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Abstract---Background: Intelligent Drug Delivery Systems (DDSs)
have revolutionized the way medications are administered, aiming to
enhance therapeutic efficacy while minimizing side effects.
Conventional DDSs often lead to systemic drug distribution and
uncontrolled release, causing undesirable side effects and suboptimal
therapeutic outcomes. To address these limitations, advanced
controlled DDSs, particularly those leveraging nanotechnology, have
been developed to target specific sites with precise regulation. Aim:
This review aims to explore the recent advancements in intelligent
drug delivery systems, focusing on their design, mechanisms, and
clinical applications. It highlights the role of nanotechnology in
enhancing the specificity and efficacy of drug delivery through various
stimuli-responsive mechanisms. Methods: The review synthesizes
findings from recent studies on various smart drug delivery platforms,
including nanoparticle-based systems, smart polymers, liposomes,
and organic-inorganic hybrids. It evaluates these systems based on
their responsiveness to internal stimuli (e.g., pH, redox reactions,
enzymes) and external stimuli (e.g., temperature, light, magnetic
fields), and their clinical applicability. Results: The review identifies
several innovative DDSs that employ stimuli-responsive materials to
control drug release. Notable advancements include pH-responsive
nanoparticles targeting tumor cells, redox-responsive systems for
cancer therapy, and temperature-sensitive liposomes used in
hyperthermia. Hybrid systems combining organic and inorganic
materials have shown promise in improving drug release control and
targeting capabilities. Conclusion: Intelligent drug delivery systems
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represent a significant leap forward in precision medicine, offering
targeted and controlled drug release mechanisms that enhance
therapeutic outcomes and reduce side effects. Despite promising
developments, challenges such as scalability, safety, and regulatory
hurdles remain. Future research should focus on overcoming these
obstacles to facilitate the broader clinical adoption of these advanced
DDSs.

Keywords---Drug Delivery Systems, Nanotechnology, Smart Polymers,
Stimuli-Responsive Materials, Clinical Applications, Targeted Therapy.

Introduction

In order to achieve the best results from treatment and reduce any negative
effects, it is essential for the active pharmaceutical ingredients to specifically
gather at the affected areas for a long time with accurate management. Drug
delivery refers to the methods, formulations, technologies, and systems used to
safely and efficiently convey medicinal substances within the body to accomplish
their desired effects [1]. Conventional drug delivery systems (DDSs) often cause
widespread side effects because they distribute drugs without discrimination and
release them without regulation. In order to overcome these limitations, advanced
controlled drug delivery systems (DDSs) have been created to administer
medicinal substances to specific sites in a controlled manner. Advanced
controlled DDSs offer a notable advantage over conventional DDSs by effectively
decreasing the frequency of drug administration, while yet ensuring that
therapeutic drug levels are maintained in targeted organs or tissues for extended
periods of time. These regulated DDSs provide significant knowledge and
characteristics for limiting fluctuations in drug concentration, decreasing toxicity,
and improving the effectiveness of therapy.

The unique characteristics at the nanoscale and specific biological functions of
different nanomaterials provide notable benefits and novel opportunities for
intelligent drug delivery systems. Nanoparticle-based drug delivery systems
(DDSs) have the ability to specifically gather and attach to disease targets while
maintaining controlled release characteristics. Although there have been recent
developments and reviews discussing new features of nanomaterials as intelligent
drug carriers [1-6], only a small number of these have been effectively
implemented in clinical settings [7-9]. Important considerations to guarantee the
clinical feasibility for future commercialization comprise: (i) sufficient
biocompatibility and biodegradability, (ii) stability in physiological settings, and
(iii) a high drug loading capacity with minimum toxicity [10]. Furthermore, apart
from ensuring safety and therapeutic efficacy, it is crucial to scale up the
manufacturing of these innovative nanomaterials for industrial purposes in order
to make them suitable for clinical applications.

A wide range of materials, such as polymers, lipids, and inorganic compounds,
have been engineered to serve as drug carriers for controlling the release of
therapeutic chemicals [11-16], so producing "smart" pharmaceuticals. This paper
provides an overview of advanced carriers, including smart polymer carriers,
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liposomes, organic-inorganic hybrid smart nanoparticles, exosomes, and other
nanomaterials, that are used for controlled drug delivery. Additionally, it
investigates the clinical prospects of these regulated drug delivery nanoplatforms
and the obstacles they encounter in clinical implementation.

The design rationale behind smart drug delivery nanoplatforms.
Optimally, medications should be delivered to specific locations in a regulated
manner to enhance the effectiveness of treatment while limiting any negative
effects. Smart drug delivery systems (DDSs) are specifically engineered to
selectively release medications at precise places or at highly controlled rates,
hence ensuring targeted therapeutic effects. Research on stimuli-responsive
biomaterials for controlled drug release has made major advancements since
Tanaka's 1978 detection of phase transitions in polyacrylamide gels and the
introduction of thermosensitive liposomes for drug delivery. Due to advancements
in nanotechnology and nanomaterials, medications can now be combined with
different nanoparticles (see to section 3.3). Nanomaterials, due to their distinct
size and surface features, show great potential as intelligent drug delivery systems
(DDSs).

In this review, the term "Smart DDSs" denotes systems that ensure
pharmaceuticals are only released upon reaching certain target tissues/organs, or
are released at a regulated pace at the intended action locations. This analysis
specifically examines intelligent drug delivery systems (DDSs) that are made
possible through the use of nanotechnology, rather than the drug molecules
themselves. These nanoplatforms are designed to enable precise delivery of drugs
to specific tissues after being administered systemically. Existing drug-loaded
nanoplatforms are designed to retain pharmaceuticals in the bloodstream until
they reach specific target locations. The nanocarriers concentrate at these sites
using either active or passive targeting mechanisms. These sophisticated
nanoplatforms are capable of responding to internal triggers, such as changes in
pH, hormone levels, enzyme concentrations, small biomolecules, glucose, or redox
gradients, which are associated with disease pathology. They can also react to
external stimuli, such as temperature, magnetic fields, ultrasound (US), light,
electric pulses, or high-energy radiation. The underlying concepts of several
nanoplatforms that respond to stimuli will be briefly explored here.

Design Rationale of Smart Drug Delivery Nanoplatforms

Effective drug delivery requires that medications be released at specific target
sites in a controlled manner to maximize therapeutic efficacy and minimize side
effects. Smart drug delivery systems (DDSs) build on the principles of controlled
release to enhance drug performance. Since Tanaka's 1978 observation of phase
transitions in polyacrylamide gels [17], research into phase-transition polymeric
gels has significantly advanced. Around the same time, thermosensitive liposomes
were first introduced for drug delivery [18]. The field of stimuli-responsive
biomaterials has since evolved, with nanotechnology and nanomaterials enabling
the conjugation of drugs to various nanoparticles (see section 3.3). Leveraging the
unique size and surface properties of these nanomaterials positions them as
highly promising candidates for smart DDSs.
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In this context, "Smart DDSs" are defined as systems that release drugs only at
specific target tissues or organs, or at extremely slow rates, ensuring that drugs
are released in a controlled manner at the sites of action. While drug molecules
themselves can sometimes be considered "smart," this review focuses on smart
DDSs achieved through nanotechnology. The sophisticated design of these
nanoplatforms facilitates targeted drug release during systemic administration.
Drug-loaded nanoplatforms are engineered to prevent premature drug release
during blood circulation, allowing for targeted delivery where nanocarriers
accumulate via active or passive targeting strategies. These advanced smart or
stimuli-responsive nanoplatforms can react to both endogenous and exogenous
stimuli. Endogenous triggers include pH variations, hormone levels, enzyme
concentrations, small biomolecules, glucose, or redox gradients [19, 20], which
are associated with disease pathology. Exogenous triggers, such as temperature,
magnetic fields, ultrasound (US), light, electric pulses, or high-energy radiation,
can also be employed to induce or enhance drug release at disease sites. The
principles behind various stimuli-responsive nanoplatforms will be discussed
further below.

Systems that respond to changes in pH:

pH is commonly used as a stimulus to initiate medication release in many
applications [21-24]. Traditional pH-responsive carriers utilize the notable
variations in pH levels between different organs, such as the very acidic
conditions of the stomach (pH = 2) compared to the more neutral pH of the
intestinal tract (pH = 7). Eudragit S100-coated citrus pectin nanoparticles (E-
CPNs) have been created to specifically transport 5-Fluorouracil (5-FU) to the
colon [25]. These carriers are specifically engineered to detect and react to small
changes in pH levels in disease locations, such as areas affected by inflammation,
reduced blood supply, and tumors. They can even target specific cellular
structures like endosomes and lysosomes. An exemplary instance involves pH-
responsive nanocarriers designed for solid tumors [26]. The extracellular pH in
normal tissues and blood is generally maintained at approximately 7.4. However,
in solid tumors, the extracellular pH frequently decreases below 7.0 due to
increased glycolytic activity. The acidic environment present in tumors can act as
a targeted stimulus for controlled drug delivery systems (DDSs). In addition,
endosomes and lysosomes have a lower pH range of 4.5 to 5.5 compared to other
parts of the cell (21, 28). Therefore, fluctuations in pH play a critical role in the
development of sophisticated drug delivery systems (DDSs). pH is commonly used
in smart drug delivery systems (DDSs). However, incorporating other stimuli, like
temperature or redox changes, might improve the accuracy and selectivity of drug
release at specific locations. This has been demonstrated in studies [29-31].

Systems that Respond to Redox Reactions:

Redox-responsive systems have received considerable interest for the treatment of
diseases and are extensively utilized in intracellular drug delivery systems (DDSs)
(19, 32). The redox potential fluctuates among various tissue microenvironments,
providing possibilities for developing redox-responsive delivery methods.
Nanoparticles that can respond to Glutathione (GSH) offer a highly effective
approach for delivering drugs to specific targets. GSH is found at significantly
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higher amounts in cancer cells (2 to 10 mM) compared to normal cells (2-20 pM)
[34]. The significant disparity in glutathione (GSH) levels between malignant and
normal cells makes redox-responsive drug delivery systems (DDSs) highly
attractive for selectively targeting tumor locations. Furthermore, reactive oxygen
species (ROS), which build up in specific diseased tissues, can also act as stimuli
for regulated medication release. ROS levels in inflammatory tissues and colon
cancer can reach levels that are 10 to 100 times greater than those found in
normal tissues (19, 35). Although redox stimuli-responsive drug delivery systems
(DDSs) have promising possibilities, it is difficult to get accurate control over
redox mechanisms because of the intricate biological milieu and the variability of
tumors.

Systems that are responsive to enzymes:

Enzyme-responsive drug delivery systems (DDSs) have been a fascinating field of
study because of their ability to specifically target substrates and exhibit great
selectivity even in gentle settings. [36 -39]. Enzymes like glycosidases, lipases,
phospholipases, and proteases play crucial roles in several biological and
metabolic processes. These enzymes can be utilized to facilitate the targeted
release of drugs to specific locations affected by cancer or inflammation [38]. An
important obstacle for enzyme-responsive drug delivery systems (DDSs) is the
ability to precisely regulate the initial response time of the systems.

Systems that are responsive to changes in temperature:

Temperature is a superior and efficient factor for regulating drug release in
comparison to other stimuli within the range of 40-42 degrees. Pathophysiological
situations such as inflammation and tumors frequently display higher
temperatures compared to normal tissues [43]. Functionalized nanoparticles can
be strategically engineered to optimize medication release in tumor tissues by
taking advantage of temperature variations. Another approach entails applying
external heat to the tumor site, such as by the use of ultrasound or magnetic
fields, in order to enhance the release of drugs within the tumor
microenvironment [34]. Thermo-sensitive nanocarriers are usually engineered to
keep their payloads intact at normal body temperatures (37°C) and release them
quickly when exposed to temperatures higher than 40-45°C. The present obstacle
for thermo-responsive nanoplatforms is to uphold safety while preserving
sensitivity to slight temperature fluctuations.

Systems that respond to light, magnetic fields, and ultrasound:

Light-responsive systems facilitate medication release through external light
activation. Photosensitive carriers can modulate drug release by manipulating the
opening or closing of their nanostructures in response to light irradiation [19].
Nevertheless, the use of non-invasive techniques for deep tissues is limited due to
practical constraints such as light wavelength and penetration depth. Magnetic
stimuli provide a non-invasive technique to spatially and temporally manipulate
carriers using external magnetic fields [47-49]. Core/shell magnetic nanoparticles
(MNPs), renowned for their distinctive magnetic characteristics, possess a
significant ratio of surface area to volume, which enables the conjugation of
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biomolecules. This enables the implementation of accurate design and
engineering to accomplish specific intelligent functionalities, such as extended
circulation, precise delivery to affected regions, and controlled release of medicinal
agents. When enclosed within colloidal carriers such as micelles, liposomes, or
solid nanoparticles, these magnetic nanoparticles (MNPs) can exhibit sensitivity to
external magnetic fields. This characteristic allows for the development of
versatile formulations that can be used for both diagnostic and therapeutic
purposes. Ultrasound (US) is widely used in clinical settings for both diagnosis
and therapy because of its ability to penetrate tissues and its high level of safety.
Ultrasonically sensitive nanocarriers enable a distinctive approach to collecting
drug carriers and inducing drug release at precise locations by manipulating the
frequency, duty cycles, and exposure time of ultrasound waves.

Additional Responsive Systems

In addition to the stimuli previously discussed, glucose [62-64] and electro-
responsive systems [65-68] have also been utilized to control payload release
within nanocarriers. The integration of hybrid stimuli can further enhance drug
delivery precision. Dual stimuli-responsive DDSs are prevalent and have been
explored, including combinations such as thermo- and pH-responsive systems
[69, 70]; thermo- and light-responsive systems [71, 72]; redox- and pH-responsive
systems [30, 31]; and ultrasonic and magnetic-responsive systems [73-77].

To achieve the smart functionality of DDSs, a variety of stimuli are employed to
trigger drug release at the intended location and time within different nano-
architectures. Demonstrating the viability of these strategies requires evidence of
the regulation of responses to each stimulus in both in vitro and in vivo settings.
This review focuses on smart nanoplatforms with significant clinical potential in
stimuli-responsive DDSs. We explore smart DDSs for controlled drug release,
including polymers, liposomes, organic-inorganic hybrid biomaterials, and
exosomes. While smart nanoplatforms have applications across various diseases,
including neoplastic, diabetes, infections, cardiovascular, and inflammatory
conditions, this review specifically emphasizes carcinoma diseases and their
potential for future clinical translation.

Smart Nanoscale DDS
Polymeric Nanoparticles

Polymeric nanoparticles are a major area of development in smart drug delivery
systems (DDS), due to their ability to respond to external stimuli and control drug
release. Smart or stimuli-responsive polymers have been explored for controlling
the release of biologically active cargos for several decades. As discussed
previously, stimuli such as ultrasound (US), pH, and magnetic fields can induce
physical or chemical transformations in these polymers, modulating the drug
release rate based on the intensity of the applied stimulus.

These smart polymer materials are generally categorized into two types: single
stimulus-responsive and dual-/multi-stimuli responsive polymers.



1. Single Stimulus Responsive Polymers:

o

Exogenous Stimuli: These include temperature, magnetic fields,
ionic strength, US intensity, and electric pulses. These stimuli can
induce conformational changes in the polymer chains, which affect
the release of the drug [1, 7, 16].

Endogenous Stimuli: Factors such as pH, enzyme concentration,
hormone levels, redox gradients, and small biomolecules fall into
this category. They induce changes in the polymeric materials in
response to the physiological conditions at the target site [19].
Among the various stimuli, pH, redox, enzymes, light, and
temperature have emerged as prominent triggers for the design of
smart polymeric DDSs [20, 29, 79].

2. pH-Responsive Polymers:

o

These polymers often feature ionizable groups that change their
conformation in response to environmental pH. This can result in
controlled drug release. For instance, pH-responsive polymeric
micelles, such as those using hydrazone bonds to conjugate drugs
like doxorubicin (DOX), can achieve a fast release of drugs in acidic
environments like tumors. Surface charge-switchable polymers
enhance cellular uptake by changing surface charges from negative
to positive, improving drug delivery [21, 26, 27, 80-82].

Examples include:

o

pH-Sensitive Polymeric Micelles: The hydrazone bond conjugates
doxorubicin with poly (styrene-co-maleic anhydride) derivatives,
allowing controlled release in acidic tumor environments [85].
Surface Charge Reversal Carriers: PICONP/Pt@PPC-DA
nanoparticles enhance platinum drug accumulation in response to
tumor pH changes with prolonged circulation time in the blood [87-
91].

Additionally, pH-sensitive polymers are used in tumor imaging. For example, ultra
pH-sensitive (UPS) fluorescent nanoprobes activate strongly in response to acidic
extracellular pH, aiding in high-resolution tumor imaging [94, 95].

3. Redox-Responsive Polymers:

o

These systems utilize the reduction of disulfide bonds by
intracellular glutathione (GSH) to release drugs. Redox-responsive
polymers can degrade in the presence of GSH, leading to the rapid
release of the drug. For example, thioketal nanoparticles (TKNs)
degrade in response to reactive oxygen species (ROS), releasing
siRNA for treating intestinal inflammation [35].

Examples include:

o

Redox-Responsive Hyperbranched Polyglycerols: Disulfide
bonds used as cross-linkers degrade under redox conditions,
facilitating drug release [98].

Thioketal Nanoparticles (TKNs): Designed for oral delivery of
siRNA, these nanoparticles degrade in response to ROS, showing
potential for treating gastrointestinal diseases [99].

4. Light-Responsive Polymers:

o

Light-responsive systems use photochromic moieties or
photochemical reactions to trigger drug release. These systems
often involve reversible transitions activated by light, such as



azobenzene or spiropyran. Photodynamic therapy (PDT) and

photothermal therapy (PTT) are applications where light-responsive

polymers are used for tumor destruction and imaging [100, 101].
Examples include:

o Photosensitizers Coupled with Plasmonic Nanoparticles:
Enhance PDT and imaging capabilities [102].

o Porphysome Nanovesicles: Used for photothermal therapy and
imaging with long-wavelength responsiveness [103].

S. Temperature-Responsive Polymers:

o Polymers like poly-N-isopropylacrylamide (PNIPAAm) exhibit a
phase transition at specific temperatures, commonly used to
control drug release. These polymers can switch between
hydrophilic and hydrophobic states based on temperature changes
[106].

6. Glucose-Responsive Polymers:

o These polymers are being explored for diabetes treatment,
responding to glucose levels to regulate drug release. Natural
polymers such as chitosan and dextrin, which can be degraded by
enzymes, are examples of glucose-responsive systems [107].

Natural Polymers: Chitosan and cyclodextrins, among other natural polymers,
offer controlled release and have potential applications in smart DDS and bio-
imaging [108, 109]. Overall, polymeric nanoparticles represent a significant
advancement in controlled drug delivery, offering potential for application in
various diseases and preclinical investigations. Their versatility and
responsiveness to multiple stimuli make them promising candidates for clinical
use.

Liposomes

The description of swollen phospholipid systems was first reported by Alec
Bangham and colleagues in 1965 [110]. Since then, a variety of enclosed
phospholipid bilayer structures consisting of single bilayers have been described
as "liposomes" [111]. In 1971, Gregoriadis et al. first used liposomes as drug
delivery systems [112]. With the development of new preparation technology, large
unilamellar liposomes (LUVs) can now be obtained by extruding multilamellar
vesicles through polycarbonate filters. Particularly when the diameter of
liposomes is reduced to within 100 nm or less, they have been widely used as
advanced DDSs in numerous clinical trials, such as anti-cancer, anti-
inflammatory, anti-fungal drugs, and gene medicines [113, 114]. Some liposome
formulations have even been approved for commercial use. Doxil®, the first Food
and Drug Administration (FDA)-approved nanomedicine delivery system, is based
on PEGylated liposomes [115]. Besides the liposomes available on the market, a
number of lipidic nanoparticles are currently in the pipeline, moving from concept
to clinical application. This indicates that the use of liposomes as drug carriers
may be well-developed for clinical acceptance.

Inspired by the promising clinical applications, the development of smart
liposomes has become a hot topic in nanomedicine. These liposomes can be easily
stimulated by several triggers, such as temperature, pH gradients, enzyme
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changes, ultrasound (US), and light [116, 117]. These novel, smarter liposome
delivery systems may exhibit even better potential in future clinical applications.
Although various stimuli can be used to control drug release from liposomes,
temperature stimuli might be particularly important due to considerations of
safety and practicality [126, 127]. As a smart drug carrier system, ThermoDox, a
temperature-sensitive doxorubicin (DOX) liposome developed by Celsion, may be
the closest formulation to clinical use so far. Taking advantage of the
dipalmitoylphosphatidylcholine (DPPC) lipid crystallization melting temperature at
41.5°C, doxorubicin can be released from ThermoDox at this temperature [126].
Radiofrequency ablation (RFA) has also been used to activate DOX release from
ThermoDox. In a Phase I clinical trial, the liver cancer-targeted ThermoDox DDS
showed an improved safety profile compared to free doxorubicin. Although the
results of Phase III clinical trials with ThermoDox were not entirely satisfactory—
the treatment did not extend life span by the target threshold of 33% [19]—the
strategy of temperature-sensitive liposomes offers a promising clinical future for
smart DDSs.

To improve the control of drug release in response to mild heating,
thermosensitive polymers have been used to modify liposomes, producing
temperature-sensitive polymeric liposomes. A typical example of ultra-
temperature-sensitive liposomes based on a thermosensitive block copolymer has
been developed by Kono's group. The synthesized poly [2-(2-ethoxy) ethoxyethyl
vinyl ether (EOEOVE)], is a promising biomaterial for constructing temperature-
sensitive liposomes. The poly (EOEOVE)-modified liposomes showed even higher
sensitivity to temperature than poly (N-isopropylacrylamide), which could further
enhance the tumor selectivity and therapeutic effectiveness of payloads.

The fabrication of liposome complexes has further advanced the development of
smart liposomes. For example, after being loaded with magnetic nanoparticles
(MNPs) and exposed to a magnetic field, magnetic liposomes are endowed with
multifunctional properties, such as the vessel effect, surface effect,
biocompatibility, targeting effect, and easy recovery. Plank and coworkers
designed folate receptor-targeted magnetic liposomes. Under exposure to an
external magnetic field, magnetic hyperthermia triggered drug release and
localized the drug at high concentrations in tumor tissues, resulting in a
significant improvement in anticancer efficacy [128].

Other recent advances in smart liposomes include the use of low pH
environments for pH-triggered approaches [129-132], the use of enzymes as a
trigger in enzyme-sensitive liposomes [133, 134|, and US-responsive liposomes
[135-137]. Additionally, light as a stimulus has been widely investigated in
photosensitive liposomes [138-140]. Moreover, liposomes can serve as a platform
for co-delivery of magnetic resonance imaging (MRI) agents and therapeutic drugs
[141-143]. As an important smart drug carrier, stimuli-sensitive liposomes
represent a pathway toward the design of nanocarriers with significantly improved
efficacy. Although successful in vivo applications of these systems remain a
challenge, it is believed that more clinical products based on smart liposomal
platforms will emerge in the near future.
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Organic-inorganic hybrid smart biomaterials refer to materials that combine the
characteristics of organic and inorganic materials and can respond to stimuli
after hybridization. The hybrid materials can be constructed by connecting
organic or polymer molecules with nano-metal particles or nano-oxides like silica
and titanium dioxide [144, 145]. Mesoporous silica materials as smart DDSs have
attracted extensive attention in the past decade [145-148]. In addition, gold
nanoparticles (AuNPs) have been widely explored for photothermal therapy (PTT)
in the biomedical field [149-154]. Their specific surface chemistry, with facile
functional modification, provides hybridization with more possibilities [145].
Besides, upconversion nanoparticles [155, 156], magnetic-sensitive nanocrystals
in liposomes [157, 158], US-responsive liposomes with perfluorocarbon bubbles
[159], and photoacoustic nanoparticles [160] can also be used as hybrid smart
nano-DDSs for controlled drug release.

Although mesoporous silica nanoparticles (MSNPs) possess a large loading
capacity, the loaded drugs are often released immediately after administration.
Similar to conventional therapy methods, this can lead to lower therapeutic
efficacy and severe side effects due to off-target effects. To minimize the
premature release of the payloads before reaching the target site, different organic
molecules or polymers have been used as smart gatekeepers on the pore outlets
to prevent drugs from leaking out of the carriers until the carrier is exposed to
internal or external stimuli [161]. The outer layer can be operated by stimuli such
as pH, temperature, photo irradiation, redox potential, electromagnetic fields, and
biomolecules [162], which can adjust the drug release speed from the pores of
MSNPs. The strategy of modifying MSNPs with organic molecules to make them
smart is analogous to the approach used for smart polymers. The first enzyme-
sensitive cap on MSNPs was described in 2008 [163]. The MSNPs were
functionalized by cyclodextrin (CD) torus with a PEG thread, connected by an
enzyme-cleavable site. The drug was released when the enzyme-responsive bond
was cleaved in the presence of esterase. Mondragon et al. [164] prepared two
novel MSNP hybrid systems with a poly-L-lysine outer surface using two different
anchoring strategies. One strategy utilized the formation of urea bonds, while the
other focused on attachment by amide bonds. Almost no cargo was released into
water for both nanoparticles. After introducing proteases into the release medium,
a notable payload was released because the poly-L-lysine cap on the surface
smartly responded to the enzyme in a controlled manner. Other organic
constituents have also been used to modify inorganic compounds to fabricate
smart hybrid materials, such as polypeptides, polyesters, and polysaccharides
[165, 166]. These can act as capping agents when grafted to the entrance of the
pores of MSNPs, and cargo will be released in the presence of protease, esterase,
galactosidase, and other such enzymes [161]. Although MSNPs serve as organic-
inorganic hybrid smart DDSs and show superior biocompatibility compared to
other inorganic nanoparticles, the pharmacokinetics and pharmacodynamics of
MSNPs should be further evaluated.
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Gold Nanoparticles (AuNPs)

Types and Development: AuNPs such as nanoshells, nanocages, and
nanorods are advanced as photothermal therapy (PTT) agents [154, 167-
169].

Biodegradability Issue: AuNPs, being inorganic, are not biodegradable
and accumulate in the body. Surface modifications with organic functional
groups can address this [170].

Liposome Complexes: Kojima and colleagues found that liposomes
enhance the stability of AuNPs in isotonic conditions [170].

Dendrimers and AuNPs: PEG-attached poly(amidoamine) (PAMAM)
dendrimers loaded with AuNPs show strong cytotoxicity against human
cervical cancer (HeLa) cells under light [171].

Drug Delivery Systems: Wang’s group developed a system with
doxorubicin (DOX) modified onto AuNPs (DOX-Hyd@AuNPs) using an acid-
labile linkage, which helps overcome multidrug resistance (MDR) and
achieves controlled drug release [153].

Magnetic Nanoparticles (MNPs)

Applications and Control: MNPs can be manipulated with an external
alternating magnetic field (AMF) for drug and gene delivery, diagnostics,
and therapeutics [75, 172].

Magnetic Microbubbles: Superparamagnetic iron oxide (SPIO) Fe304
nanoparticles in microbubbles are used for dual imaging and controlled
delivery via ultrasound [75, 172].

Smart Microcontainers: Polymeric microspheres with SPIO Fe304
nanoparticles can switch between “open” and “closed” states under
magnetic fields, facilitating gas generation and targeted therapy [73, 173].
Theranostics: SPIOs serve as contrast agents for MRI and carriers for
anticancer drugs, combining imaging with hyperthermia for tumor therapy
[50]. Xie et al. developed magnetic nanocrystals (MNCs) with excellent
imaging and therapeutic capabilities [55].

Exosomes

Characteristics and Applications: Exosomes are nano-sized vesicles
used for drug delivery due to their specific tissue targeting,
biocompatibility, and drug-loading capacity [174-178].

Therapeutic Applications: Exosome-based systems like catalase-loaded
exosomes (exoCAT) are used to treat neurodegenerative disorders [179].
Exosomes from mouse dendritic cells loaded with DOX and iRGD peptides
efficiently target tumors with minimal toxicity [180].

Challenges: Issues include maintaining biological properties during
loading, achieving large-scale production, and developing -effective
evaluation and testing methods for clinical applications [181].

General Challenges for Smart Nanoplatforms in Clinical Applications

Design Simplicity: Smart DDSs often have complex structures, making
them difficult to scale up. Simplicity in design is crucial for successful
clinical translation [8, 182, 183].
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e Stimuli Control: Control of endogenous triggers (e.g., pH, enzyme levels)
is challenging due to variability among patients. Exogenous stimuli-
responsive systems are easier to control but require improvements in
tissue damage and penetration [19].

o Safety and Toxicity: Safety issues including biocompatibility, toxicity,
and reproducibility need thorough investigation. The pharmacokinetics
and pharmacodynamics of nanoscale DDSs must be well studied [184,
190].

o Industrial Scale-Up: Challenges include ensuring reproducibility,
scalability, and control over physicochemical properties. Standardization
and regulatory frameworks are needed for widespread clinical application
[191, 192].

¢ Regulatory Frameworks: Existing regulations are insufficient for nano-
pharmaceuticals. Comprehensive frameworks are needed to guide the
development, characterization, and approval of nanomedicines [192].

Limitations Between Animal Evaluation and Clinical Effect

e Model Relevance: Current animal models may not accurately reflect
human disease complexity. Diverse and relevant models are needed for
better predictive value [8, 193].

e Evaluation Standards: Different animal species should be used to assess
various diseases, and drug dosage and administration must be aligned
with human trials [194, 1935].

e Advanced DDS Evaluation: Effective evaluation strategies for toxicology,
pharmacokinetics, and pharmacodynamics in animal models are
necessary for translating findings to clinical settings.

Conclusion

The advent of intelligent drug delivery systems (DDSs) has marked a
transformative shift in therapeutic strategies, offering targeted and controlled
drug release mechanisms that significantly enhance treatment efficacy while
mitigating side effects. Conventional DDSs, characterized by their lack of
specificity and wuncontrolled release profiles, often lead to systemic drug
distribution that can result in adverse effects and reduced therapeutic
effectiveness. In contrast, advanced controlled DDSs, particularly those
incorporating nanotechnology, provide a more refined approach to drug
administration. Nanoparticle-based systems have emerged as a prominent
solution, utilizing their unique properties to deliver drugs precisely to targeted
sites. These systems leverage stimuli-responsive mechanisms to release drugs
only in the presence of specific internal or external triggers, such as pH changes,
redox conditions, or temperature variations. For example, pH-responsive
nanoparticles can selectively target acidic environments typical of tumor tissues,
while redox-responsive systems exploit the higher levels of glutathione in cancer
cells to release drugs selectively. The review also highlights significant
advancements in other DDS technologies, including smart polymers, liposomes,
and organic-inorganic hybrid materials. Smart polymers, such as those
responsive to temperature or light, provide controlled release capabilities that can
be finely tuned to match the therapeutic needs. Liposomes, particularly those
modified with stimuli-responsive features, offer enhanced drug delivery options
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with improved safety profiles. Organic-inorganic hybrid nanoparticles combine the
benefits of both organic and inorganic materials, providing versatile platforms for
controlled drug release. Despite these advancements, several challenges remain,
including ensuring biocompatibility, scalability, and regulatory approval. The
complexity of stimuli-responsive mechanisms and the need for precise control
over drug release further complicate the translation of these technologies from the
laboratory to clinical practice. In conclusion, while intelligent DDSs represent a
significant step forward in drug delivery technology, continued research and
development are crucial to overcoming existing challenges and achieving
widespread clinical implementation. The potential benefits of these advanced
systems in improving patient outcomes and reducing treatment-related adverse
effects underscore the importance of ongoing innovation in this field.
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