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Abstract---Background: Biomimicry or biomimetics refers to 

developing materials and techniques inspired by natural systems. In 

dentistry, this approach aims to replicate natural tooth structures and 
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functions, addressing limitations of conventional materials and 

techniques. Regenerative endodontics, including cell homing and 

revascularization, represents significant advancements in this field, 
focusing on pulp-dentin regeneration and tooth vitality restoration. 

Aim: This review explores innovative biomimetic approaches in 

regenerative endodontics, including the latest techniques and their 

clinical implications. It aims to assess the effectiveness and future 

prospects of these methods in enhancing tooth repair and 

regeneration. Methods: The review synthesizes current literature on 
regenerative endodontic procedures, including cell homing, 

revascularization, scaffold implantation, and gene therapy. It 

examines experimental studies, clinical trials, and advancements in 

biomimetic materials and techniques, highlighting their applications 

and outcomes. Results: The review finds that regenerative endodontics 
has evolved from traditional apexification to advanced techniques 

such as cell homing and revascularization. Cell homing, which 

leverages the body’s natural healing processes without cell 

transplantation, shows promise in generating pulp-dentin tissue. 

Revascularization, involving the induction of a blood clot and stem cell 

recruitment, has demonstrated potential in restoring vitality to 
necrotic teeth. Scaffold implantation and gene therapy also offer novel 

approaches, though they require further research for optimization. 

Conclusion: Innovative biomimetic approaches in regenerative 

endodontics represent a promising frontier in dental restoration. While 

techniques like cell homing and revascularization offer significant 
potential for pulp and dentin regeneration, ongoing research is 

essential to refine these methods and translate them into broader 

clinical practice. Future studies should focus on optimizing protocols, 

understanding underlying mechanisms, and improving material 

efficacy to achieve consistent and reliable outcomes. 

 
Keywords---regenerative endodontics, biomimicry, cell homing, 

revascularization, pulp-dentin regeneration, scaffolds, gene therapy. 

 

 

Introduction 
 

The fundamental principle of “biomimicry” or “biomimetics” involves the 

development of engineered designs inspired by natural systems [1]. The term 

“biomimicry” derives from Greek, where "bios" means life and "mimesis" refers to 

imitation, and it is envisioned as a phenomenon that is either fully or partially 

biologically induced [2]. In medical, dental, biotechnological, and pharmaceutical 
domains, the shortcomings of conventional materials often arise from their 

inability to integrate seamlessly with biological systems by following cellular 

pathways [3]. In the 1950s, Otto Schmitt, a biomedical engineer, introduced the 

concept of “biomimetic” [4,5]. The Greek term “bio” signifies life, while “mimetic” 

pertains to the simulation or mirroring of nature. The objective of biomimetics is 
to create biological materials and procedures that replicate natural phenomena 

[4,6]. Central to novel biomimetic approaches is the integration of inorganic ions 

with organic protein molecules [7,8]. Consequently, biomimetic methodologies 
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encompass diverse fields including bioengineering, biology, chemistry, and 

materials science. Additionally, nanotechnology plays a crucial role in the 

fabrication of various biomimetic materials [5,7]. Clinically, biomimetics pertains 

to replicating the characteristics of natural teeth in restorative dental procedures 
through biomimetic techniques and materials [7,9]. For instance, biomimetic 

coatings of calcium phosphate (CaP) and hydroxyapatite (HA) have been 

investigated and utilized to enhance the osseointegration of dental implants 

[10,11]. Similarly, biomimetic techniques are applied in adhesive restorative 

materials to achieve aesthetic outcomes that mimic natural teeth and tooth 

morphology. Over recent decades, the field of restorative dentistry has advanced 
from mechanical retention to sophisticated adhesion techniques. Composite-resin 

materials and adhesive dentistry have become essential tools in this evolution. 

Biomimetic dentistry principles advocate for the incorporation of advanced 

composite-restorative materials into clinical practice that align with the nature 

and integrity of dental tissues [12,13]. Tissue engineering has shown promising 
results in regenerating oral tissues [14,15,16]. Furthermore, various endodontic 

procedures—such as forming dentin barriers through pulp-capping, root 

formation during apexogenesis or apexification, apical healing with root-end 

fillings, and pulp regeneration using cell-homing techniques [17,18]—employ 

biomimetic strategies in endodontology. 

 
Biomimetic dentistry encompasses the art and science of restoring or repairing 

damaged teeth using methods that replicate natural dentition in both aesthetics 

and function. These methods involve minimally invasive dental management with 

bioinspired materials to achieve remineralization [5]. Emerging fields like 

regenerative endodontics and tissue engineering offer potential solutions for 
repairing damaged or partially developed teeth with functional pulp-dentin tissue 

[19]. This approach involves providing a natural extracellular matrix (ECM) 

environment, signaling molecules, stem cells, and scaffolds. The absence of 

pathology, pain, and formation of root dentine are indicators of clinical success 

[20]. Contemporary endodontic regeneration often includes revascularization, 

wherein the root-canal system is disinfected with intracanal medicaments, and a 
blood clot is formed to stimulate the root apex tissues. The presence of a blood 

clot acts as a natural scaffold within the root canal, facilitating the proliferation 

and differentiation of pulp-dentin stem cells [20,21]. The current concept of cell-

homing supports the recruitment of pulp-apex tissue by endogenous 

mesenchymal stem cells [22,23]. Additionally, various macromolecules are being 
explored to recruit endogenous pulp cells through different methods, including 

chemo-attractants, platelet-rich plasma, and ECM molecules [24]. Ideally, dental 

biomimetic materials should replicate the properties and functions of different 

tooth components [25], aiming to recreate biological tissues and utilize materials 

that emulate the biological effects of oral structures [26]. Commonly utilized 

biomaterials for dental pulp tissue engineering include collagen or poly(lactic) acid 
and hydrogel scaffolds. However, administering collagen into narrow pulp spaces 

is challenging. Thus, numerous bioactive biomaterials, including synthetic and 

natural hydrogels, have been investigated for their suitability in dental pulp 

engineering [27], which will be discussed further in subsequent sections. 

 
The ultimate goal of regenerative endodontics is to improve patient management 

through various strategies that translate the biological aspects of pulp 
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regeneration into clinical practice. These clinical protocols range from leveraging 

the natural healing ability of the pulp to regenerating the affected pulp-dentin 

complex or achieving revascularization of an empty root canal [20]. This paper 
aims to provide a comprehensive review and discussion of various biomimetic 

approaches for pulp regeneration and endodontic applications, as well as current 

trends and future research prospects for translating these biomimetic approaches 

into clinical endodontic practice. 

 

Development of Regenerative Endodontic Procedures (REP) 
 

In 1961, Nygaard-Østby pioneered the concept of treating necrotic pulp through 

regenerative endodontics [28]. Murray and Gracia define regenerative endodontic 

procedures as "biological events designed to replace missing, diseased, 

underdeveloped, or damaged components of tooth structures, including root and 
dentin, to restore the physiological functions of the pulp-dentin complex" [29,30]. 

The key components involved in regenerative endodontic procedures are stem 

cells, signaling molecules, and scaffolds associated with the extracellular matrix 

(ECM) [20,21,31,32]. The primary objective of REP is to foster pulp tissue 

regeneration, root development, and the proliferation of progenitor-stem cells from 

the bone or tooth region [33]. Osteo/odonto-progenitor-stem cells in the apical 
papilla protect the root from infection and necrosis due to their proximity to the 

periodontal blood supply [34]. Additionally, REP can influence angiogenesis, cell 

survival, differentiation, migration, and proliferation. Utilizing markers for 

mesenchymal stem cells, regenerative endodontics has demonstrated diverse 

potential [35,36]. The immunostaining technique has been employed to detect the 
abundance of CD31/collagen-IV and vascular endothelial growth factor (VEGF) 

during the differentiation of endothelial progenitor cells and the revascularization 

process [10]. Despite the limited number of clinical trials, regenerative 

endodontics is widely acknowledged and appreciated by clinicians globally. 

 

In dental pulp regeneration, cells can be introduced either through cell 
transplantation or cell homing [37,38]. Research by Torabinejad et al. [39] 

revealed that a 1–4 mm layer of uninflamed tissue is advantageous for successful 

pulp regeneration following a revascularization procedure. This study focused on 

immature animal teeth [39]. Complete pulp tissue regeneration, including 

capillaries and neuronal cells, was observed in canine pulp regeneration within 
14 days in 2009. Iohara et al. [40] utilized scaffolds loaded with collagen fibers 

(types I and III) and dental pulp stem cells. However, transplantation of the 

scaffold alone did not achieve engraftment at the pulpotomy site [40]. Souron et 

al. [41] investigated the transplantation of rat pulp cells into scaffolds made of 

type-I rat collagen. After one month, living, mitotically active fibroblasts, new 

vessels, and nerve fibers were found where the pulp was seeded with cells, 
whereas a lack of cell colonization was noted where lysed cells were used [41]. 

 

In another study, Jia et al. [42] injected simvastatin, an inhibitor of 3-hydroxy-3-

methylglutaryl coenzyme-A reductase. The scaffold used was a gelatin sponge 

combined with dental-pulpal-stem cells on extirpated pulps. Simvastatin 
accelerated the mineralization process and pulp regeneration after 10 weeks [42]. 

A study by Ito et al. [43] involved the use of a poly(l-lactic acid)/Matrigel scaffold 

combined with bone-marrow-mesenchymal-stem cells in immunosuppressed rats. 
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Following 14 days of implantation, complete pulp regeneration, including nestin-

expressing odontoblast-like cells beneath the dentin, was observed. Nestin is a 

type VI intermediate-filament protein found in neural stem cells [43]. The 

American Association of Endodontics (AAE) considers regenerative endodontics as 
one of the most exciting advancements in dentistry [35,44,45]. 

 

Revascularization or Revitalization 

 

In 1971, revascularization techniques were attempted for teeth with apical 

periodontitis and immature root apices [46]. Initial attempts were unsuccessful 
due to limitations in materials, instrumentation, and techniques. However, with 

advancements in techniques, materials, and instruments, this approach is now 

successfully incorporated into clinical practice [47,48]. Revascularization differs 

from both apexification and apexogenesis [47,48]. Apexification is defined as "the 

creation of an apical barrier to prevent toxins and bacteria from entering 
periapical tissues from the root canal" [5,49]. In cases of pulp disease and apical 

periodontitis, calcium hydroxide is commonly used. Its success rate, availability, 

and affordability make it a valuable medicament [50,51]. Before 2004, traditional 

apexification was the primary method for treating pulpal necrosis in immature 

teeth, but it required multiple visits and had a higher incidence of cervical 

fractures [19]. ProRoot Mineral Trioxide Aggregate (MTA) is now used in artificial 
apical barrier techniques to facilitate root canal obturation [49]. 

 

Apexogenesis is performed when the pulp is inflamed in an incompletely 

developed tooth. It addresses the limitations of capping inflamed dental pulp and 

aims to conserve vital pulp tissue to promote continued root development and 
apical closure. Calcium hydroxide paste is used as a wound dressing after 

removing most or all of the coronal pulp [53]. Recent advancements in the 

treatment of necrotic immature teeth have shifted focus from apexification and 

artificial barrier procedures to revascularization, which involves proliferating 

tissues in the pulp space of the affected tooth [33]. Bleeding induced in the canal 

space allows for significant accumulation of undifferentiated mesenchymal stem 
cells [54]. Thibodeau et al. and Wang et al. conducted animal studies that showed 

cementum and bone formation when using triple antibiotic paste and the blood 

clot technique [55,56]. 

 

A retrospective study comparing conventional apexification and apexogenesis with 
regenerative endodontics found that revascularization-treated teeth had the 

highest survival rates [57]. However, some studies noted that weak root 

structures in many cases led to lower reliability and success rates [58]. Kahler et 

al. [59] compared conventional disinfection approaches with regenerative blood-

clot induction in 16 clinical cases and reported continued root maturogenesis in 

only two cases upon radiographic examination. Gomes-Filho et al. [60] 
incorporated bone marrow aspirate, platelet-rich plasma, and artificial hydrogel 

scaffolds with basic fibroblast growth factor in their study. They found that 

adding PRP and bone marrow aspirates to debrided root canals did not 

significantly improve tissue ingrowth. The study concluded that revascularization 

procedures in humans did not benefit from the addition of an artificial hydrogel 
scaffold combined with basic fibroblast growth factor [61]. Iwaya et al. [48,62] 

demonstrated improved results with revascularization techniques compared to 
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apexification in a case of a permanently immature tooth with apical periodontitis 

and a sinus tract. "Revitalization" refers to the endodontic procedure performed to 

restore tooth vitality in cases of necrotic pulp, while "regeneration" involves 
replacing lost or damaged pulp-dentin tissue complex [29]. The underlying 

mechanisms of dentin-pulp complex regeneration remain poorly understood, with 

root-canal therapy often resulting in repair or healing [63]. 

 

Advantages of the Revascularization Approach 

 

• Technically straightforward. 

• Avoids the use of costly biotechnological tools due to the availability of 
current instruments and techniques. 

• Minimal risk of immune rejection as the approach relies on the patient's 

own blood. 

• Bacterial microleakage can be mitigated by introducing stem cells into the 

root canal space, followed by an intra-canal barrier and blood clot 

induction. 

• Addresses concerns regarding restoration retention. 

• Reinforces root walls in immature teeth. 

• For avulsed immature teeth with necrotic pulp and an open apex, newly 

formed tissue can easily reach the coronal pulp horn due to the short 

distance required for proliferation. The approach aims to balance pulp-
space infection and new tissue proliferation. 

• Promotes additional growth of open-apex roots through minimal 

instrumentation, preserving viable pulp tissue. 

• Recognizes the potential for increased stem cell regeneration and rapid 

tissue healing in young patients. 

 

Disadvantages of the Revascularization Approach 

 
The origins of regenerated tissue are not yet fully understood. Researchers 

emphasize that effective tissue engineering requires precise cell composition and 

concentration. However, cells are often encased in fibrin clots, which complicates 

their use for tissue engineering. Consequently, blood-clot formation is not relied 

upon for the function of tissue engineering. Treatment outcomes are inconsistent 

due to variations in cell composition and concentration [64,65,66,67]. 
 

Prerequisites for Revascularization Approach 

 

Studies have identified the following prerequisites for successful 

revascularization: 
 

• Open apices and necrotic pulp: Trauma-induced necrotic pulp with an open 

apex of less than 1.5 mm is necessary. 

• Microorganism removal: Agents like antibiotic paste, calcium hydroxide [68], 

or formocresol [69] can be used to disinfect the canal. 

• Effective coronal seal: An effective seal is essential. 

• Matrix for tissue growth: A matrix or means for new tissue growth is 

required. 
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• Bleeding induction: Anaesthesia should be administered without a 

vasoconstrictor [70]. 

• Non-instrumentation: Canals should not be instrumented. 

• Irrigation: Sodium hypochlorite should be used. 

• Blood-clot formation: Blood-clot formation is crucial. 

 

Postnatal Stem Cell Therapy 

 

Postnatal stem cells from sources such as bone, buccal mucosa, fat, and skin can 
be injected into a disinfected root-canal system after opening the apex. This 

technique is considered straightforward [72]. Benefits include ease of cell 

harvesting and delivery, and its use in regenerative medicine for applications like 

bone-marrow replacement and endodontic treatments [73]. However, challenges 

include low survival rates, potential for migration leading to unusual 
mineralization patterns, and the need for bioactive signaling molecules, growth 

factors, and scaffolds to support tissue regeneration [74,75]. This technique is 

still not approved. 

 

Pulp Implantation 

 
In pulp implantation, purified pulp stem cells or lab-grown pulp tissue is 

transplanted into the root canal. Tissues are cultured using biodegradable 

polymer nanofibers or extracellular matrix proteins like collagen I or fibronectin 

[76]. Collagens I and III have not been effective for growing pulpal cells [77]. The 

technique requires a scaffold for cellular proliferation and a blood supply within 
200 μm to prevent anoxia and necrosis. Further research and controlled clinical 

trials are necessary to assess the success rates, immune responses, and health 

risks [78]. 

 

Scaffold Implantation 

 
Scaffold implantation involves seeding pulp stem cells onto a porous polymer 

scaffold to organize cells in a three-dimensional structure [79]. Nano scaffolds aid 

in distributing therapeutic medicines and provide necessary biological and 

mechanical properties [80,81]. Dentin chips can accelerate dentin-bridge 

formation by providing growth factors and a matrix for stem cell attachment 
[82,83,84]. Hydrogels, including photo-polymerizable hydrogels, offer a non-

invasive delivery method and support tissue structure development, though they 

require further research [86,88,89]. 

 

Three-Dimensional Cell Printing 

 
Three-dimensional cell printing is a technique to precisely position cells and 

mimic natural pulp-tissue structure [90,91]. This method requires expertise to 

address apical and coronal asymmetry during pulp placement in cleaned root 

canals. Currently, this technique is not clinically available, and there is limited 

literature on its functionality [92]. 
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Gene Therapy 

 

Gene therapy in regenerative endodontics involves delivering mineralizing genes to 
promote tissue mineralization [73,93]. Though initial research, such as 

Rutherford's work, faced challenges and the FDA withdrew approval in 2003 due 

to adverse effects, there is potential for gene therapy with bone morphogenetic 

proteins (BMPs) like BMP2 to enhance tooth development and dentin formation 

[94,95,96]. Safe, cell-specific gene therapy remains a goal. 

 
Nitric Oxide 

 

Nitric oxide (NO) is a potent vasodilator and key regulator of angiogenesis through 

vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) 

[97]. NO promotes VEGF expression and can be used in conjunction with 
antibiotics in biomimetic nanomatrix gels for enhanced antibacterial effects and 

pulp-dentin regeneration [98,100]. Further exploration of NO's effects and 

concentrations is needed. 

 

Platelet-Rich Plasma (PRP) 

 
PRP, derived from autologous whole blood, can act as a scaffold and promote 

regeneration by providing a fibrin matrix with high levels of growth factors and 

cytokines [33,102,103,104]. Studies have shown PRP's efficacy in treating 

necrotic pulp and immature teeth, leading to apex closure and healing of 

periapical lesions [25,33,108]. PRP can be utilized when minimal bleeding occurs, 
but further exploration of stem cell sources, interactions, and inflammatory 

responses is needed for optimal results [104,112]. 

 

Cell Homing 

 

Cell homing represents a novel approach in tissue regeneration that focuses on 
leveraging the body's natural healing processes without the need for cell 

transplantation. Initially developed for articular cartilage regeneration, this 

concept has been adapted for dental-tissue regeneration. Here’s an overview of 

how cell homing is applied to regenerative endodontics: 

 
1. Concept and Process: 

o Origin: The idea of cell homing was first introduced in 2010, with its 

application to dental-tissue regeneration emerging shortly thereafter. 

o Procedure: The process involves shaping and cleaning the root canal of 

extracted human teeth, followed by the delivery of growth factors, 

scaffolds, and stem cells. Initial steps include deactivating residual 
proteins in the root canal through sterilization. Collagen gel, potentially 

combined with growth factors such as basic fibroblast growth factors 

(bFGFs), vascular endothelial growth factors (VEGFs), platelet-derived 

growth factors (PDGFs), nerve growth factors (NGFs), or bone 

morphogenetic proteins (BMPs), is then infused into the prepared root 
canal. 

o Animal Models: Experiments, often involving Sprague-Dawley rats, have 

demonstrated the potential for dental pulp-like tissue formation with the 
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presence of blood vessels. Techniques such as enzyme-linked 

immunosorbent assay (ELISA) are used to quantify biomolecules and 

assess tissue regeneration. 

2. Advantages: 
o Non-invasive: Unlike cell transplantation, cell homing does not require 

ex-vivo cultivation or in-vivo transplantation of cells. 

o Efficiency: This method utilizes the body’s natural ability to recruit and 

differentiate cells at the site of injury or defect, potentially leading to 

more effective and less invasive regeneration. 

3. Comparison with Cell Transplantation: 
o Cell Transplantation: Involves the direct transplantation of isolated 

stem/progenitor cells into the root canal. This method relies on the 

viability and differentiation of transplanted cells to regenerate pulp 

tissue. 

o Cell Homing: Focuses on delivering growth factors and scaffolds to 
stimulate the body’s own cells to migrate, proliferate, and differentiate 

into the necessary tissue types, such as odontoblasts and pulp 

fibroblasts. 

4. Cell Processes Involved: 

o Recruitment: The process of cells migrating to the site of injury or defect. 

o Differentiation: The transformation of stem/progenitor cells into mature 
cells that form specific tissues such as pulp and dentine. This process is 

crucial for the development of odontoblasts and pulp fibroblasts. 

5. Research Findings: 

o Studies have shown that the combination of growth factors such as 

bFGF, BMP7, PDGF, VEGF, and NGF can lead to the development of 
vascularized and cellularized tissues within the root canal. 

o Microscopic analysis has revealed new pulp tissue containing 

erythrocyte-filled blood vessels and endothelial-like cell linings. 

6. Current Limitations and Future Directions: 

o Endothelial Cells Formation: More research is needed to confirm whether 

endothelial cells are directly formed from dental pulp stem/progenitor 
cells. 

o Optimization: Further studies are required to refine the delivery methods 

and concentrations of growth factors to maximize tissue regeneration and 

ensure consistent results. 

 
The cell homing approach offers a promising alternative to traditional cell 

transplantation methods by harnessing the body's own regenerative capabilities 

and reducing the need for ex-vivo cell manipulation. Continued research and 

development are essential to advance this technique and enhance its clinical 

application in regenerative endodontics (113). 

 
Conclusion 

 

The review of innovative approaches in regenerative endodontics highlights a 

transformative shift in dental treatment paradigms, moving beyond traditional 

methods to embrace biomimetic techniques. Central to these advancements is the 
concept of biomimicry, which involves designing dental materials and procedures 

inspired by natural biological systems. The evolution of regenerative endodontics 
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reflects a growing understanding of biological processes and an increasing 

emphasis on minimally invasive techniques. Cell homing has emerged as a 

promising approach, leveraging the body’s natural ability to regenerate tissue 
without the need for ex-vivo cell cultivation or transplantation. This technique 

involves infusing growth factors and scaffolds into prepared root canals, 

stimulating endogenous stem cells to form new pulp-dentin tissue. Research has 

demonstrated the potential of this method in creating vascularized and functional 

tissues, though further studies are needed to optimize growth factor delivery and 

confirm endothelial cell formation. Revascularization remains a cornerstone of 
regenerative endodontics, offering a technique to restore vitality to necrotic teeth 

by inducing a blood clot and recruiting stem cells from the pulp apex. While 

effective in many cases, the success of revascularization can be influenced by 

factors such as root structure and the consistency of tissue regeneration. 

Comparisons with traditional apexification techniques reveal that 
revascularization may provide better outcomes, particularly in immature teeth. 

Other innovative approaches, including scaffold implantation, three-dimensional 

cell printing, gene therapy, and the use of platelet-rich plasma, offer additional 

avenues for enhancing dental pulp regeneration. Each technique has its own set 

of advantages and limitations, emphasizing the need for continued research and 

development. In conclusion, the field of regenerative endodontics is rapidly 
advancing, with new biomimetic techniques offering promising solutions for tooth 

repair and regeneration. Ongoing research is crucial to refine these methods, 

ensure their clinical efficacy, and address existing challenges. The integration of 

these innovative approaches into clinical practice holds the potential to 

revolutionize endodontic treatments and improve patient outcomes significantly. 
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