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Abstract---Background: In regenerative medicine, advances in 

biomaterials have significantly impacted various medical fields, 
including dentistry. The use of implants, both metallic and non-

metallic, has raised concerns about bacterial adhesion and biofilm 

formation, which can lead to complications such as peri-implantitis. 
Innovations in drug delivery systems and additive manufacturing 

technologies offer new solutions to these challenges. Methods: The 

review explores recent developments in biomaterials for dental 
restoration, focusing on drug-eluting implants, additive 

manufacturing, nanotechnology, and biocompatible coatings. The 

study evaluates the effectiveness of various drug delivery systems, 
including hydrogels, nanoparticles, and polymers, and discusses 

advancements in 3D printing and surface coatings. Results: Additive 

manufacturing technologies, such as 3D printing, have enabled the 

creation of precise models and drug delivery systems. Nanotechnology 
has introduced new materials with improved antimicrobial properties 

and targeted drug delivery capabilities. Innovations in coatings, such 

as hydroxyapatite (HA) and calcium phosphate, have enhanced 
osseointegration and reduced infection risks. Additionally, 

nanomaterials like gold and silver nanoparticles have shown promise 

in improving implant functionality and reducing bacterial colonization. 
Conclusion: Advances in biomaterials and manufacturing technologies 

have significantly improved the effectiveness and safety of dental 

implants. The development of localized drug delivery systems, 
enhanced by 3D printing and nanotechnology, offers promising 

solutions to common challenges such as bacterial infections and poor 

osseointegration. Future research should focus on optimizing these 

technologies and addressing remaining challenges to further enhance 
dental restoration outcomes. 
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Introduction  

 

In the field of regenerative medicine, significant strides have been made in 
enhancing patients’ quality of life and longevity. The advancement of biomedical 

implants has notably influenced contemporary healthcare. Implants composed of 

both metallic and non-metallic biomaterials, whether permanent or temporary, 
are prevalent in various specialties such as orthopedics, maxillofacial and cranial 

surgery, ophthalmology, and neurosurgery. Biomaterials, irrespective of their 

anatomical placement, are prone to bacterial adhesion and biofilm formation, 
identifying them as a category of materials susceptible to such complications 

[1,2,3,4]. 

 
The targeted delivery of local medications to tissues can minimize the use of 

systemic antimicrobials. Beyond hydrogels and nanoparticles, polymers have also 

been evaluated for the release of topical antibiotics [5]. It is essential that drug 

concentrations at the implant site remain stable and effective to prevent bacterial 
resistance. Given the longevity expected of dental implants, drug-release coatings 

must possess the capability to recharge or replace themselves as required. PDLA 

is a suitable drug delivery agent, although its effectiveness is temporary. For over 
two decades, minocycline microspheres have been utilized to manage infections 

around implants [6,7,8,9]. Although peri-implantitis commonly manifests as a 

chronic, slow-developing condition, it can emerge shortly after surgery or even 
years later. If left untreated, peri-implantitis may lead to significant bone loss 

surrounding the implant, osteomyelitis, abscesses, sinusitis, pneumonia, and 

pathological fractures of the jawbone [1]. 
 

Additive manufacturing (AM) technologies, such as 3D printing, offer the 

capability to fabricate a variety of devices with numerous potential applications. 

Among these, bioengineering stands out as particularly promising. 3D printing 
research enables the creation of models that closely mimic biological tissues such 

as bones, cartilage, or heart valves. AM technology allows for precise geometric 

design. The increasing demand for tissue engineering, antimicrobial and anti-
biofouling devices, and regenerative medicine has driven researchers to explore 

novel manufacturing technologies to address tissue and organ shortages and the 

immunological challenges of implanted devices. Various fields benefit from this 
technology, including the creation of artificial hips, knees, heart valves, stents, 

and vascular grafts from polymeric materials, enhancing both quality of life and, 

in some cases, longevity [10,11,12,13,14]. In oral medicine, localized drug delivery 
systems are employed to treat oral diseases. The precision of 3D printing enables 

the design of unique drug delivery systems. For instance, chlorhexidine-coated 

mouthguards inhibit bacterial growth in the mouth. Wearable oral delivery 
devices, such as 3D-printed mouthguards with preloaded drugs, can provide 

effective, personalized dental therapeutics [15,16]. 
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Drug-eluting implants are designed to prevent infections associated with dental 

and orthopedic implants. Metallic implants are frequently coated with polymeric 

or ceramic layers to embed drugs, though these coatings can present 

complications such as detachment, chemical degradation, and corrosion. 
Consequently, inorganic coatings are under investigation as potential drug 

delivery systems. Despite limited focus on metallic drug-eluting systems, this 

mini-review aims to summarize recent developments in implant drug delivery 
systems [6,17,18]. Dental implants, sealed with healing abutments, which are 

permanent permucosal implants, face increased infection risks and potential 

failure. Reducing bacterial presence around biomaterials can promote healing. 
Due to the straightforward design and structure of healing abutments, they can 

be easily adapted into temporary local drug delivery systems. Effective infection 

prevention and enhancement of implant-tissue interfaces are critical to reducing 
bacterial infiltration during the implant healing process [1,19,20,21,22]. 

 

Nanotechnology is increasingly significant in dentistry for its potential to improve 

material properties at the nanoscale. Nanomaterials can be customized for 
interaction with biological systems and targeted delivery. In dental implants, 

biomaterials are vital for providing strength, biocompatibility, and integration with 

surrounding tissues. Nano-based drug delivery systems offer localized and 
sustained release of therapeutic agents, which is particularly beneficial in the oral 

environment. Nanoformulations allow precise control over drug release kinetics, 

thereby enhancing therapeutic efficacy while minimizing side effects. Nano 
coatings on implant surfaces can reduce microbial adhesion and infection risk 

and may improve osseointegration by fostering better interaction with 

surrounding bone tissues. Engineering biomaterials to deliver anti-inflammatory 
drugs can help mitigate inflammation related to implantation. Ensuring the 

biocompatibility and long-term safety of nano and biomaterials in the oral 

environment presents significant challenges, requiring navigation of regulatory 

and translational hurdles for practical clinical applications. Recent studies and 
clinical trials have explored specific nanoparticle formulations demonstrating 

success in dental implant drug delivery [1,2,23,24,25,26,27,28,29]. This review 

article discusses the current applications of nano and biomaterials in the drug 
delivery systems for dental implants. 

 

Biomaterials and Dental Applications: 
 

The potential of biocompatible materials and systems has been brought to light by 

dental and oral illnesses. Biomaterials can be used to replace or improve any 
organ, tissue, or bodily function that involves direct electrical interaction with 

biological tissues. Because these materials have characteristics similar to those of 

biological tissues, dental researchers frequently study hyaluronic acid, collagen, 

gelatin, and chitosan [30,31, 32]. There are several uses for calcium phosphate 
(CP) in dentistry and maxillofacial surgery. Microbial biofilms and external 

infections have caused numerous bone transplant and dental implant procedures 

to fail. Antibiotics and CP together can lower infection rates and enhance results. 
Doped carriers with appropriate mechanical and physicochemical qualities and 

CP are necessary for the effective delivery of antibiotics [33]. Calcium 

pyrophosphate, metaphosphate, and orthophosphates are produced during 
pyrophosphate hydrolysis under physiological circumstances. Antibiotics for 
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controlled release may also be included in the CP matrix, either for treatment or 

prevention [4,34,35]. As a result, a lot of ceramic nanoscaffolds that encapsulate 
drugs and facilitate drug delivery, cell proliferation, and tissue regeneration have 

multiple uses. When it comes to mechanical support, ceramic scaffolds are 

usually better than polymeric ones. Drug-release kinetics can be regulated by 
optimizing the surface area, grain size, and calcium-to-phosphorus ratio of 

calcium phosphate nanoparticles. Hollow silica nanospheres, which allow for 

time-delayed, multi-stage drug release and may store up to eight times more 

medicines than their solid counterparts, have been created using self-templating 
molecules under strict supervision [28, 36]. 

 

A number of growth factors, including VEGF, BMPs, PDGF, and IGFs, are 
essential for craniofacial development [37]. The process of skeletal development 

and bone production involves the activation of Smad-dependent and MAPK 

signaling pathways. During trauma or infection, fibroblast growth factor signaling 
affects bone regeneration, remodeling, and wound healing [38]. While VEGF 

influences the proliferation, vascularization, and ossification of the maxillary, 

palatine, and calvarial mesenchyme, IGFs assist the formation and maintenance 
of the skeleton. Patients with significant craniofacial deformities may not recover 

as well if there are imbalances in these growth factors [39]. Growth factors have a 

short circulation half-life, restricted diffusion, quick degradation, and cleavage, 

which means that high doses and frequent injections are necessary to induce 
particular biological responses [40]. In vivo, ECM molecules stabilize and 

safeguard growth factors. For the release of growth factors to be localized and 

sustained, appropriate carrier systems are required [41]. Growth factor-ensnaring 
materials include hydrogels, nanofibrous membranes, micro/nanoparticles, and 

sponges [42]. Rats with near-complete healing of size abnormalities have been 

found to receive simultaneous dose of BMP-2 and VEGF [43, 44]. The release of 
growth factors can be regulated by using different immobilization methods [45]. 

Preclinical and clinical trials of these delivery methods are scarce, despite a great 

deal of in vitro study. treatments utilizing rhBMP-2 embedded in absorbable 
collagen sponges for sinus lifts and alveolar ridge augmentations are among the 

commercially accessible rhBMP-based treatments [46, 47]. Clinical use of carrier-

based grafts is permitted, such as OP-1 Putty with rhBMP-7 [48]. In addition to 

preserving regulated release kinetics, growth factor-containing materials offer a 
porous osteoconductive structure that promotes bone ingrowth. It is possible to 

speed up bone regeneration by combining or giving different growth factors one 

after the other. Different delivery vehicles have successfully encouraged bone 
repair and angiogenesis, despite difficulties in figuring out the best 

concentrations, tailoring release profiles, and managing gradients and timing 

[49,50,51]. For instance, during phase I/II human clinical studies, combinations 
of PDGF/IGF-I in methylcellulose gels have demonstrated enhanced defect filling 

in periodontal lesions [52,53]. In peri-implant environments, newer techniques 

simulate the soft tissues and bone around the implant. In order to improve 
osseointegration and soft tissue integration and lessen biofilm-induced peri-

implant inflammation, dental implant surfaces have been modified using a variety 

of extracellular matrix proteins, peptides, and growth factors. Over time, 
osteoconductive or antibacterial molecules may be released from titanium 

surfaces coated with bioabsorbable polymeric coatings. Hydroxyapatite (HA) has 

been applied to titanium surfaces using physiologically simulated calcium and 
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phosphorus-containing bodily fluids [54,55,56]. Osteoconductive coatings, such 

as HA, are by nature calcium-phosphorus. The materials' biodegradation 

properties are affected by various factors, including coating thickness, 

crystallinity, and calcium/phosphorus ratios. The standard atmospheric plasma-
spraying technique, plasma spraying, is frequently used to apply HA to titanium 

implant surfaces. Factors like the composition of the flame and the velocity of 

spraying have an impact on the chemical and physical properties of the spray [23, 
29]. After five years, clinical success rates for HA-coated implants were over 95%; 

however, after ten years, these rates fell to less than 80%, possibly as a result of 

problems with the HA coating layer. To further assess calcium-phosphorus 
coatings, clinical investigations are required [13,29,57]. By replacing lost teeth 

with implants, which frequently use materials like titanium and its alloys, oral 

function and aesthetics are restored. Tooth replacement has been revolutionized 
by dental implants, which are renowned for their high success rates. 

Osseointegration is the process by which an implant's mechanical characteristics 

cause it to fuse with the surrounding bone. Through novel implant designs, 

surface alterations, and implant-abutment linkages, ongoing research seeks to 
improve long-term efficacy and cosmetic results [24,58,59,60]. Porous HA can be 

produced by hydrothermally converting calcium-based coral or bone, sacrificial 

porogen destruction, repeated reticulated foam scaffolds, or ceramic slip foaming. 
Drug delivery methods can be constructed using spherically porous HA granules. 

The structure of these granules can be changed by varying the amounts of 

sodium chloride and water. This can be investigated for the release of 
antibacterial or anti-inflammatory drugs at the sites of implantation. For 

regulated drug release, HA granules with intricate microchannel architectures are 

being studied [28,58,61,62]. 
 

The biocompatibility of HA coating surfaces with hard tissue is demonstrated by 

the direct attachment of osteoblasts to them. It has been observed that HA-coated 

metal implants improve bone apposition and inhibit the release of metal ions into 
the bone. On the other hand, problems with the HA coating layer, including worn 

or delaminated particles, might promote inflammation and hinder bone healing. 

In load-bearing regions, thick coating layers may also raise the chance of implant 
breakage. The long-term clinical benefits of plasma-sprayed HA have not 

consistently been achieved by other calcium-phosphorus coatings, despite their 

exploration [29,63,64, 65]. Since HA resembles natural bone mineral, it is a 
perfect material for implants and bone grafts because it encourages bone cell 

adhesion and osteointegration. In tissue engineering, HA is employed as a scaffold 

material to promote tissue growth, nutrition delivery, and cell infiltration. 
Because HA scaffolds' porous shape resembles the extracellular matrix found in 

nature, it encourages tissue growth and offers mechanical support. These 

implants have the ability to create new tissues, regenerate bone, and repair 

cartilage. A new age of customized implants has been brought about by the 
integration of HA with additive manufacturing and 3D printing [24,63,66,67]. 

 

Higher bone tissue integration has been observed using TiO2 nanotubes 
containing HA. Heat-sensitive biomolecules and polymeric materials can be 

deposited on TiO2 nanotubes through modifications with carbon nanotubes, 

polymers, and proteins, as well as matrix-assisted pulsed laser evaporation 
(MAPLE) processes. Osteogenic cell stimulation can be achieved by coating 
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titanium or HA with bioabsorbable compounds. Peptides and peptidomimetics 

have been used as titanium surface additions in recent times. Through covalent 
binding, trapping, and adsorption, biomolecules' diverse range of chemical and 

functional properties promote bone repair. The extracellular matrix of titanium 

dental implants contains collagen, which promotes soft tissue growth and 
osseointegration, strengthening the bond between the implant and the gum. Cell 

adhesion to the extracellular matrix is facilitated by coating titanium with 

osteopontin and bone sialoprotein. Large extracellular matrix proteins can 

nevertheless be helpful even if they have a limited chemical stability and are 
quickly reabsorbed in bodily fluids [54,68]. The potential of HA carriers in drug 

delivery systems, which provide targeted and regulated release for a range of 

biological applications, has drawn attention [24]. 
 

The biocompatibility and osseointegration of metallic implants are typically 

improved by HA coatings, which lowers the chance of implant failure and 
gradually increases stability. HA and other bioactive coatings promote bone 

growth and healing around implants by imitating natural bone materials. 

Bioactive coatings greatly enhance dental implants, particularly in difficult 
clinical situations. Researchers are concentrating on creating multipurpose 

coatings, refining coating methods, and investigating novel materials. The 

composition and adherence of HA coatings are improved by employing methods 

including electrochemical deposition, plasma spraying, and biomimetic 
mineralization. In the domains of orthopedics, dentistry, and other biomedical 

sciences, improvements in coating techniques are enhancing the longevity and 

functionality of implants. Because of its low cytotoxicity, little inflammatory 
response, biocompatibility, and suitability for regenerative medicine applications, 

HA is one of the most beneficial drug carriers [24,69,70]. Coatings have 

significantly improved the mechanical and biological characteristics of implants in 
implant dentistry. By improving zirconia's biocompatibility, antimicrobial 

qualities, and bioactivity, bioactive coatings can encourage the production of 

hydroxyapatite and the creation of new bone [71]. 
 

The host's immunological response to the implanted material has a major impact 

on the successful integration of biomaterials into host tissue and the ensuing 

clinical results. Regenerative results can be enhanced by comprehending these 
complex interactions between the immune system and biomaterial [72]. 

Inflammatory responses are initiated upon implantation to safeguard neighboring 

tissues, and host plasma proteins bind to the biomaterial surface to form a first 
layer of proteins [73]. Fibrinogen is essential for drawing in inflammatory cells, 

promoting platelet adhesion, and creating clots that sustain the development of 

cells [74, 75]. Biocompatible biomaterials work better when there is a modulated 
immune response. Immune cells including lymphocytes, mast cells, and 

macrophages affect the type of immune response. Mast cells can impede tissue 

regeneration and promote fibrosis rather than healing by releasing pro-fibrogenic 
cytokines and chemicals that induce fibrosis [76]. While M2 macrophages aid in 

wound healing, M1 macrophages are involved in classical activation [77,78]. The 

shift from proinflammatory M1 macrophages to antiinflammatory M2 
macrophages is necessary for bone repair [79, 80]. By getting beyond the 

restrictions of natural bone grafts, bone replacement biomaterials—including CP 

biomaterials like DCP bioceramics—offer orthopedic and dental patients 
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substantial benefits [81]. In order to optimize these biomaterials for regeneration 

results akin to those of genuine bone grafts, the immune response must be 

modulated as opposed to suppressed. In order to promote desired immune 

responses and enable tissue/material integration and remodeling, smart 
biomaterials have been designed [82]. ECM proteins have the ability to affect 

cytokine release and immune cell adherence, and signaling molecules can activate 

immunological responses by triggering TLRs on resident immune cells [83]. 
 

The studies on zirconia and hydroxyapatite (HA) coatings highlights several 

key findings: 
1. Cho et al. (2015) demonstrated that HA-coated zirconia improved surface 

wettability and osteogenic potential, although cell proliferation was lower 

on HA-coated zirconia compared to uncoated zirconia. The study suggests 
that HA coatings promote osteogenesis and enhance surface modification 

[84]. 

2. Kim et al. (2011) found that combining HA with 4-Hexylresorcinol (4-HR) 

enhanced adhesion efficiency compared to HA alone. The HA+4-HR coating 
showed significantly higher osteocalcin expression, increased bone 

formation, and improved bone-to-implant contact values. This 

combination also resulted in more durable implants [85]. 
3. Lee et al. (2014) reported that collagen and HA coatings (CH) on implants 

improved bone formation around the implant and bone-in-crack compared 

to uncoated and HA-only surfaces. CH coatings were more effective than 
BMP-2 coatings in stimulating new bone formation and increasing bone-

to-implant contact (BIC) [86]. 

4. Laranjeira et al. (2014) investigated silica-coated zirconia surfaces and 
found that microstructured bioactive coatings reduced bacterial adhesion 

and improved soft tissue adhesion. Silica coatings were effective in 

decreasing biofilm formation and enhancing protein adsorption [87]. 

5. Pardun et al. (2015) explored various ratios of Y-TZP and HA coatings 
and observed that HA dissolution stimulated osteoblast adhesion and 

proliferation. However, while the bioactivity of calcium phosphate 

increased in simulated body fluid, its mechanical and chemical stability 
decreased. Coatings with higher tetragonal zirconia content showed better 

interfacial bonding and mechanical strength [26]. 

6. These findings underscore the potential of different coating strategies to 
enhance the biocompatibility, durability, and functionality of dental and 

orthopedic implants. The choice of coating materials and techniques can 

significantly impact the effectiveness of implants in promoting bone 
integration and reducing complications. 

 

The incorporation of nanomaterials into dental implants offers promising 

advancements in drug delivery and antimicrobial properties. Here's a summary of 
the key points related to different nanomaterials used in dental implants: 

1. Nanomaterials in Drug Delivery and Implant Coatings: 

 Metallic Nanoparticles: Various metallic nanoparticles, such as gold, 
silver, and zinc oxide, have been used to enhance dental implant 

functionality. They can offer antibacterial properties, improve 

osseointegration, and facilitate targeted drug delivery. 
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2. Gold Nanoparticles (AuNPs): 

 Properties and Applications: Gold nanoparticles are used for drug 

delivery, imaging, and diagnostics. They are effective in delivering drugs, 
proteins, peptides, and genes. Gold nanoparticles are also used in dental 

implants for their antimicrobial properties and to improve the detection of 

periodontal disease. 

 Size and Toxicity: Nanoparticles between 20 and 50 nm are highly 

effective, but those towards the higher end of this range may exhibit 

toxicity. Gold nanoparticles are synthesized in various shapes for different 
applications [89, 94]. 

3. Nano-silver (nAg): 

 Antibacterial Properties: Silver nanoparticles are renowned for their 

antibacterial effects and are utilized in dental implants, periodontology, 
and bone regeneration. They prevent bacterial contamination and 

maintain biocompatibility. 

 Applications and Effectiveness: Coatings with silver nanoparticles can 

significantly reduce bacterial colonization. Various studies have 
demonstrated their efficacy in preventing infection and improving bone 

formation [96, 97, 99, 100, 101, 102]. 

4. Titanium (Ti) Implants: 

 Historical Use and Improvements: Titanium implants have been widely 

used due to their low failure rates. Recent advancements include surface 

modifications and the incorporation of nanomaterials to improve 

osseointegration and reduce biofilm formation. 

 Nanomaterial Coatings: Ti implants coated with nanoparticles such as 

silver, zinc oxide, or other materials enhance antimicrobial properties and 

improve bone integration. Nanocomposite coatings and controlled drug 
release systems are also being developed to improve implant performance 

[105, 106, 107, 108]. 

5. Zinc Oxide (ZnO): 

 Properties and Benefits: ZnO nanoparticles offer antimicrobial properties 

and promote osteoblast proliferation, which can enhance bone growth and 

reduce infection risk. They are used in combination with other materials to 

improve implant surfaces [110, 111, 112]. 
6. Ceramic Nanoparticles: 

 Applications in Drug Delivery: Ceramic nanoparticles like titanium, 

silica, and alumina are explored as drug carriers. Nano-hydroxyapatite 

(nHA) is particularly notable for its biocompatibility and ability to deliver 
drugs to bone tissue. nHA-based drug delivery systems are being 

developed for treating bone diseases and infections [90, 25, 113]. 

These advancements underscore the potential of nanomaterials to significantly 
enhance the performance and safety of dental implants. By leveraging their 

unique properties, researchers aim to improve implant durability, reduce infection 

rates, and facilitate better integration with bone and soft tissues. 
 

Conclusion 

 
The integration of advanced biomaterials and innovative manufacturing 

techniques has substantially transformed the field of dental restoration. The 

development of drug-eluting implants, bolstered by additive manufacturing 
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technologies like 3D printing, has provided new avenues for improving implant 

design and functionality. These technologies enable the precise fabrication of 

implants and delivery systems, tailored to the unique needs of individual patients. 

Nanotechnology has played a crucial role in enhancing the performance of dental 
implants. Nanomaterials, including gold, silver, and zinc oxide nanoparticles, 

have been incorporated into implant coatings and drug delivery systems to offer 

antimicrobial properties and targeted therapeutic effects. These advancements 
help address the common issue of bacterial infection and biofilm formation, which 

can compromise implant success and longevity. The use of hydroxyapatite (HA) 

and calcium phosphate coatings has shown promise in improving the 
biocompatibility and osseointegration of dental implants. These materials mimic 

natural bone and promote better integration with surrounding tissues. However, 

challenges remain in ensuring the durability and stability of these coatings over 
the long term. Additionally, the incorporation of growth factors and the 

development of smart biomaterials that modulate the immune response offer new 

strategies for enhancing tissue regeneration and implant success. Research into 

these areas continues to evolve, aiming to overcome current limitations and 
improve clinical outcomes. Overall, the advancements in biomaterials and 

manufacturing technologies offer significant improvements in dental restoration. 

Continued research and innovation are essential to further refine these 
technologies, optimize their performance, and address the remaining challenges 

in implant dentistry. The future of dental implants will likely see continued 

progress in material science and personalized treatment approaches, enhancing 
both the effectiveness and patient experience in dental restoration. 
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