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Abstract---Background: Personalized medicine in breast cancer aims 

to optimize treatment by classifying cancer subtypes and tailoring 

therapy based on individual patient profiles, including genetic and 

epigenetic factors. Pharmacogenomics plays a crucial role in this 

strategy by investigating how genetic variations affect drug 
metabolism and therapy response. Aim: This article reviews the 

impact of pharmacogenomics on personalized medicine for breast 

cancer, focusing on different molecular subtypes and their responses 

to targeted therapies. Methods: The study involved a comprehensive 

review of current literature, examining the molecular classification of 

breast cancer, the role of genetic and epigenetic factors, and 
advancements in pharmacogenomics. Key resources, including open-

source databases and clinical trials, were analyzed to understand 

treatment resistance and efficacy. Results: Breast cancer is 

categorized into molecular subtypes such as hormone receptor-

positive, HER2-positive, and triple-negative. Each subtype exhibits 
distinct responses to therapies. For instance, hormone receptor-

positive cancers benefit from endocrine therapies, while HER2-positive 

cancers respond to targeted antibodies. Triple-negative breast cancer, 

characterized by its heterogeneity, shows varied responses to 

platinum-based compounds and PARP inhibitors. The study highlights 

the challenges of drug resistance and the potential of personalized 
therapies to overcome these issues. Conclusion: Pharmacogenomics 

significantly enhances personalized medicine for breast cancer by 

enabling tailored treatments based on genetic profiles. Despite 

progress, challenges such as drug resistance and tumor heterogeneity 

remain. Future advancements in genetic and genomic understanding, 
along with the integration of personalized strategies, are crucial for 

improving treatment outcomes. 

 

Keywords---pharmacogenomics, breast cancer, personalized 

medicine, drug resistance, molecular subtypes, targeted therapies. 

  

https://doi.org/10.53730/ijhs.v3nS1.15040


 

 

103 

Introduction 

 

Providing optimal treatment in personalized medicine for breast cancer is 
critically important. This strategy facilitates the classification of cancer subtypes, 

thereby enabling the selection of the most appropriate treatment regimen based 

on patient-specific factors, including medical history and therapy response [1][2]. 

Pharmacological strategies, such as pharmacogenetics and pharmacodynamics, 

are instrumental in tailoring therapeutic decisions. These approaches assist 

clinicians in choosing suitable drugs and dosages to minimize adverse effects and 
enhance treatment efficacy. The systematic investigation of drug absorption, 

distribution, and metabolism, influenced by genetic and epigenetic variations, is 

vital for therapeutic success [3]. Alongside genetic polymorphisms, epigenetic 

factors, microbiome changes, and demographic attributes contribute to multi-

drug resistance [4–6]. Historically, pharmacogenetics and pharmacogenomics 
examine the impact of genetic variations on drug metabolism and the overall 

genomic response to medications [7]. These methodologies are increasingly 

utilized in oncology to mitigate toxicity while optimizing the effectiveness of 

targeted therapies and chemotherapy. They are also pivotal in drug development, 

leveraging genetic profiling and innovative techniques. 

 
Molecular Classification 

 

Breast cancer is categorized into five molecular classes based on molecular 

stratification: 1) hormone receptor-positive (luminal A and luminal B), 2) HER2-

positive, 3) basal-like, 4) normal-like, and 5) claudin-low, which corresponds to 
triple-negative breast cancer (TNBC) with medullary and metaplastic 

differentiation [8][9][10][11][12][13]. Each molecular subtype demonstrates 

distinct treatment responses [9][10]. The luminal A subtype, which constitutes 

40%-60% of cases and is predominantly ER+/PR+ and HER2-negative, exhibits a 

low pathological grade and proliferation rate, showing minimal response to 

chemotherapy but sensitivity to endocrine therapy [8][14][15][16][17]. Luminal B 
(ER+/PR+ and HER2-positive) represents 15% of cases, with higher pathological 

grades and proliferation rates, benefiting more from chemotherapy than anti-

estrogen drugs [14][15][18]. HER2-positive tumors, making up 10% of cases, 

present a high pathological grade and, although chemosensitive, had poor 

prognoses until targeted therapies emerged [14][15][19][20][21]. Basal-like 
tumors, accounting for 10–25% of cases, overlap with TNBC and exhibit 

aggressive behavior and poor prognosis, though they are chemosensitive 

[13][19][22–24]. The normal-like subtype, comprising 3–10% of cases, shows 

intermediate prognosis, with some studies suggesting that these may be technical 

artifacts [12][25]. Claudin-low tumors, predominantly TNBC and constituting 7–

14% of cases, show reduced expression of claudin and E-cadherin genes, with 
15% expressing ER and 15% overexpressing HER2 [12][26]. These tumors exhibit 

an intermediate response to chemotherapy [12][13]. Despite significant 

advancements in therapeutic strategies for breast cancer, challenges such as both 

de novo and acquired resistance remain. A thorough understanding of the 

molecular mechanisms underlying different breast cancer subgroups is essential 
for developing more effective treatment approaches. Targeting specific molecules 

or mutated genes offers promising potential for personalized therapies. Enhanced 

insights into these mechanisms can drive innovative drug development and 
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therapeutic strategies, potentially overcoming current limitations and improving 

patient outcomes. As personalized medicine evolves, integrating molecular 

knowledge into clinical practice will be critical in addressing the complexities of 

breast cancer treatment and resistance. 
 

Heterogeneity Resources 

 

The heterogeneity observed in breast cancer subtypes is a leading cause of 

therapeutic failure and unpredictable outcomes. Variations in genetic and 

epigenetic features within a subset of cancer cells can alter prognosis and drug 
responsiveness [5][29]. This heterogeneity can be categorized as intra-tumoral—

where it affects cells within a single tumor—or inter-tumoral, affecting cells from 

the same cancer subtype across different patients. Intra-tumor heterogeneity may 

be "spatial," affecting specific regions of the tumor, or "temporal," involving 

changes in cells over time, from the primary tumor to metastatic sites. 
Heterogeneity at the morphological level is assessed through histopathological 

comparisons and grading systems [30]. At the genetic level, variations include 

copy number alterations (CNVs), gene overexpression or down-regulation, and 

mutations such as missense, nonsense, and frameshift [5]. Open-source 

databases like COSMIC and TCGA provide comprehensive data on high-

throughput techniques and genetic variations. These databases categorize 
heterogeneity into local and systemic sources [5]. The COSMIC database offers 

extensive information from numerous breast cancer tumors analyzed across 

different platforms, detailing various analyses, mutations, CNVs, and expression 

levels. This variability, whether spatial or temporal, contributes to diverse tumor 

responses to treatment regimens. 
 

The pharmacogenomics approach identifies genetic variations in driver genes that 

promote selective tumor growth. This information aids clinicians in choosing 

effective therapeutic regimens to counteract resistance. Considerations include 

selecting appropriate drug combinations and targeting subclonal populations that 

may develop adaptive responses or experience toxicity [3]. Accurate detection of 
subclonal populations, such as through ex vivo tumor culture methods, remains 

a critical challenge [31][32]. Passenger mutations, present in genes that support 

tumor survival, are acquired during normal cell states or after neoplastic 

transformation [5]. Additionally, genes associated with cancer development may 

not always be mutated but can be inactivated through epigenetic mechanisms. 
 

Hereditary breast cancer is linked to genetic mutations in genes such as BRCA1, 

BRCA2, PALB2, TP53, CDH1, and PTEN, which are associated with increased 

breast cancer risk [33]. Epigenetic mechanisms also play a significant role, as 

evidenced by the frequent hypermethylation and silencing of the tumor 

suppressor gene RASSF1A in breast cancer [34]. Familial breast cancer is often 
attributed to mutations in BRCA1 and BRCA2, while sporadic cases show a 10–

15% rate of BRCA1 methylation. Key molecular pathways involved in breast 

cancer progression include the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, 

which are frequently aberrantly activated and linked to drug resistance [35]. 

Clinical trials are exploring PI3K inhibitors targeting these pathways, and PTEN 
inactivation by epigenetic mechanisms may extend the use of effective inhibitors 
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for PTEN-deficient cancers. Additionally, PPP2R2B, a negative regulator of AKT, is 

often subject to promoter methylation in breast cancer [36]. 

 
In gene families, mutations and methylation overlaps can lead to variable 

responses, as exemplified by RUNX1 mutations and RUNX3 inactivation through 

epigenetic mechanisms [15][37]. DNA methylation analysis in blood samples using 

bisulfite-based PCR techniques is a powerful tool for investigating these variations 

[15]. Tumor heterogeneity is further influenced by the tumor microenvironment, 

including tumor-associated macrophages, fibroblasts, bone marrow-derived cells, 
lymphatic growth factors, chemokines, cytokines, and exosomes, which 

contribute to tumor growth and metastasis [5]. Future advancements in genetic, 

genomic, and immunologic consultation are anticipated to guide oncologists in 

devising tailored treatment strategies. Pharmacogenomics will play a crucial role 

in the development of personalized therapies, enhancing treatment efficacy and 
overcoming resistance challenges. 

 

Pharmacogenetics in Breast Cancer Subtypes 

Estrogen Receptor Positive (ER+) Subtype 

 

Estrogen receptor-positive (ER+) breast cancer is the most prevalent subtype and 
is characterized by the expression of estrogen receptors, which serve as a 

predictive marker for patient monitoring and disease-free status [38][39]. This 

subtype typically benefits from hormonal therapies, such as the synthetic 

estrogen analog tamoxifen (TAM). TAM binds to the estrogen receptor and 

disrupts the classical signaling pathway that promotes ductal hyperplasia, 
thereby altering the tumor microenvironment and affecting the invasive state of 

the cancer [38][39]. ER overexpression also engages non-classical functions that 

affect genomic activity independently of hormones, through growth factor 

signaling pathways like FGFR, IGFR, and GPCRs, which activate intracellular 

kinases and phosphatases. Research has demonstrated that kinases influence ER 

phosphorylation, which correlates with either sensitivity or resistance to 
endocrine therapies [40]. Baron et al. have reviewed phosphorylation sites and 

mRNA splicing regions in ER, linking these to drug responses. 

 

The interaction between ER and other transcription factors, such as C-Fos/C-Jun 

(AP-1), Sp1, and NF-KB, contributes to tumor cell proliferation, angiogenesis, and 
metastasis [40]. In addition to TAM, Fulvestrant, an ER down-regulator, has been 

approved for ER+ breast cancer treatment. Fulvestrant binds to ER, preventing its 

dimerization and promoting its degradation. Aromatase inhibitors like 

Anastrozole, which block estrogen conversion from adrenal androgens, are also 

used, particularly in postmenopausal women [39]. TAM's efficacy is consistent 

regardless of menopausal status. Variations in hormone receptor subtypes, such 
as progesterone receptor (PR) expression, influence treatment outcomes. ER+ 

tumors that also express PR generally have a better prognosis, while PR-negative 

tumors, which do not respond as well to TAM, benefit from Anastrozole [41]. 

 

Primary endocrine resistance occurs in approximately 50% of ER+ cases, with an 
additional 50% developing acquired resistance over time. Factors contributing to 

resistance include mutation rates, methylation, acetylation, downregulation of 

ERα, overexpression of ERβ, and interactions between ER and growth factor 
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signaling pathways [40][42]. ARN-810, a selective ERα antagonist, targets ESR1 

mutations, providing efficacy where traditional endocrine therapies fall short [43]. 

ESR1 mutations in the ligand-binding domain (e.g., Y537S, Y537N, Y537C, and 

D538G) are linked to ligand-independent transcriptional activity and are a major 
resistance mechanism in recurrent and metastatic cancer [44][46]. These 

mutations, though rare in primary tumors, are prevalent in over 20% of cases 

with recurrence and are more common in metastatic cancer compared to primary 

cases. Detection of ESR1 mutations in plasma cfDNA can guide treatment 

strategies, with Fulvestrant showing improved tumor-free survival in ESR1-

mutant cases [48][49]. The combination of Fulvestrant with Palbociclib has been 
beneficial for metastatic cancer patients with ER mutations [50]. The COSMIC 

database reports that ESR1 mutation Y537S affects IGF1R phosphorylation, 

correlating with shorter overall survival and resistance to targeted therapies 

[51][42]. Other mutations, such as K303R, reduce TAM sensitivity through AKT 

phosphorylation [52]. Additionally, PIK3CA mutations are common in ER+ cases, 
with the Luminal B subtype showing moderate PTEN reduction and enhanced 

PI3K signaling. Combination therapies involving mTOR, AKT, or MEK inhibitors 

with Fulvestrant improve outcomes, as Luminal B tumors are more aggressive 

and resistant compared to Luminal A [53][54]. 

 

Pharmacogenetics plays a crucial role in the management of ER+ breast cancer by 
identifying genetic variations that influence drug responses and resistance 

mechanisms. The variability in ER+ breast cancer subtypes necessitates tailored 

therapeutic approaches to address primary and acquired resistance. Advanced 

therapies, such as Fulvestrant and PI3K inhibitors, combined with targeted 

strategies for specific mutations, represent promising advancements in 
overcoming resistance. Despite significant progress, challenges remain in 

predicting and managing resistance, emphasizing the need for continued research 

into biomarkers and personalized treatments. The integration of 

pharmacogenomics into clinical practice holds the potential to enhance treatment 

efficacy and patient outcomes, particularly for those with resistant or advanced 

disease. Addressing drug resistance remains a critical focus to improve long-term 
survival and quality of life for ER+ breast cancer patients. 

 

HER2 Positive Breast Cancer 

HER2 Amplification and Resistance 

 
HER2-positive breast cancer, characterized by the overexpression of the HER2 

receptor, accounts for over 14% of metastatic cases. This amplification is linked to 

increased cell proliferation, angiogenesis, invasion, and reduced apoptosis [64]. In 

HER2-negative tumors, compensatory oncogenes such as BRF2 and DSN1 may 

be amplified or overexpressed, providing a neoplastic advantage [29]. 

 
HER2+ patients respond well to targeted therapies, including HER2 antibodies 

and kinase inhibitors such as lapatinib, pertuzumab, trastuzumab, ado-

trastuzumab, and emtansine [65]. Trastuzumab (Herceptin™) was the first 

humanized monoclonal antibody developed against HER2 and received FDA 

approval as a targeted therapy for breast cancer [66][67]. Clinical studies have 
shown that combining trastuzumab with standard chemotherapy often results in 

better outcomes than chemotherapy alone [68][70]. However, resistance to 
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trastuzumab can develop, predominantly due to mechanisms related to HER2 

signaling pathways, and is associated with mutations in PIK3CA, RAS, Src, NF-

KB, and inactivating mutations in PTEN [71][75]. 
 

Resistance to trastuzumab can also occur due to truncated isoforms of HER2 that 

lack the trastuzumab target epitope, resulting in stable HER2 homodimers 

[76][77][78]. Additionally, overexpression of EGFR and HER-3, and their 

interactions with adhesion molecules like MUC1-C or MUC4, contribute to 

resistance [73][80]. Strategies to overcome resistance include: 
 

1. PI3K and mTOR Pathway Inhibitors: Pan PI3K inhibitors, specific PIK3CA 

inhibitors, AKT inhibitors, and mTOR inhibitors can address resistance due 

to PIK3CA alterations. 

2. Lapatinib: Combines with trastuzumab to overcome high levels of p95HER2. 
3. Tyrosine Kinase Inhibitors: Target IGF1R tyrosine kinase receptor. 

4. MET Inhibitors: Address MET alterations. 

5. Immune Checkpoint Inhibitors: Target low immune responses [81]. 

 

Trastuzumab-DM1 (T-DM1), a novel monoclonal antibody conjugated with 

maytansine, requires high HER2 expression for efficacy. Low intra-tumor HER2 
levels and poor internalization of the HER2-drug can lead to resistance [83][84]. 

CYD985, another antibody-drug conjugate, has shown promise in T-DM1-

pretreated patients [85]. Lapatinib inhibits EGFR and HER2 autophosphorylation, 

and its combination with trastuzumab targets both intracellular and extracellular 

HER2 domains [86][88]. However, resistance to lapatinib can occur due to HER2 
overexpression and AXL activation [89][90]. Pertuzumab, which binds to a 

different HER2 extracellular domain than trastuzumab, inhibits HER2 

dimerization and can partially reverse trastuzumab resistance [91][92]. 

Combining pertuzumab with lapatinib has shown effectiveness in overcoming 

resistance [93]. Ertumaxomab, still under clinical evaluation, might offer 

additional targeted therapy options [93]. Neratinib, a reversible tyrosine kinase 
inhibitor, has demonstrated improved disease-free survival in patients with 

recurrent and metastatic tumors [94][96]. Afatinib, another kinase inhibitor, has 

been effective in both preclinical and clinical studies, showing longer effects 

compared to other EGFR inhibitors [97][98][99]. 

 
Triple-Negative Breast Cancer (TNBC) 

 

Triple-negative breast cancer (TNBC) encompasses three subtypes: normal-like, 

basal-like, and non-basal-like. About 75% of basal-like cancers are triple-

negative, and 80% of these cases exhibit TP53 mutations (nonsense and 

frameshift) [100]. Basal-like and non-basal TN cancers show distinct mutations 
related to homologous recombination deficiency (HRD) and repair (HRR). 

Homologous recombination is crucial for repairing double-strand DNA breaks 

(DSBs), and clinical trials have highlighted HRD as a predictor of therapeutic 

response [100][102]. 

 
COSMIC database analysis identifies several genes involved in TNBC variations, 

including TP53, BRCA1, PIK3CA, RB, and PTEN. In TN tumors, TP53 and BRCA1 

mutations do not correlate, though BRCA1 methylation has been associated with 



         108 

TP53 mutations [103][104]. Increased PIK3CA mutations, loss of PTEN and 

INPP4B, and EGFR overexpression activate the PI3K pathway. In basal-like 

tumors, 72% are RB-/P16+ with high p53 expression, correlating with high 

proliferation. Mutations in BRCA1, PTEN, and ERBB2 are linked to a higher risk 
of metastasis [100]. 

 

Platinum-based compounds, which induce DSBs, are relevant for treating cells 

with defective DNA repair mechanisms. PARP inhibitors are effective in cancers 

with defective DSB repair by blocking PARP1 activity, leading to accumulation of 

unrepaired single-strand breaks and DSBs, particularly in BRCA1 or BRCA2 
defective cells [15]. While PARP inhibitors showed initial promise in TNBC, 

subsequent trials have not consistently confirmed these results, making it 

unclear which subsets of TNBC or inherited BRCA mutations benefit from these 

treatments [106][107]. Platinum-based agents, such as cisplatin, target lesions 

that are ineffectively repaired due to DSB formation, but mutations in TP53 can 
lead to cisplatin resistance [108]. Targeted therapies combined with 

chemotherapy may overcome PI3K/AKT/mTOR pathway mutations in TNBC [5]. 

 

Chemotherapy in Breast Cancer Treatment 

 

Chemotherapy remains a cornerstone in the treatment of both primary and 
metastatic breast cancer, utilizing a range of systemic medications to target and 

eliminate cancer cells [108]. Several classes of chemotherapy drugs are used, 

each with distinct mechanisms and challenges: 

 

1. Anthracyclines: This class includes doxorubicin, epirubicin, and 
mitoxantrone. Anthracyclines are known for their pleiotropic effects, 

inducing cell death through various mechanisms [109][110][112]. 

Resistance to anthracyclines often arises from increased expression of P-

glycoprotein, leading to drug efflux [113]. Strategies to overcome resistance 

include the use of novel topoisomerase II inhibitors like fostriecin and 

merbarone, non-cross-resistant drugs, and modifications in drug delivery 
[114][119]. 

2. Taxanes: Paclitaxel, docetaxel, and nab-paclitaxel are taxanes that bind to 

microtubules, inhibiting mitosis and disrupting cell division [120]. 

Resistance mechanisms include alterations in beta-tubulin expression and 

upregulation of caveolin-1. Overcoming resistance involves using agents like 
cyclosporine A, PC833, and verapamil, as well as new microtubule 

inhibitors like ixabepilone and eribulin [121][123]. 

3. Antimetabolites: Drugs such as methotrexate (MTX) and 5-fluorouracil (5-

FU) target specific enzymes involved in DNA synthesis. Resistance to MTX 

can result from decreased drug uptake, increased efflux, and reduced 

polyglutamation [126][134]. 5-FU resistance is often due to alterations in its 
metabolism [135]. Strategies to overcome resistance include manipulating 

drug metabolism, using high doses, and developing new antimetabolites 

[136]. 

4. Alkylating Agents and Platinum-based Drugs: These drugs alkylate DNA, 

forming reactive intermediates that interfere with DNA repair [109]. Tumors 
may develop resistance through decreased drug accumulation, increased 

drug inactivation, and enhanced DNA repair mechanisms [137][139]. Vinca 
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alkaloids (e.g., vincristine, vinblastine) also face multidrug resistance due to 

decreased drug accumulation, with potential solutions including DNA 

polymerase alpha inhibitors like gemcitabine [141][142]. 
 

New Challenges in Precision Medicine 

 

Despite advances, significant challenges remain in precision medicine: 

 

1. Drug Safety and Efficacy: The development of safe and effective drugs is 
critical. For instance, metformin, an antihyperglycemic drug, has shown 

potential in reducing cancer rates, including breast cancer [143]. It inhibits 

cancer cell proliferation and invasion, potentially through its effects on 

tumor suppressor microRNA miR-200c [144]. Understanding the molecular 

mechanisms of metformin and developing advanced generations of the drug 
could improve therapeutic outcomes [145]. 

2. Personalized Medicine Factors: Personalized approaches must consider 

factors like diet, psycho-social status, and hormonal influences. Vitamin D, 

which affects nearly all cells, plays a role in breast cancer prevention [146]. 

Epidemiological studies suggest that vitamin D and related genes impact 

disease risk. Psycho-social factors such as stress, depression, and anxiety 
also significantly influence breast cancer development and treatment 

response [147][149]. Dopamine and serotonin have emerged as potential 

targets, with studies showing changes in receptor gene expression related to 

spiritual interventions and serotonin levels [150][151]. 

3. Microbiome Profiling: The role of the microbiome in breast cancer etiology is 
gaining attention. Differences in bacterial profiles between tumor-adjacent 

tissues and healthy controls may provide insights into disease mechanisms 

[152]. 

4. Systems Biology: Modern diagnostics and therapeutics leverage systems 

biology, which integrates data from various sources to understand complex 

biological interactions. This approach aids in developing personalized 
treatments by analyzing interactions between cellular components and 

identifying novel biomarkers and therapeutic targets [153-155]. 

 

Overall, integrating these advancements into clinical practice will enhance the 

precision of breast cancer treatment and improve patient outcomes. 
 

Conclusion 

 

Pharmacogenomics has transformed the landscape of personalized medicine in 

breast cancer by enabling the development of targeted treatments based on 

individual genetic profiles. This approach has been instrumental in improving the 
efficacy of therapies and reducing adverse effects. Breast cancer's classification 

into molecular subtypes—such as hormone receptor-positive (ER+), HER2-

positive, and triple-negative—has facilitated a more precise application of 

treatments. Each subtype demonstrates distinct molecular characteristics and 

therapeutic responses, which are critical for designing effective treatment 
strategies. The integration of pharmacogenomics into clinical practice addresses 

the complexities of breast cancer, particularly in overcoming drug resistance and 

managing tumor heterogeneity. For ER+ breast cancer, targeted therapies like 
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tamoxifen and aromatase inhibitors have been beneficial, though resistance 

remains a significant challenge due to mutations and variations in hormone 

receptor expression. HER2-positive breast cancer has seen substantial 

improvements with targeted therapies like trastuzumab, but resistance due to 
mutations and alterations in signaling pathways continues to pose challenges. In 

triple-negative breast cancer (TNBC), the variability in responses to treatments 

such as platinum-based drugs and PARP inhibitors highlights the need for 

ongoing research and development. Despite these advancements, several 

challenges persist. Drug resistance, due to both genetic and epigenetic factors, 

and the intrinsic heterogeneity of tumors complicate treatment outcomes. The 
role of pharmacogenomics in addressing these issues is vital for developing more 

effective personalized therapies. Future research should focus on improving our 

understanding of tumor biology, enhancing the accuracy of genetic profiling, and 

integrating these insights into clinical practice. Overall, pharmacogenomics holds 

promise for advancing personalized medicine in breast cancer, offering hope for 
better-targeted treatments and improved patient outcomes. Continued innovation 

in genetic research and therapeutic strategies will be essential in addressing 

current limitations and achieving more precise and effective cancer care. 
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