 

Applications of Artificial Intelligence in Medical Imaging and Image 

Processing—A Review. Cancers, 16(10), 1870. 
  

https://doi.org/10.1038/s44222-023-00096-8

