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Abstract---Background: With 19.3 million new cancer cases and 10
million related deaths globally in 2020, there is an urgent need for
effective cancer treatments. Traditional modalities such as surgery,
radiotherapy, and chemotherapy have limitations, particularly for
aggressive and metastatic cancers, leading to high recurrence rates
and poor outcomes. The development of advanced drug delivery
systems (DDS) is emerging as a promising strategy to enhance
treatment efficacy and reduce side effects. Aim: This review aims to
provide a comprehensive overview of the various drug delivery systems
employed in tumor treatment, highlighting their preparation,
characteristics, applications, and clinical potential. Methods: The
review covers a range of drug delivery carriers including nonmetallic
nanoparticles, metal nanoparticles, albumin, ferritin, liposomes,
exosomes, and dendrimers. The focus is on their design,
functionalization, and effectiveness in delivering antitumor drugs.
Additionally, it discusses the integration of various anticancer agents
with these delivery systems and their impact on treatment efficacy.
Results: Recent advancements in DDS have shown significant
improvements in drug targeting and delivery. For instance, second-
generation nanomedicines with active targeting mechanisms have
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demonstrated enhanced specificity and reduced systemic toxicity.
Notable developments include pegylated liposomal doxorubicin,
ferritin-based drug carriers, and exosome-sheathed nanoparticles.
These systems have been shown to improve drug stability, increase
cellular uptake, and enhance therapeutic efficacy. Conclusion: The
integration of advanced drug delivery systems into cancer therapy
represents a major step forward in improving treatment outcomes.
While many of these systems are in preclinical or early clinical stages,
their potential to revolutionize cancer treatment is evident. Future
research should focus on optimizing these systems for broader clinical
application and addressing remaining challenges such as cost and
regulatory approval.

Keywords---Drug delivery systems, cancer therapy, nanomedicine,
pegylated liposomes, ferritin, exosomes, dendrimers.

Introduction

Global cancer statistics indicate that in 2020, there were 19.3 million new cancer
cases and 10 million related deaths (Sung et al., 2021). The pursuit of effective
cancer treatments is critical. The most prevalent treatment modalities encompass
surgery, radiotherapy, chemotherapy, and targeted therapy (Wei et al., 2017; Mun
et al., 2018). Initially, surgical excision of the tumor mass is the foundational
treatment for most cancer patients. Subsequently, radiotherapy and
chemotherapy, as conventional treatment methods, have demonstrated significant
efficacy in curbing the rapid proliferation of tumors (Mitra et al., 2015). Clinical
evidence has established that combining surgical resection with radiation therapy
is a standard approach for primary tumors with no evident metastasis. However,
given the highly aggressive nature of certain tumors, such as malignant
peripheral nerve sheath tumors and metastatic melanoma, which have high
mortality rates, these traditional approaches show considerable limitations, often
leading to poor outcomes and high recurrence rates (Bishop et al., 2018; Tian et
al., 2021). To enhance the cure and survival rates of cancer patients, the
development and application of diverse drug delivery systems as innovative and
more promising strategies are increasingly being employed in cancer therapy. For
instance, pegylated liposomal doxorubicin (DOX; Doxil®/Caelyx®) and nab-
paclitaxel (PTX) (Abraxane®), as first-generation nanomedicine drugs, utilize
passive targeting by modifying their physicochemical properties and have been
integrated into clinical practice. Notably, the second generation of nanomedicine
drugs, focusing on active targeting, has emerged as a significant area of research
in drug delivery systems, thereby creating new opportunities for cancer treatment
(Wicki et al., 2015). Targeting ligands such as peptides (Liu et al., 2014), small
organic molecules (Sahu et al., 2011; Narmani et al., 2019; Mansoori et al., 2020),
and antibodies (Julien et al., 2011) have been functionalized on the surface of
nanoparticles (NPs) to selectively bind to overexpressed receptors on specific
tumor cells, enabling the targeted delivery of antitumor drugs (Sun et al., 2014;
Wicki et al., 2015). In various preclinical studies, second-generation
nanomedicine drugs, including immunoliposomes (ILs) such as anti-HER2-ILs,
anti-epidermal growth factor receptor-ILs (anti-EGFR-ILs), and anti-VEGFR2-ILs,
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have been developed. The anti-EGFR antibody (cetuximab) has been conjugated to
DOX-loaded pegylated liposomes to assess its therapeutic efficacy in patients with
advanced solid tumors (Wicki et al., 2015). Nonetheless, although many developed
drug delivery systems, particularly second-generation nanomedicine drugs for
active targeted therapy, have progressed to early clinical trials, only a limited
number have received approval for commercial use. This review aims to provide a
comprehensive summary of the development and application of drug delivery
systems, focusing on the effective delivery of antitumor drugs and their future
clinical applications.

Preparation, Characteristics, and Applications of Common Drug Delivery
Carriers

In recent years, a significant amount of research has focused on the use of
various inorganic (nonmetallic and metallic) and organic materials (natural
polymers, liposomes, exosomes, and dendrimers) as drug delivery carriers. These
materials have been developed into multifunctional drug delivery systems
optimized in size, shape, and surface properties to maximize their antitumor
effects (Chen et al., 2013; Sun et al., 2014; Baetke et al., 2015; Wicki et al., 2015;
Thomas et al., 2019).
¢ Nonmetallic Nanoparticles (NPs)

o Silicon and carbon are notable nonmetallic elements commonly
utilized due to their intrinsic physical and chemical properties,
affordability, and high biocompatibility, making them suitable for
creating nanocarriers for cancer diagnosis and treatment (Chen et
al., 2013).

o Nonmetallic NPs, such as silicon NPs (SiNPs), porous SiNPs
(PSiNPs), graphene, and graphene oxide (GO), have garnered
attention for their potential in drug delivery systems for cancer
therapy.

o SiNPs are synthesized via femtosecond laser ablation in deionized
water and offer several advantages in cancer treatment, including:

» Biocompatibility and biodegradability.

= Low cytotoxicity and genotoxicity.

= The ability to be fully degraded by cells and tissues.

» Support for photodynamic therapy and radiofrequency
hyperthermia, owing to room temperature
photoluminescence, singlet oxygen generation under
photoexcitation, and infrared and ultrasound-induced
hyperthermia properties.

o PSiNPs, derived from mechanical milling of electrochemically
prepared porous silicon, exhibit:

= Biocompatibility and biodegradability.

» High drug loading capacity.

= Versatile surface modifications, enabling them to act as
dissolvable nano-containers for hydrophobic drugs and
immobilize targeting molecules on their surface (Tamarov et
al., 2014; Tolstik et al., 2016).

o PSiNPs have demonstrated potential applications in cancer
theranostics, including:
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* Tumor imaging.

= Chemotherapy.

= Photodynamic therapy.

= Gene therapy.

* Immunotherapy.

= Targeted therapy (Landgraf et al., 2020; Xia et al., 2018).

e Graphene and Graphene Oxide (GO)

o

o

Synthesized using the Hummers' method (Wu et al., 2015),
graphene consists of a single layer of sp2-hybridized carbon atoms
arranged in a honeycomb two-dimensional (2-D) crystal lattice,
while its oxidized form, GO, contains various oxygen-containing
functional groups (epoxy, hydroxyl, carboxylic, carbonyl, etc.) (Feng
et al., 2013; Liu et al., 2013; Mousavi et al., 2019).
Key properties of graphene and GO include:

= A 2-D planar structure and large surface area.

* Chemical and mechanical stability.

=  Superb conductivity.

= Good biocompatibility.
These properties make graphene and GO promising materials for
biomedical applications such as:

* Biosensing and bioimaging.

* Drug and gene delivery.

= Photothermal therapy (PTT) in cancer treatment.
They have been extensively studied as drug delivery systems for
anticancer drugs (Mousavi et al., 2019; Zhou et al., 2018).

e Metal Nanoparticles (MtNPs)

o

Metals, natural elements on Earth, are widely used in various
fields, including industry, agriculture, medicine, and daily life.
In the context of nanomaterials, metals are used to synthesize
MtNPs such as AgNPs, AuNPs, ZnO NPs, Fe203 NPs, CuO NPs,
and Al203 NPs through methods like mechanical attrition, laser
ablation, photo reduction, chemical electrolysis, and biological
synthesis (Ahmad et al., 2010; Hanan et al., 2018; Ovais et al.,
2018a; Rao et al., 2016; Thakkar et al., 2010).
MtNPs possess unique physicochemical properties and
applications, including:

= Antimicrobial and anticancer activities.

= Catalytic, optical, electronic, and magnetic properties.

= Use in biology, food, agriculture, engineering, electronics,

cosmetics, and medicine (Ovais et al., 2018a).

AgNPs and AuNPs are particularly notable for their cytotoxicity,
making them useful in cancer research (Pan et al., 2009; Rao et al.,
2016).
MtNPs can also be combined with biomolecular substances like
peptides, antibodies, and DNA/RNA for enhanced therapeutic
effects (Kumar et al., 2015; Sharma et al., 2018; Zhou et al., 2016).
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Albumin as a Carrier for Targeted Drug Delivery
e Role and Properties of Albumin

o Albumin, the most abundant plasma protein synthesized in the
liver, is acidic and hydrophilic.

o It plays a crucial role in protein-based nanomaterials, serving as a
carrier for targeted delivery of anticancer drugs, enhancing
tumoricidal activity (Karimi et al., 2016; Wang and Zhang, 2018).

e Bovine Serum Albumin (BSA) Characteristics

o BSA is a globular, non-glycosylated protein composed of 583 amino
acids, arranged in a single chain with an approximate molecular
weight of 69 kDa.

o It is widely used in nanomedicine due to its availability, low cost,
ease of purification, and stability (Lamichhane and Lee, 2020).

o BSA nanoparticles (BSA NPs) are versatile protein carriers for drug
delivery:

* Nontoxic and non-immunogenic.
= Low cost and biocompatible.
» Easily metabolized in vivo and water-soluble (Huang et al.,
2018).
e Methods of Loading BSA NPs with Antitumor Drugs

o Covalent Conjugation:

* Drugs like curcumin (CUR) can be covalently attached to
the amino and carboxylic groups on BSA (Fu et al., 2016;
Huang et al., 2018; Wang and Zhang, 2018).

o Non-Covalent Conjugation:

= Involves methods such as encapsulation, hydrophobic
interaction, coordination chemistry, and -electrostatic
interaction to load drugs like DOX, 5-FU, and PTX (Wang
and Zhang, 2018).

e Surface Engineering of BSA

o Enhances nanomaterials’ hydrophilic and  biocompatible
properties.

o Provides active chemical groups for conjugating targeted ligands
like FA, monoclonal antibodies, and galactose (Huang et al., 2018;
Lamichhane and Lee, 2020; Wang and Zhang, 2018).

o Example: CUR-loaded galactosylated BSA NPs (Gal-BSA-CUR NPs)
improve CUR solubility, release effect, and bioavailability.

= Target the asialoglycoprotein receptor (ASGPR), enhancing
endocytosis in liver cancer HepG2 cells.
= Effectively inhibit HepG2 cell proliferation, migration, and
induce apoptosis, possibly related to NF-kB-p65
inactivation (Huang et al., 2018).
Ferritin as a Drug Delivery Vector
e Structure and Properties of Ferritin

o Ferritin is a cage-like protein found in nearly all living organisms.

o Composed of 24 subunits arranged in octahedral 4-3-2 symmetry,
it has an outer diameter of 12 nm and an inner diameter of 8 nm.

o The inner cavity is connected to the outside by channels formed by
symmetrical positioning of subunits on the shell, allowing the entry
and exit of iron and other cations (Calisti et al., 2018).
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o Ferritin Nanocage Properties

o Reversibly disassembles at extremely acidic (pH 2.5) or basic (pH
13.0) conditions and reassembles at neutral pH.

o Efficiently loaded with drugs, fluorescent molecules, or contrast
agents for use as drug delivery vectors and tools for bioimaging
(Palombarini et al., 2020; Truffi et al., 2016).

e Targeting Tumor Cells

o Ferritin selectively targets tumor cells that overexpress the Tf
receptor TfR1 (CD71) (Calisti et al., 2018).

o Mammalian ferritins include two highly conserved subunits: the
heavy chain (H; 21 kDa) and the light chain (L; 19 kDa)
(Palombarini et al., 2020).

o Human Ferritin Heavy Chain (HFt) Constructs:

» Efficiently deliver chemotherapeutics like DOX, CUR, or
siRNA to cancer cells (Truffi et al., 2016).

= Example: HFt-MP-PAS40 is a genetically engineered HFt
construct that encapsulates DOX, forming more stable
complexes (HFt-MP-PAS40-DOX) with a longer in vivo half-
life, increasing antitumor effects in squamous cell
carcinomas (SCCs) of the head and neck.

» Demonstrates lower cardiotoxicity and higher tolerated
doses, making it a promising nanocarrier in clinical
research for tumor treatment (Falvo et al., 2016; Fracasso
et al., 2016; Damiani et al., 2017).

Liposomes in Drug Delivery
e Structure and Use of Liposomes

o Liposomes are vesicles with one or more concentric phospholipid
bilayers separated by aqueous compartments, capable of carrying
both hydrophobic and hydrophilic drugs.

o They have been extensively studied and used in anticancer drug
delivery due to their biological inertness and biocompatibility (Feng
et al., 2017; Riaz et al., 2018).

¢ Advantages of Liposomes

o They do not cause unwanted toxic or antigenic reactions.

o Can be modified with suitable ligands (peptides, antibodies) to form
targeted liposomes, using overexpressed receptors as docking sites
for delivering anticancer drugs (Bingham et al., 2010; Feng et al.,
2017; Schwendener, 2007; Wang et al., 2005).

¢ Example: Cetuximab-Modified Immunoliposomes (ILs)

o Enhance liposomal uptake by EGFR-positive cancer cells.

o Study: An IL containing 5-FU modified by cetuximab has been
developed, improving SCC efficacy by combining anti-EGFR
antibody with a chemotherapeutic drug.

o Method: Iontophoresis with ILs increases 5-FU penetration into
SCCs, proving more effective than subcutaneous injection in
reducing cell proliferation and invasion (Petrilli et al., 2018).
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Exosomes as a Drug Delivery Platform
e Properties of Exosomes
o Exosomes are extracellular vesicles secreted by mammalian cells,
composed of a phospholipid bilayer.
o They are nanosized (50- to 100-nm) cup-shaped structures under
transmission electron microscopy (Batrakova and Kim, 2015; Théry
et al., 2002; van den Boorn et al., 2013).
e Surface Markers and Function
o Exosomes have labeled proteins and ligand proteins on their
surface, including ALIX, tetraspanins (CD9, CD63, CD81),
integrins, and cell adhesion molecules (CAM), which attach to and
deliver payloads to target cells (Batrakova and Kim, 2015; van den
Boorn et al., 2013).
e Applications in Drug Delivery
o Exosome-biomimetic nanoparticles (NPs) have gained attention as
an effective drug delivery platform.
o Constructed by fusing exosomes with functionalized NPs through
iterative physical extrusion or freeze/thaw cycles (Yong et al.,
2019).
e Example: Exosome-Sheathed DOX-Loaded PSiNPs
o Synthesized to target cancer chemotherapy due to excellent drug-
loading capacity, high biocompatibility, and biodegradability.
o Study: Exosome-sheathed DOX-loaded PSiNPs (DOX@E-PSiNPs)
induce low expression of multidrug-resistant protein P-glycoprotein
(P-gp), enhancing intracellular retention and targeting tumor cells
through CD54 (ICAM1).
o Compared with free DOX or DOX@PSiNPs, DOX@E-PSiNPs
demonstrate enhanced cytotoxicity against cancer stem cells
(CSCs) and improved anticancer efficacy (Yong et al., 2019).

Dendrimers in Drug Delivery
e Introduction and History
o Dendrimers are synthetic dendritic polymers with a three-
dimensional, branched, highly monodispersed, nanoscopic (1-100
nm) architecture.
o First developed by Donald A Tomalia in 1979, dendrimers provide a
unique nanocontainer property for drug delivery (Chauhan, 2015,
2018; Tomalia, 2012).
e Drug Entrapment Mechanisms
o Dendrimers offer three main sites for drug entrapment: void spaces
(molecular entrapment), branching points (hydrogen bonding), and
outside surface groups (charge—-charge interactions).
o This architecture enables dendrimers to solubilize water-insoluble
drugs and bind multiple biological targets, improving therapeutic
effects (Chauhan, 2015).
e Cancer Treatment Applications
o Dendrimers enhance the solubility, stability, and oral
bioavailability = of various antitumor drugs, with high
biocompatibility and low side effects on normal cells (Chauhan,
2015, 2018).
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o Example: Trastuzumab (TZ)-grafted dendrimers were synthesized
to deliver docetaxel (DTX) to HER2-positive breast cancer cells,
demonstrating higher targeting, lower hemolytic toxicity, and
longer circulation time (Chauhan, 2015).

o Study: A dendrimer-encapsulated ruthenium-based organometallic
complex exhibited better DNA binding, more ROS generation, and
increased apoptosis in breast cancer cells than free ruthenium
complex (Mba and Singh, 2019).

Antitumor Efficacy and Mechanisms of Various Anticancer Drugs in Delivery
Systems

Currently, a range of antitumor agents including DOX, PTX, DTX, CUR, and
siRNA, when integrated with various delivery carriers, have received approval for
clinical use (Wicki et al., 2015). Additionally, other agents like metformin (MET)
and 5-fluorouracil (5-FU) have been extensively researched within drug delivery
frameworks, showing considerable potential for clinical applications (Li et al.,
2008; Aydin et al., 2020). Extensive research has been conducted on the
application of these anticancer drugs through different delivery vehicles across
various cancer types, offering significant insights for future, long-term clinical
cancer treatments.

DOX

DOX, or adriamycin, is an anthracycline antibiotic derived from Streptomyces
peucetius spp. and comprises both aglyconic and sugar components (Carvalho et
al., 2009; Chen et al., 2018). The aglycone portion features a tetracyclic structure
with quinone-hydroquinone groups, a methoxy group, and a carbonyl side chain,
while the sugar moiety, daunosamine, is linked via a glycosidic bond (Carvalho et
al., 2009). DOX induces apoptosis or cell cycle arrest through mechanisms such
as topoisomerase II inhibition, DNA intercalation, and free radical production.
Due to its wide-ranging antitumor activity and affordability, DOX is employed in
treating various cancers (Chen et al.,, 2018). However, its clinical utility is
constrained by its cardiotoxicity (Rivankar, 2014). To mitigate side effects,
alternative DOX delivery methods have been developed, such as pegylated
liposomal DOX (PLD), which offers reduced toxicity and improved tolerance for
cancers like HIV-associated Kaposi's sarcoma, ovarian cancer, breast cancer, and
hematological malignancies (Slingerland et al., 2012; Rivankar, 2014). PLD serves
as a palliative treatment option, particularly for ovarian cancer, and is a safer
alternative to other antitumor drugs like anthracyclines and platinum-based
agents. PLD also enhances traditional DOX by reducing cardiotoxicity and
optimizing pharmacokinetics (Lorusso et al., 2019). Combination therapies using
DOX and photothermal agents like IR820 dye have demonstrated increased
efficacy against drug-resistant cancer cells. For instance, DOX/IR820/NH2-
PSiNPs nanocomposites utilize electrostatic interactions for dual pH/NIR-
triggered release, enhancing DOX delivery to resistant cancer cells (Xia et al.,
2018). Research has also explored CMC nanoparticles as DOX carriers, where
molecular weight and degree of substitution affect drug encapsulation and release
(Shi et al., 2006). A novel carrier combining FA-conjugated CMC with ferroferric
oxide (Fe304) and cadmium telluride quantum dots (CdTe QDs) has been
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developed, offering high drug loading, low cytotoxicity, and effective targeted
delivery (Shen et al., 2012). Additionally, multifunctional DOX-conjugated PAMAM
dendrimers have shown promise for pH-sensitive, targeted cancer therapy, with
G5 PAMAM dendrimers demonstrating enhanced therapeutic efficacy by targeting
cancer cells via FAR-mediated endocytosis (Kuruvilla et al., 2017; Zhang et al.,
2018). Studies have also explored the use of radiolabeled NPs and dual-targeting
systems to improve DOX delivery and efficacy in specific cancers (Ji et al., 2018;
Su Z. et al., 2014). Other innovative approaches include the use of exosomes for
DOX delivery to reduce cardiotoxicity and enhance targeting in cancer therapy (Li
et al., 2018).

PTX and DTX

PTX, a tricyclic diterpenoid from Taxus brevifolia, functions as a mitotic inhibitor
by promoting tubulin polymerization and arresting cell division in the G2 and M
phases, leading to cell death (Yardley, 2013; Wei et al., 2017; Zhu and Chen,
2019). Due to its unique mechanism, PTX is widely used in treating cancers such
as cervical, breast, ovarian, brain, bladder, prostate, liver, and lung cancers (Wei
et al.,, 2017; Zhu and Chen, 2019). However, PTX's complex synthesis, low
solubility, and high cost necessitate the development of alternative taxanes. DTX,
a semisynthetic derivative of PTX, is more potent and has demonstrated
therapeutic efficacy in clinical trials for breast, ovarian, and non-small-cell lung
cancers (Nicoletti et al., 1994). Despite their efficacy, taxanes face challenges like
poor solubility, selectivity, and drug resistance, which limit their clinical use
(Yardley, 2013; Wei et al., 2017). To overcome these issues, novel drug delivery
systems have been developed, including O-CMC nanoparticles conjugated with
targeting molecules such as cetuximab or glycyrrhizin to enhance delivery and
antitumor effects in specific cancer types (Maya et al., 2013; Shi L. et al., 2012).
Double-targeted delivery systems, such as DTX-CMCS-PEG-NGR conjugates, have
also been explored to improve targeting and efficacy in cancer therapy (Liu et al.,
2014). Combination therapies using liposomal formulations of DTX with siRNA
have shown promise in enhancing antitumor activity and overcoming drug
resistance (Xu et al., 2017; Yang et al., 2014; Ma et al., 2021).

CUR

CUR, a polyphenolic compound from Curcuma longa, is known for its safety, non-
toxicity, and broad-spectrum therapeutic properties, including anticancer effects
across various cancers like colorectal, gastric, breast, and lung cancer (Wei et al.,
2018). However, CUR's poor solubility and low bioavailability limit its therapeutic
potential. Nanoparticles (NPs) have been employed as delivery carriers to enhance
CUR's bioavailability and reduce required dosages (Huang et al., 2018). Studies
have developed CUR-loaded NPs and combinatorial drug delivery systems that
significantly improve CUR's antitumor efficacy (Anitha et al., 2012b; Anitha et al.,
2014). Other approaches include the use of liposomal CUR formulations, which
have demonstrated enhanced stability and therapeutic effects in various cancer
models (Feng et al., 2017; Mach et al., 2009; Ranjan et al., 2013). Additionally,
CUR-loaded hydrogels and liposomal hydrogels have been explored for their
potential in tumor recurrence prevention and targeted drug delivery (Laomeephol
et al., 2020; Li R. et al., 2020). Targeted delivery systems using RGD peptide or
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FA-modified CUR-lipo have also been developed to optimize CUR's antitumor
effects (Wang et al., 2019; Mahmoudi et al., 2021). CUR's ability to modulate
exosomal content and reverse tumor-mediated immune suppression further
highlights its potential as a therapeutic agent in cancer treatment (Wu et al.,
2016; Taverna et al., 2016; Zhang et al., 2007).

siRNA

RNA interference (RNAi) is a critical cancer treatment strategy that selectively
silences oncogenes by targeting their mRNA. siRNA-based therapies have been
developed to maximize anticancer effects by effectively knocking down oncogene
expression (Rao et al., 2009; Lee et al., 2016; Xiao et al., 2017). KRAS siRNA, for
example, has been used to suppress tumor growth in lung and colon
adenocarcinoma by targeting the KRAS gene (Pecot et al., 2014; Ying et al., 2016).
Redox-sensitive liposomes and dual-modified cationic liposomes have been
designed to co-deliver siRNA and chemotherapeutic agents, enhancing apoptosis
and targeting cancer cells more effectively (Chen et al., 2017; Sun et al., 2018).
The instability of traditional liposomes has led to the development of PEGylated
liposomes for improved siRNA delivery, as well as the use of exosomes, which offer
superior RNAi delivery capabilities and tumor suppression (Haghiralsadat et al.,
2018; Kamerkar et al., 2017; Mendt et al., 2018; Rakhit et al., 2019). Exosomes
have been engineered to deliver siRNA to specific cancer cells, showing promise in
reducing tumor growth and enhancing therapeutic outcomes (Greco et al., 2016;
Tao et al., 2020; Bai et al., 2020). Other advanced carriers, such as PSiNPs and
PAMAM dendrimers, have been developed to improve siRNA delivery efficiency and
stability, offering new avenues for targeted cancer therapy (Tong et al., 2018; Liu
et al., 2009; Yan et al., 2020).

Metformin (MET) in Cancer Therapy:

e Antitumor Mechanisms: Metformin, a biguanide, has shown significant
potential in improving cancer prognosis and preventing tumor
development. Epidemiological studies have revealed its preventive and
therapeutic effects across various cancers, including breast, prostate,
pancreatic, and lung cancers (Morales and Morris, 2015; Podhorecka et
al., 2017; Saini and Yang, 2018). A key mechanism involves reducing the
expression of growth factors like insulin and IGF-1, which are essential for
tumor cell survival and mitosis. MET also inhibits insulin-dependent
mechanisms involved in growth and metabolism. Additionally, MET
restricts cancer proliferation by activating the AMPK signaling pathway
and mitigating chronic inflammation, affecting insulin-independent
mechanisms (Morales and Morris, 2015).

¢ Chemotherapy Synergy: MET enhances chemotherapy sensitivity and
reduces side effects when combined with other drugs, such as adriamycin
and PTX, thus serving as an effective adjuvant therapy (Morales and
Morris, 2015). Clinical trials and studies have further substantiated MET’s
strong anticancer properties, both as a standalone treatment and in
combination with other therapies.

e Advances in Drug Delivery: Recent advancements have improved MET’s
delivery efficiency. MET-loaded nanoparticles (NPs) like MET-BSA NPs
have been shown to be more effective in treating liver tumors associated
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with insulin resistance than free MET due to their higher serum albumin
affinity and efficient drug delivery mechanisms (Lu et al., 2020).
Furthermore, MET has been particularly studied for its promise against
pancreatic cancer, with O-CMC-MET NPs demonstrating pH-dependent
sustained drug release and selective toxicity towards pancreatic cancer
cells over normal cells (Snima et al., 2012; Snima et al., 2014). For breast
cancer, MET-loaded liposomes (lipo-MET) have enhanced therapeutic
effects, especially when conjugated with Herceptin, leading to better anti-
proliferation and anti-migration outcomes compared to free MET (Lee et
al., 2019).

Innovative Therapies: New strategies, such as MET-encapsulated
liposomes combined with photosensitizers for photodynamic therapy, are
emerging as promising approaches for effective tumor treatment by
inducing chemical damage through ROS production (Yang et al., 2020;
Xiong et al., 2021).

5-Fluorouracil (5-FU) in Cancer Treatment:

Mechanism and Application: 5-Fluorouracil (5-FU), a fluoropyrimidine
analog, exerts its anticancer effects primarily by inhibiting thymidylate
synthase (TS) and disrupting DNA synthesis and repair by incorporating
its metabolites into cancer cell DNA and RNA. Due to its affordability and
efficacy, 5-FU is extensively used in treating various cancers, including
colorectal, breast, liver, pancreatic, esophageal, and gastric cancers (Wei
et al., 2018). Typically administered intravenously, 5-FU’s clinical use is
often hampered by side effects like hand-foot syndrome and mucositis,
necessitating strategies to enhance its accumulation in tumor tissues and
reduce dosage requirements.

Nanocarrier Systems: Nanocarriers have been developed to encapsulate
5-FU, improving its loading capacity while minimizing side effects. For
instance, 5-FU-loaded N, O-CMC NPs offer sustained drug release over 48
hours in vitro (Anitha et al., 2012a), and the combination with CUR has
enhanced the drug’s plasma half-life in vivo (Anitha et al., 2014). Targeted
delivery systems like FA-modified CMC-5-FU NPs and FA-CM-B-CD-BSA
NPs have also shown enhanced intracellular uptake and downregulation of
cancer-related pathways (Nawaz and Wong, 2018; Su et al., 2014).
Advanced formulations, including 5-FU-loaded Guar Gum-capped AuNPs
and AgNPs conjugated with targeted agents, have demonstrated significant
cytotoxic and apoptotic effects in specific cancer cells (Chinnaiyan et al.,
2019; Mulens-Arias et al., 2021).

Targeted Therapeutic Strategies: Targeted therapeutic approaches using
liposomes encapsulating 5-FU, mediated by ligands such as FA and Tf,
have been shown to effectively trigger mitochondrial apoptotic pathways in
colorectal cancer cells, thereby enhancing antitumor efficacy (Handali et
al., 2018; Moghimipour et al., 2018; Handali et al., 2019).

Personalized Cancer Nanomedicine:

Overview and Significance: Personalized medicine in oncology aims to
tailor treatments based on the unique profiles of individual patients and
their specific tumors, considering clinical, genomic, and environmental
factors. This approach addresses the significant intra- and intertumoral
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heterogeneity that complicates cancer diagnosis and treatment (Liu, 2012;
Theek et al.,, 2014). Techniques like image-guided nanomedicine and
targeted therapies have been developed to assess individual tumors and
cancer cell characteristics in detail.

e Nanomedicine for Personalized Treatment: Nanomedicine offers
promising avenues for personalized cancer therapy by enhancing the
accuracy of drug delivery, release, and efficacy, enabling the selection of
the most appropriate treatment for specific tumors (Lammers et al., 2012;
Theek et al., 2014). Clinical studies have shown that radiolabeled
PEGylated liposomes accumulate efficiently in tumors, leading to improved
treatment responses (Lammers et al., 2012). Personalized nanomedicine,
including therapies based on nab-PTX, has been successfully applied in
breast and pancreatic cancers, significantly improving patient outcomes
(Wicki et al., 2015). The ongoing development of personalized cancer
nanomedicine holds the potential to revolutionize cancer treatment by
enhancing both the quality and duration of patients' lives (Sun et al.,
2014).

Conclusion

The advancements in drug delivery systems (DDS) for tumor treatment have
significantly improved the precision and efficacy of cancer therapies. Traditional
cancer treatments such as surgery, chemotherapy, and radiotherapy have
established the foundation for tumor management. However, their limitations,
including high recurrence rates and systemic toxicity, necessitate the
development of more targeted and efficient strategies. Recent innovations in DDS,
particularly the emergence of nanomedicine, have transformed cancer treatment
paradigms. First-generation nanomedicines, such as pegylated liposomal
doxorubicin (Doxil®) and nab-paclitaxel (Abraxane®), demonstrated the potential
of nanotechnology by enhancing drug delivery through passive targeting.
However, the real breakthrough has come with second-generation nanomedicines
that employ active targeting mechanisms. These systems use specific ligands,
such as peptides, small molecules, or antibodies, functionalized on nanoparticle
surfaces to bind selectively to overexpressed receptors on tumor cells. This
approach improves the concentration of therapeutic agents at the tumor site
while minimizing off-target effects. Various drug delivery carriers, including
nonmetallic nanoparticles, metal nanoparticles, liposomes, exosomes, and
dendrimers, have been developed and studied extensively. Each carrier offers
unique advantages, such as high biocompatibility, multifunctionality, and the
ability to encapsulate diverse drugs. For example, silicon nanoparticles and
graphene-based carriers have shown promise in combining diagnostic and
therapeutic functions, while albumin-based and ferritin-based carriers offer
targeted delivery with reduced toxicity. Despite the promising preclinical results
and the progression of several DDS into clinical trials, only a few have received
commercial approval. This highlights the need for continued research and
optimization of these delivery systems. Future efforts should focus on overcoming
current challenges such as drug resistance, delivery efficiency, and patient-
specific factors. Integrating advanced technologies with comprehensive clinical
evaluations will be crucial in advancing these innovative drug delivery systems
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from the lab to the clinic, ultimately improving the therapeutic outcomes for
cancer patients.
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