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Abstract---Background: RNA-based therapeutics, including antisense 

oligonucleotides (ASOs), small interfering RNAs (siRNAs), and 

messenger RNAs (mRNAs), offer significant promise in treating genetic 
and acquired diseases by targeting specific RNA sequences, encoding 

therapeutic proteins, or facilitating genome editing. However, the 

effective delivery of these RNA therapeutics remains a major challenge 
due to their large size, negative charge, and susceptibility to 

degradation. Aim: This review aims to explore advanced drug delivery 

systems developed to enhance the efficacy of RNA-based therapeutics, 
focusing on both viral and non-viral methods, and to evaluate the 

progress and limitations of these systems in clinical applications. 

Methods: The review synthesizes recent advancements in RNA delivery 
technologies, including viral vectors, lipid nanoparticles (LNPs), 

polymer-based nanoparticles, and hybrid systems. It also examines 
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various targeting strategies such as passive and active targeting to 

improve the specificity and efficiency of RNA delivery. Results: 
Significant progress has been made with both viral and non-viral 

delivery systems. Viral vectors, though effective, face challenges 

related to immunogenicity and production costs. Non-viral systems, 
particularly lipid nanoparticles and polymer-based carriers, have 

shown promising results, with several FDA-approved products 

demonstrating clinical efficacy. Advances in targeting strategies, 

including ligand-based and antibody-based methods, have improved 
the precision of RNA delivery. Conclusion: The development of effective 

RNA delivery systems is crucial for advancing RNA-based 

therapeutics. Innovations in delivery vehicles and targeting strategies 
have led to significant clinical advancements, though challenges 

remain in optimizing delivery efficiency and minimizing off-target 

effects. Future research should focus on refining these delivery 
systems and addressing remaining hurdles to fully realize the 

potential of RNA-based therapies. 

 
Keywords---RNA therapeutics, delivery systems, lipid nanoparticles, 

polymer nanoparticles, viral vectors, targeted delivery, mRNA 

vaccines. 

 
 

Introduction  

 
RNA therapies have the potential to alter gene expression or produce therapeutic 

proteins, making them applicable to diseases with well-characterized genetic 

targets, such as infectious diseases, cancers, immune disorders, and Mendelian 
conditions (including neurological disorders). Additionally, advancements in 

genome sequencing, single-cell gene expression analysis, and programmable 

nucleases are driving the identification of new targets for gene therapies. 
However, the challenge of manipulating these targets, particularly non-coding 

DNA and the 85% of the genome that might be undruggable by small molecules 

[1], is compounded by the need for effective delivery of therapeutic RNA to 

diseased cells. This Review addresses therapeutic RNA, including antisense 
oligonucleotides (ASOs) like gapmers, which have DNA nucleotides flanked by 

RNA [2], small interfering RNAs (siRNAs), and larger RNAs such as messenger 

RNA (mRNA) (Fig. 1). These RNA therapies work by targeting RNA or proteins, 
encoding missing or defective proteins, or facilitating DNA or RNA editing. Despite 

their therapeutic mechanisms, the large size of some RNA therapies, such as 

mRNAs, their anionic charge, and their susceptibility to RNases present in the 
bloodstream and tissues complicate efficient cellular entry and function. To 

overcome these barriers, researchers have developed both viral and non-viral 

delivery systems designed to protect RNA from degradation, enhance delivery to 
target cells, and minimize off-target exposure. While viral gene therapies [3] have 

shown successful clinical outcomes [4,5,6,7,8,9], their effectiveness can be limited 

by pre-existing immunity [10], viral-induced immunogenicity [11], unintended 
genomic integration [12], payload size constraints [13], re-dosing challenges, 

upscaling issues [14], and high production costs. Although some of these 

limitations are being addressed [15], they have spurred interest in alternative 
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delivery methods. Advances in synthetic materials for RNA encapsulation, such as 

polymers, lipids, and lipid nanoparticles (LNPs), have invigorated research into 

non-viral delivery systems, leading to FDA approvals for subcutaneously 

administered N-acetylgalactosamine (GalNAc)–siRNA conjugates targeting 
hepatocytes [16,17,18], intravenously administered LNP-based siRNA drugs 

targeting hepatocytes [19], and emergency use authorization (EUA) and FDA 

approval [20] for intramuscularly administered LNP-based mRNA COVID-19 
vaccines [21,22]. These approvals suggest that improvements in delivery to non-

hepatic tissues, including the central nervous system, eye, and ear, may lead to 

new therapeutic options. Furthermore, nanoparticle-based delivery systems may 
offer potential for non-viral DNA delivery, which has been reviewed elsewhere [23]. 

 

Therapeutic RNA Payloads 
 

 Classification and Mechanisms of RNA Drugs: 

o RNA-based therapeutics are classified by their biochemical 

mechanisms of action, which dictate the requirements for effective 
drug delivery (Fig. 1). Oligonucleotide drugs, such as antisense 

oligonucleotides (ASOs) and small interfering RNAs (siRNAs), use 

endogenous cellular enzymes—RNAse H1 and the RNA-induced 
silencing complex (RISC), respectively—to facilitate delivery. This 

approach avoids the need for introducing large enzymes into the 

system [24]. 

o Significant advances have been made in delivering small molecules 
and macromolecules [24], yet many therapeutic oligonucleotides 

still require maintenance at high concentrations to achieve gene 

manipulation [25]. For instance: 
 Givosiran is administered subcutaneously at 2.5 mg/kg 

monthly. 

 Lumasiran is given subcutaneously at 3.0 mg/kg monthly 
for three months, followed by 3 mg/kg every three months. 

 Inclisiran involves a single subcutaneous dose of 284 mg 

on days 1 and 90, and every six months thereafter, with 
potential for annual dosing with further improvements [25]. 

 Advantages and Limitations of Delivery Systems: 

o DNA nucleases, including CRISPR-based systems, can induce long-

term cellular effects even with transient expression [27]. 
MicroRNAs (miRNAs) recruit RISC to complementary mRNA 

sequences, facilitating targeted RNA interference. This has led to 

the development and clinical testing of miRNA mimics and anti-
miRNAs. For example: 

 MRX34, a double-stranded miRNA-34a mimic delivered via 

liposomes, was tested in advanced solid tumors [29]. 
 Miravirsen, an anti-miRNA-122 drug, was evaluated for 

hepatitis C treatment [30]. 

 RG-101, an anti-miRNA-122 drug, initially reduced viral 

load in hepatitis C patients but was discontinued due to 
hyperbilirubinemia [31,32]. 
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o mRNA drugs represent a versatile therapeutic option for a range of 

diseases, including vaccines (e.g., COVID-19), protein replacement 
therapies, and genome editing. 

 

 siRNA Therapeutics: 

o siRNA-based gene silencing uses double-stranded RNAs 
approximately 13 kDa in size to suppress protein translation. This 

is achieved by recruiting RISC to mRNA through Watson–Crick 

base pairing, with Ago2 protein cleaving the target mRNA. Other 
Ago proteins (Ago1, Ago3, Ago4) may facilitate nonspecific mRNA 

degradation by localizing mRNA to processing (P)-bodies [33,34]. 

o siRNAs have been approved by the FDA and EMA for several 
indications: 

 Patisiran: Treats hereditary transthyretin-mediated 

amyloidosis (hATTR) [19]. 
 Givosiran: For acute hepatic porphyria [16]. 

 Lumasiran: For primary hyperoxaluria type 1 [18]. 

 Inclisiran: For hypercholesterolemia [17]. 

o The FDA has also accepted a new drug application for Vutrisiran, 
an investigational RNA interference (RNAi) therapeutic for hATTR 

amyloidosis with polyneuropathy, following successful Phase III 

trials [36]. 
o The rapid clinical implementation of siRNA is attributed to: 

 The small size of siRNA allowing for solid-phase synthesis 

with site-specific chemical modifications. 
 Use of RISC, which is endogenous to eukaryotic cells, 

avoiding the need for large enzyme delivery. 

 siRNA’s requirement for only cytoplasmic delivery, which is 
simpler than nuclear delivery. 

 Antisense Oligonucleotides (ASOs): 

o ASOs are oligonucleotides with a molecular weight of 6–9 kDa and 

share manufacturing advantages with siRNAs. They have been 
FDA-approved for several conditions, including familial 

hypercholesterolemia [41], hATTR amyloidosis with polyneuropathy 

[42], certain subtypes of Duchenne muscular dystrophy [43,44], 
and infantile-onset spinal muscular atrophy [45]. 

o ASOs act through three mechanisms: 

 RNase H1 Activation: ASOs bind mRNA via Watson–Crick 

base pairing, recruiting RNase H1 to cleave the target RNA, 
a process known as gapmer function [46]. 

 Splicing Modulation: ASOs can interfere with splicing 

machinery, promoting alternative splicing and increasing 
target protein expression [47]. 

 Translational Arrest: ASOs can bind to the translation 

initiation codon of target mRNA, leading to downregulation 
of protein expression [48]. 

o Chemical modifications of ASOs, such as gapmers with RNA-like 

and DNA regions, and other modifications like locked nucleic acids, 
impact their binding affinity and mechanism of action. These 

modifications can enhance pharmacokinetics, stability, and 
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immune response [50,51]. ASOs often have a phosphorothioate 

backbone to aid nuclear transport [52,53]. 

o ADAR-Oligonucleotides: A novel class of ASOs with engineered 

hairpin domains that recruit the RNA-editing enzyme adenosine 
deaminase acting on RNA (ADAR) for A-to-I editing. These 

oligonucleotides, with a molecular weight of 10–35 kDa, bind target 

mRNA and induce editing, representing an emerging approach for 
genetic disease treatment [56]. 

 

mRNA-Based Therapeutics 

 Overview and Applications of mRNA Therapies: 

o Protein Encoding and Therapeutic Functions: mRNA 

therapeutics can encode proteins with therapeutic functions. Due 

to their size, mRNAs are synthesized in vitro and cannot yet be 
chemically modified with site-specific precision using solid-state 

synthesis (Fig. 1b) [57]. These mRNAs can serve various roles, 

including: 
 Protein Replacement: Replacing deficient or 

malfunctioning proteins [57]. 

 Protein Reduction: Using Cas9-based methods to reduce 
levels of target proteins [58]. 

 Mutation Repair: Employing base editing techniques to 

correct protein mutations at the DNA level [59,60]. 

 Clinical Examples and Successes: 
o CRISPR-Based mRNA Therapies: In 2021, a clinical study 

demonstrated that lipid nanoparticles (LNPs) encapsulating 

Streptococcus pyogenes Cas9 mRNA and a CRISPR guide RNA 
achieved an 87% reduction in blood transthyretin (TTR) levels in 

patients with hereditary transthyretin-mediated amyloidosis 

(hATTR) [58]. TTR mutations cause hATTR, a condition affecting 
vitamin A and thyroxine transport. 

o mRNA Vaccines: The successful FDA-approved mRNA vaccine 

against SARS-CoV-2 exemplifies the potential of mRNA-based 

therapies for viral infections [61,62]. Other clinical efforts include: 
 Cystic Fibrosis: Ongoing trials by Translate Bio for mRNA-

mediated protein replacement, though improvements in 

lung function have been limited [63]. 
 Ornithine Transcarbamylase Deficiency: Trials by 

Translate Bio were discontinued due to adverse 

pharmacokinetic and safety profiles [64]. 
 Arcturus Therapeutics: Initiation of a Phase II trial for an 

mRNA therapeutic targeting ornithine transcarbamylase 

deficiency [65]. 

 Immunological and Vaccine Applications: 

o Autoimmune and Vaccine Development: mRNA therapies have 

led to immunological tolerance and potential treatments for 

autoimmune diseases in animal models, such as experimental 
autoimmune encephalomyelitis [66]. Conversely, mRNA vaccines 

aim to induce long-lasting immunity against specific antigens, with 
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research spanning viruses like Zika, HIV, and influenza, as well as 

cancers such as melanoma [67–71]. 
 Cancer Vaccines: BNT111, developed by BioNTech, targets 

a combination of melanoma-associated antigens and has 

shown partial responses and metastasis shrinkage in Phase 
I trials [73]. mRNA can also deliver immune checkpoint 

molecules like OX40L to treat solid tumors, with Moderna’s 

mRNA-2416 showing promise in increasing OX40L 

expression and pro-inflammatory responses [74]. 

 mRNA for Gene Editing and Nucleases: 

o Transient Expression and Gene Editing: mRNA can transiently 

express nucleases, such as zinc finger nucleases, transcription 
activator-like nucleases, and CRISPR-Cas system components [75]. 

This transient expression is advantageous for creating long-lasting 

gene editing effects while minimizing risks associated with 
persistent nuclease activity [76,77]. 

 Clinical Trials and Delivery Challenges: Trials using 

adeno-associated viral vectors for SaCas9 have been 

initiated [78]. However, mRNA-based nucleases might be 
preferred due to the risks of off-target effects and vector 

integration associated with persistent DNA nucleases 

[27,79]. 
o Cas Enzyme Improvements: Cas enzymes can be modified in 

three primary ways to enhance their therapeutic potential: 

 Design and Evolution: Rational design or evolution of Cas 
enzymes to target diverse DNA sequences [80,81,82]. 

 Nickases and dCas9: Modification of Cas enzymes to 

produce nickases or dead Cas9 (dCas9) for targeted 
applications [82]. 

 Functional Additions: Fusion of Cas enzymes with 

domains for transcriptional activation, epigenome editing, 

base editing, and other modifications [83–89]. Cas12a 
enzymes, which require shorter guide RNAs and produce 

staggered cuts, are also noted [90]. 

 RNA Nucleases and Delivery: 
o RNA Editing and Therapeutics: RNA nucleases can bind and 

cleave RNA or be engineered with adenosine deaminase acting on 

RNA (ADAR) domains for RNA base editing [91–94]. These 

nucleases are suited for transient gene expression changes and are 
advantageous for short-term diseases and RNA pathogens 

[93,95,96]. 

o Delivery Strategies: Effective delivery of CRISPR therapeutics 
requires concurrent delivery of Cas proteins and guide RNAs, 

addressed through various strategies including nanoparticle co-

delivery, AAV-mediated sgRNA expression, and pre-complexed 
ribonucleoproteins [77,96–106]. Compact Cas enzymes like Cas12j 

(Casϕ), Cas12f, Cas13bt, and Cas13ct are being explored to 
simplify delivery [109–112]. 
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Synthetic Vehicles for RNA Delivery 

 

Challenges and Requirements for RNA Delivery: 

 Avoiding Clearance and Targeting: RNA therapeutics must evade 
clearance by off-target organs, target the correct tissue, and interact with 

the desired cell type within a complex microenvironment [113]. 

 Cellular Uptake and Endosomal Escape: Successful delivery requires 

endocytosis and efficient endosomal escape, while minimizing immune 
responses [113]. 

 Modifications and Delivery Vehicles: Small oligonucleotide RNA 

therapeutics (e.g., antisense oligonucleotides (ASOs), small interfering 
RNAs (siRNAs), and ADAR-oligonucleotides) can be delivered using 

conjugates and stable chemical modifications. In contrast, mRNA and 

DNA-based therapeutics necessitate specialized delivery vehicles [113]. 

 
Lipids and Lipid-Based Nanoparticles (LNPs): 

 Key Components and Structures: LNPs, crucial for drug delivery, are 

composed of lipids forming micelles, liposomes, or multilayered structures. 
FDA-approved LNPs for liver delivery of siRNA and mRNA vaccines include 

cationic or ionizable lipids, cholesterol, helper lipids, and PEG-lipids 

[19,61,62]. 

 Lipid Structures and Delivery: Variations in lipid structures influence 
LNP interactions with cells. Libraries of lipid delivery systems have been 

created using chemistries such as Michael addition, epoxide, and alcohol-

based reactions [114,118,119]. 

 Preclinical and Clinical Developments: 

o Hepatocyte Delivery: Advances in lipid design reduced the dose 

required for effective hepatocyte gene silencing from 1.0 mg/kg to 

0.002 mg/kg [121,122]. Key lipids include C12-200, cKK-E12, 
DLin-KC2-DMA, and DLin-MC3-DMA [120–123]. 

o mRNA Delivery: LNPs have effectively delivered mRNA to the liver 

in various models. Recent LNPs, like LP0177 and Lipid H, have 
demonstrated efficacy in both preclinical and clinical studies 

[59,60]. LNPs used in vaccines and therapeutic trials include 

components such as DLin-MC3-DMA (Alnylam), SM-102 
(Moderna), and ALC-0315 (Pfizer/BioNTech/Acuitas) [19,61,62]. 

o Modifications for Targeting: Changes in cholesterol, PEG-lipid, or 

helper lipid structures can alter delivery efficiency and targeting 

specificity. For instance, modified cholesterol or PEG-lipids have 
enhanced delivery to specific tissues [124–139]. 

 

Polymers and Polymer-Based Nanoparticles: 

 Polymeric Systems: Various polymers, including polyethylenimine (PEI), 

poly(l-lysine) (PLL), and poly(beta-amino ester) (PBAE), are utilized for RNA 

delivery due to their ability to form complexes with RNA [144,145]. 
o PLGA and Cationic Polymers: PLGA, though commonly used for 

small molecules, requires modification with cationic groups for 

RNA delivery. PEI and PLL, which can be toxic in unmodified 

forms, are often modified for improved efficacy and tolerability 
[147–155]. 
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o PBAE Nanoparticles: PBAEs, designed for better biodegradability 

and reduced cytotoxicity compared to PEI and PLL, have been used 
for delivering various RNA types [156–165]. 

o Lipid-Polymer Hybrids and Dendrimers: Lipid-polymer hybrids 

combine lipids with polymers to enhance stability and delivery. 
Dendrimers, such as PAMAM, offer another approach with well-

defined structures for RNA delivery to various tissues, including 

the central nervous system [166–172]. 

Overall, the development of effective RNA delivery systems involves optimizing 
vehicle components to ensure targeted delivery, efficient cellular uptake, and 

minimal off-target effects. 

 
Active vs. Passive Tissue Targeting in RNA Delivery 

 

Passive Tissue Targeting: 

 Concept and Mechanism: Passive targeting, or endogenous targeting, 

leverages the natural interactions between nanoparticles and serum 

proteins. This method does not require specific targeting ligands but relies 

on the adsorption of serum biomolecules onto the nanoparticle surface. 
This adsorption alters the nanoparticle’s surface properties and affects 

how it interacts with tissues and immune cells [173]. 

 Key Factors Influencing Passive Targeting: 
o Protein Corona: When nanoparticles enter the bloodstream, they 

quickly adsorb proteins, forming a "corona" that modifies their 

behavior. For instance, apolipoprotein E (ApoE) can be critical for 

the delivery of certain LNPs to hepatocytes, whereas other LNPs 
may depend on different serum proteins like LDL or VLDL 

[178,179]. 

o Nanoparticle Size and Charge: Size affects the surface area-to-
volume ratio, influencing how nanoparticles interact with immune 

cells and target tissues. Smaller nanoparticles have a higher 

surface area relative to their volume, which can influence their 
interaction with biomolecules. Nanoparticle size and charge also 

affect delivery efficiency and tissue targeting [174,182,183]. 

o Example: LNPs originally designed for liver delivery have been 
repurposed for targeting other organs. For example, altering the 

charge of LNPs has redirected their delivery from the liver to the 

spleen or lungs [142,125]. 

 
Active Tissue Targeting: 

 Concept and Mechanism: Active targeting involves modifying the delivery 

system with ligands, antibodies, or aptamers that specifically bind to 
receptors on target cells. This approach enhances the precision of delivery 

by using these targeting moieties to direct the therapeutic agent to specific 

cell types or tissues [173]. 

 Types of Active Targeting: 

o Ligand-Based Targeting: Ligands like GalNAc bind to specific 

receptors (e.g., asialoglycoprotein receptor, ASGPR) on target cells. 

This method has been employed in FDA-approved drugs such as 
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givosiran and lumasiran, which use GalNAc–siRNA conjugates for 

targeted liver delivery [16,18]. 

o Antibody-Based Targeting: Antibodies or antibody fragments can 

be conjugated to RNA molecules or nanoparticles. For instance, 
anti-CD71 antibody fragments have been used to deliver siRNA to 

muscle tissues [197], and monoclonal antibodies have been used 

for long-term muscle silencing in preclinical models [198]. 
o Aptamer-Based Targeting: RNA aptamers, which fold into specific 

three-dimensional structures, can bind to receptors on target cells. 

An example is the use of an anti-PDGFRα RNA aptamer to deliver 
siRNA targeting STAT3, a key regulator in glioblastoma [196]. 

o Nanoparticle Decoration: mRNA, due to its large size, is often 

delivered using nanoparticles decorated with antibodies or 
aptamers. The ASSET platform uses monoclonal antibody-coated 

LNPs for targeted delivery to specific cell types or subsets [199–

201]. 

 
Key Examples and Approaches: 

 Cholesterol and Lipid Conjugates: Cholesterol-functionalized DNA–RNA 

heteroduplexes have shown promise in crossing the blood-brain barrier 
[194]. Hydrophobic conjugates have been used for liver delivery, while less 

hydrophobic conjugates improved delivery to extrahepatic tissues 

[192,193]. 

 LNPs with Specific Antibodies: LNPs conjugated with antibodies or 
antibody fragments can be targeted to specific receptors. For example, 

LNPs decorated with antibodies targeting plasmalemma vesicle-associated 

protein have been used for lung cell targeting [202]. 
 

The Pathway to Clinical RNA Delivery 

1. Nanoparticle Discovery Pipeline: 

 Overview: The discovery pipeline for RNA delivery systems involves several 

stages of preclinical testing before advancing to clinical trials. This pipeline 

begins with high-throughput screening of nanoparticles in cell culture, 

progresses to animal models, and culminates in non-human primate 
(NHP) studies if initial results are promising [Fig. 5a]. 

 High-Throughput Screening: Initially, thousands of nanoparticles are 

tested in vitro. Due to the limitations of in vitro models in predicting in 

vivo outcomes, this stage helps in optimizing nanoparticle traits, but not 
all nanoparticles will advance to the next stages. 

 In Vivo Testing: 

o Mouse Studies: A smaller subset of nanoparticles is tested in mice 
to evaluate their in vivo performance. This step often involves 

testing thousands of nanoparticles, but logistical constraints limit 

the number of candidates. 

o Rat and NHP Studies: Nanoparticles that show promise in mice 
are then tested in rats and, subsequently, in non-human primates. 

NHPs are considered the closest model to humans, providing a 

better prediction of clinical outcomes. 
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 Challenges and Improvements: 

o Species Variability: Differences in metabolism, serum lipids, and 

organ size across species can affect nanoparticle delivery. For 
example, the liver size relative to body mass differs between mice, 

rats, and NHPs, which can impact nanoparticle targeting and 

efficacy [Fig. 5b]. 
o SANDS Approach: Species-Agnostic Nanoparticle Delivery 

Screening (SANDS) is a method developed to address these 

challenges. It involves testing nanoparticles in various models, 
including mice with humanized livers, to improve predictions of 

clinical efficacy and safety. 

 
2. Hallmarks of Clinically Relevant Delivery Systems: 

 Scalable Chemistry: Successful clinical delivery systems are synthesized 

using scalable, often biodegradable chemistry. For instance, adding ester 

bonds to lipids can enhance safety and biodegradability [233]. 

 Manufacturability: The delivery system must be chemically simple 

enough to be manufactured at a large scale, complying with Current Good 

Manufacturing Practice (CGMP). For example, GalNAc conjugates are 

manufactured in large batches and conjugated to RNA or ASOs [234]. 

 On-Target vs. Off-Target Delivery: An acceptable ratio of on-target to off-

target delivery is crucial. This involves measuring both biodistribution 

(where the delivery system travels) and functionality (where the payload 
affects cell function). For effective RNA delivery, the payload must reach its 

target cell and function correctly within the cell. 

 Dose and Safety: The therapeutic dose should be much lower than the 

dose at which toxicity occurs. Non-human primate studies are preferred 
for assessing RNA toxicity due to their closer physiological resemblance to 

humans. 

 Consistency and Stability: The delivery system should maintain 
consistent activity across batches and be stable during storage and 

shipping. Techniques such as lyophilization and cryoprotection are used 

to enhance the stability of mRNA-LNPs [237,238]. 

 Re-dosing: The ability to safely re-dose the RNA drug is important for 
maintaining therapeutic effects. Successful re-dosing has been 

demonstrated with siRNA and mRNA therapies, though the optimal dosing 

intervals need to be determined [19,21]. 
 

3. FDA and EMA Approved RNA Therapeutics: 

 GalNAc–siRNA Conjugates: Drugs like givosiran, lumasiran, and 

inclisiran utilize GalNAc conjugates to target specific liver receptors. These 
conjugates have shown efficacy and safety in clinical trials [16,18,17]. 

 Other Examples: Fitusiran and vutrisiran are other GalNAc–siRNA 

conjugates with positive clinical outcomes. Fitusiran targets antithrombin 

mRNA to treat hemophilia, while vutrisiran treats hATTR amyloidosis 
[241,242]. 

 Ongoing Trials: Companies like Arrowhead, Silence Therapeutics, and 

Dicerna are exploring GalNAc–siRNA conjugates for various diseases, while 
Ionis Pharmaceuticals is using GalNAc to deliver ASOs [62,243]. 
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The pathway to clinical RNA delivery involves a multi-stage preclinical 

pipeline, characterized by high-throughput screening, in vivo testing across 

multiple animal models, and eventual clinical trials. Success in this pipeline 

requires addressing challenges related to species variability, ensuring scalable 
and manufacturable delivery systems, and maintaining consistency, safety, and 

efficacy of the RNA therapeutics [244]. 

 
Conclusion 

 

The advancement of RNA-based therapeutics has significantly impacted the 
treatment landscape for a variety of diseases, ranging from genetic disorders to 

viral infections. The efficacy of these therapies is highly dependent on overcoming 

challenges related to the delivery of therapeutic RNA molecules to their target 
cells. The review highlights the progress made in developing advanced drug 

delivery systems designed to address these challenges, focusing on both viral and 

non-viral strategies. Viral vectors have demonstrated substantial clinical success, 

but face limitations related to immunogenicity, production complexity, and 
payload capacity. In contrast, non-viral delivery systems, particularly lipid 

nanoparticles (LNPs) and polymer-based nanoparticles, offer promising 

alternatives. These systems have been instrumental in the success of several 
FDA-approved RNA therapeutics, such as mRNA vaccines and siRNA-based 

drugs. The ability to encapsulate RNA therapeutics within these delivery vehicles 

has been pivotal in protecting RNA from degradation and enhancing cellular 
uptake. Targeting strategies have also evolved, with advancements in passive and 

active targeting approaches improving the precision of RNA delivery. Passive 

targeting leverages natural interactions between nanoparticles and serum 
proteins, while active targeting employs specific ligands, antibodies, or aptamers 

to direct RNA therapeutics to precise cellular targets. These strategies have shown 

considerable potential in increasing the specificity of RNA therapeutics, thereby 

reducing off-target effects and improving therapeutic outcomes. Despite these 
advancements, significant challenges remain, including optimizing delivery 

efficiency, reducing off-target effects, and addressing the scalability and 

manufacturability of RNA delivery systems. Ongoing research and development 
are crucial to overcoming these hurdles and expanding the therapeutic 

applications of RNA-based technologies. Future efforts should continue to refine 

delivery systems, enhance targeting precision, and address the remaining 
limitations to fully leverage the potential of RNA-based therapeutics in clinical 

practice. 
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