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Abstract---Background: Intelligent Drug Delivery Systems (DDSs) 

have revolutionized the way medications are administered, aiming to 
enhance therapeutic efficacy while minimizing side effects. 

Conventional DDSs often lead to systemic drug distribution and 

uncontrolled release, causing undesirable side effects and suboptimal 
therapeutic outcomes. To address these limitations, advanced 

controlled DDSs, particularly those leveraging nanotechnology, have 

been developed to target specific sites with precise regulation. Aim: 
This review aims to explore the recent advancements in intelligent 

drug delivery systems, focusing on their design, mechanisms, and 

clinical applications. It highlights the role of nanotechnology in 

enhancing the specificity and efficacy of drug delivery through various 
stimuli-responsive mechanisms. Methods: The review synthesizes 

findings from recent studies on various smart drug delivery platforms, 

including nanoparticle-based systems, smart polymers, liposomes, 
and organic-inorganic hybrids. It evaluates these systems based on 

their responsiveness to internal stimuli (e.g., pH, redox reactions, 

enzymes) and external stimuli (e.g., temperature, light, magnetic 
fields), and their clinical applicability. Results: The review identifies 

several innovative DDSs that employ stimuli-responsive materials to 

control drug release. Notable advancements include pH-responsive 
nanoparticles targeting tumor cells, redox-responsive systems for 

cancer therapy, and temperature-sensitive liposomes used in 

hyperthermia. Hybrid systems combining organic and inorganic 

materials have shown promise in improving drug release control and 
targeting capabilities. Conclusion: Intelligent drug delivery systems 
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represent a significant leap forward in precision medicine, offering 

targeted and controlled drug release mechanisms that enhance 
therapeutic outcomes and reduce side effects. Despite promising 

developments, challenges such as scalability, safety, and regulatory 

hurdles remain. Future research should focus on overcoming these 
obstacles to facilitate the broader clinical adoption of these advanced 

DDSs. 

 

Keywords---Drug Delivery Systems, Nanotechnology, Smart Polymers, 
Stimuli-Responsive Materials, Clinical Applications, Targeted Therapy. 

 

 
Introduction  

 

In order to achieve the best results from treatment and reduce any negative 
effects, it is essential for the active pharmaceutical ingredients to specifically 

gather at the affected areas for a long time with accurate management. Drug 

delivery refers to the methods, formulations, technologies, and systems used to 
safely and efficiently convey medicinal substances within the body to accomplish 

their desired effects [1]. Conventional drug delivery systems (DDSs) often cause 

widespread side effects because they distribute drugs without discrimination and 

release them without regulation. In order to overcome these limitations, advanced 
controlled drug delivery systems (DDSs) have been created to administer 

medicinal substances to specific sites in a controlled manner. Advanced 

controlled DDSs offer a notable advantage over conventional DDSs by effectively 
decreasing the frequency of drug administration, while yet ensuring that 

therapeutic drug levels are maintained in targeted organs or tissues for extended 

periods of time. These regulated DDSs provide significant knowledge and 
characteristics for limiting fluctuations in drug concentration, decreasing toxicity, 

and improving the effectiveness of therapy. 

 
The unique characteristics at the nanoscale and specific biological functions of 

different nanomaterials provide notable benefits and novel opportunities for 

intelligent drug delivery systems. Nanoparticle-based drug delivery systems 

(DDSs) have the ability to specifically gather and attach to disease targets while 
maintaining controlled release characteristics. Although there have been recent 

developments and reviews discussing new features of nanomaterials as intelligent 

drug carriers [1-6], only a small number of these have been effectively 
implemented in clinical settings [7-9]. Important considerations to guarantee the 

clinical feasibility for future commercialization comprise: (i) sufficient 

biocompatibility and biodegradability, (ii) stability in physiological settings, and 
(iii) a high drug loading capacity with minimum toxicity [10]. Furthermore, apart 

from ensuring safety and therapeutic efficacy, it is crucial to scale up the 

manufacturing of these innovative nanomaterials for industrial purposes in order 
to make them suitable for clinical applications. 

 

A wide range of materials, such as polymers, lipids, and inorganic compounds, 
have been engineered to serve as drug carriers for controlling the release of 

therapeutic chemicals [11-16], so producing "smart" pharmaceuticals. This paper 

provides an overview of advanced carriers, including smart polymer carriers, 
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liposomes, organic-inorganic hybrid smart nanoparticles, exosomes, and other 

nanomaterials, that are used for controlled drug delivery. Additionally, it 

investigates the clinical prospects of these regulated drug delivery nanoplatforms 

and the obstacles they encounter in clinical implementation. 
 

The design rationale behind smart drug delivery nanoplatforms. 

Optimally, medications should be delivered to specific locations in a regulated 
manner to enhance the effectiveness of treatment while limiting any negative 

effects. Smart drug delivery systems (DDSs) are specifically engineered to 

selectively release medications at precise places or at highly controlled rates, 
hence ensuring targeted therapeutic effects. Research on stimuli-responsive 

biomaterials for controlled drug release has made major advancements since 

Tanaka's 1978 detection of phase transitions in polyacrylamide gels and the 
introduction of thermosensitive liposomes for drug delivery. Due to advancements 

in nanotechnology and nanomaterials, medications can now be combined with 

different nanoparticles (see to section 3.3). Nanomaterials, due to their distinct 

size and surface features, show great potential as intelligent drug delivery systems 
(DDSs). 

 

In this review, the term "Smart DDSs" denotes systems that ensure 
pharmaceuticals are only released upon reaching certain target tissues/organs, or 

are released at a regulated pace at the intended action locations. This analysis 

specifically examines intelligent drug delivery systems (DDSs) that are made 
possible through the use of nanotechnology, rather than the drug molecules 

themselves. These nanoplatforms are designed to enable precise delivery of drugs 

to specific tissues after being administered systemically. Existing drug-loaded 
nanoplatforms are designed to retain pharmaceuticals in the bloodstream until 

they reach specific target locations. The nanocarriers concentrate at these sites 

using either active or passive targeting mechanisms. These sophisticated 

nanoplatforms are capable of responding to internal triggers, such as changes in 
pH, hormone levels, enzyme concentrations, small biomolecules, glucose, or redox 

gradients, which are associated with disease pathology. They can also react to 

external stimuli, such as temperature, magnetic fields, ultrasound (US), light, 
electric pulses, or high-energy radiation. The underlying concepts of several 

nanoplatforms that respond to stimuli will be briefly explored here. 

 
Design Rationale of Smart Drug Delivery Nanoplatforms 

 

Effective drug delivery requires that medications be released at specific target 
sites in a controlled manner to maximize therapeutic efficacy and minimize side 

effects. Smart drug delivery systems (DDSs) build on the principles of controlled 

release to enhance drug performance. Since Tanaka's 1978 observation of phase 

transitions in polyacrylamide gels [17], research into phase-transition polymeric 
gels has significantly advanced. Around the same time, thermosensitive liposomes 

were first introduced for drug delivery [18]. The field of stimuli-responsive 

biomaterials has since evolved, with nanotechnology and nanomaterials enabling 
the conjugation of drugs to various nanoparticles (see section 3.3). Leveraging the 

unique size and surface properties of these nanomaterials positions them as 

highly promising candidates for smart DDSs. 
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In this context, "Smart DDSs" are defined as systems that release drugs only at 

specific target tissues or organs, or at extremely slow rates, ensuring that drugs 
are released in a controlled manner at the sites of action. While drug molecules 

themselves can sometimes be considered "smart," this review focuses on smart 

DDSs achieved through nanotechnology. The sophisticated design of these 
nanoplatforms facilitates targeted drug release during systemic administration. 

Drug-loaded nanoplatforms are engineered to prevent premature drug release 

during blood circulation, allowing for targeted delivery where nanocarriers 

accumulate via active or passive targeting strategies. These advanced smart or 
stimuli-responsive nanoplatforms can react to both endogenous and exogenous 

stimuli. Endogenous triggers include pH variations, hormone levels, enzyme 

concentrations, small biomolecules, glucose, or redox gradients [19, 20], which 
are associated with disease pathology. Exogenous triggers, such as temperature, 

magnetic fields, ultrasound (US), light, electric pulses, or high-energy radiation, 

can also be employed to induce or enhance drug release at disease sites. The 
principles behind various stimuli-responsive nanoplatforms will be discussed 

further below. 

 
Systems that respond to changes in pH: 

 

pH is commonly used as a stimulus to initiate medication release in many 

applications [21-24]. Traditional pH-responsive carriers utilize the notable 
variations in pH levels between different organs, such as the very acidic 

conditions of the stomach (pH ≈ 2) compared to the more neutral pH of the 

intestinal tract (pH = 7). Eudragit S100-coated citrus pectin nanoparticles (E-
CPNs) have been created to specifically transport 5-Fluorouracil (5-FU) to the 

colon [25]. These carriers are specifically engineered to detect and react to small 

changes in pH levels in disease locations, such as areas affected by inflammation, 
reduced blood supply, and tumors. They can even target specific cellular 

structures like endosomes and lysosomes. An exemplary instance involves pH-

responsive nanocarriers designed for solid tumors [26]. The extracellular pH in 
normal tissues and blood is generally maintained at approximately 7.4. However, 

in solid tumors, the extracellular pH frequently decreases below 7.0 due to 

increased glycolytic activity. The acidic environment present in tumors can act as 

a targeted stimulus for controlled drug delivery systems (DDSs). In addition, 
endosomes and lysosomes have a lower pH range of 4.5 to 5.5 compared to other 

parts of the cell (21, 28). Therefore, fluctuations in pH play a critical role in the 

development of sophisticated drug delivery systems (DDSs). pH is commonly used 
in smart drug delivery systems (DDSs). However, incorporating other stimuli, like 

temperature or redox changes, might improve the accuracy and selectivity of drug 

release at specific locations. This has been demonstrated in studies [29-31]. 
 

Systems that Respond to Redox Reactions: 

 
Redox-responsive systems have received considerable interest for the treatment of 

diseases and are extensively utilized in intracellular drug delivery systems (DDSs) 

(19, 32). The redox potential fluctuates among various tissue microenvironments, 
providing possibilities for developing redox-responsive delivery methods. 

Nanoparticles that can respond to Glutathione (GSH) offer a highly effective 

approach for delivering drugs to specific targets. GSH is found at significantly 
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higher amounts in cancer cells (2 to 10 mM) compared to normal cells (2-20 μM) 

[34]. The significant disparity in glutathione (GSH) levels between malignant and 

normal cells makes redox-responsive drug delivery systems (DDSs) highly 

attractive for selectively targeting tumor locations. Furthermore, reactive oxygen 
species (ROS), which build up in specific diseased tissues, can also act as stimuli 

for regulated medication release. ROS levels in inflammatory tissues and colon 

cancer can reach levels that are 10 to 100 times greater than those found in 
normal tissues (19, 35). Although redox stimuli-responsive drug delivery systems 

(DDSs) have promising possibilities, it is difficult to get accurate control over 

redox mechanisms because of the intricate biological milieu and the variability of 
tumors. 

 

Systems that are responsive to enzymes: 
 

Enzyme-responsive drug delivery systems (DDSs) have been a fascinating field of 

study because of their ability to specifically target substrates and exhibit great 

selectivity even in gentle settings. [36 -39]. Enzymes like glycosidases, lipases, 
phospholipases, and proteases play crucial roles in several biological and 

metabolic processes. These enzymes can be utilized to facilitate the targeted 

release of drugs to specific locations affected by cancer or inflammation [38]. An 
important obstacle for enzyme-responsive drug delivery systems (DDSs) is the 

ability to precisely regulate the initial response time of the systems. 

 
Systems that are responsive to changes in temperature: 

 

Temperature is a superior and efficient factor for regulating drug release in 
comparison to other stimuli within the range of 40-42 degrees. Pathophysiological 

situations such as inflammation and tumors frequently display higher 

temperatures compared to normal tissues [43]. Functionalized nanoparticles can 

be strategically engineered to optimize medication release in tumor tissues by 
taking advantage of temperature variations. Another approach entails applying 

external heat to the tumor site, such as by the use of ultrasound or magnetic 

fields, in order to enhance the release of drugs within the tumor 
microenvironment [34]. Thermo-sensitive nanocarriers are usually engineered to 

keep their payloads intact at normal body temperatures (37°C) and release them 

quickly when exposed to temperatures higher than 40-45°C. The present obstacle 
for thermo-responsive nanoplatforms is to uphold safety while preserving 

sensitivity to slight temperature fluctuations. 

 
Systems that respond to light, magnetic fields, and ultrasound: 

 

Light-responsive systems facilitate medication release through external light 

activation. Photosensitive carriers can modulate drug release by manipulating the 
opening or closing of their nanostructures in response to light irradiation [19]. 

Nevertheless, the use of non-invasive techniques for deep tissues is limited due to 

practical constraints such as light wavelength and penetration depth. Magnetic 
stimuli provide a non-invasive technique to spatially and temporally manipulate 

carriers using external magnetic fields [47-49]. Core/shell magnetic nanoparticles 

(MNPs), renowned for their distinctive magnetic characteristics, possess a 
significant ratio of surface area to volume, which enables the conjugation of 
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biomolecules. This enables the implementation of accurate design and 

engineering to accomplish specific intelligent functionalities, such as extended 
circulation, precise delivery to affected regions, and controlled release of medicinal 

agents. When enclosed within colloidal carriers such as micelles, liposomes, or 

solid nanoparticles, these magnetic nanoparticles (MNPs) can exhibit sensitivity to 
external magnetic fields. This characteristic allows for the development of 

versatile formulations that can be used for both diagnostic and therapeutic 

purposes. Ultrasound (US) is widely used in clinical settings for both diagnosis 

and therapy because of its ability to penetrate tissues and its high level of safety. 
Ultrasonically sensitive nanocarriers enable a distinctive approach to collecting 

drug carriers and inducing drug release at precise locations by manipulating the 

frequency, duty cycles, and exposure time of ultrasound waves. 
 

Additional Responsive Systems 

 
In addition to the stimuli previously discussed, glucose [62-64] and electro-

responsive systems [65-68[ have also been utilized to control payload release 

within nanocarriers. The integration of hybrid stimuli can further enhance drug 
delivery precision. Dual stimuli-responsive DDSs are prevalent and have been 

explored, including combinations such as thermo- and pH-responsive systems 

[69, 70]; thermo- and light-responsive systems [71, 72]; redox- and pH-responsive 

systems [30, 31]; and ultrasonic and magnetic-responsive systems [73-77]. 
 

To achieve the smart functionality of DDSs, a variety of stimuli are employed to 

trigger drug release at the intended location and time within different nano-
architectures. Demonstrating the viability of these strategies requires evidence of 

the regulation of responses to each stimulus in both in vitro and in vivo settings. 

This review focuses on smart nanoplatforms with significant clinical potential in 
stimuli-responsive DDSs. We explore smart DDSs for controlled drug release, 

including polymers, liposomes, organic-inorganic hybrid biomaterials, and 

exosomes. While smart nanoplatforms have applications across various diseases, 
including neoplastic, diabetes, infections, cardiovascular, and inflammatory 

conditions, this review specifically emphasizes carcinoma diseases and their 

potential for future clinical translation. 

 
Smart Nanoscale DDS 

 

Polymeric Nanoparticles 
 

Polymeric nanoparticles are a major area of development in smart drug delivery 

systems (DDS), due to their ability to respond to external stimuli and control drug 
release. Smart or stimuli-responsive polymers have been explored for controlling 

the release of biologically active cargos for several decades. As discussed 

previously, stimuli such as ultrasound (US), pH, and magnetic fields can induce 
physical or chemical transformations in these polymers, modulating the drug 

release rate based on the intensity of the applied stimulus. 

These smart polymer materials are generally categorized into two types: single 
stimulus-responsive and dual-/multi-stimuli responsive polymers. 
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1. Single Stimulus Responsive Polymers: 

o Exogenous Stimuli: These include temperature, magnetic fields, 

ionic strength, US intensity, and electric pulses. These stimuli can 

induce conformational changes in the polymer chains, which affect 
the release of the drug [1, 7, 16]. 

o Endogenous Stimuli: Factors such as pH, enzyme concentration, 

hormone levels, redox gradients, and small biomolecules fall into 
this category. They induce changes in the polymeric materials in 

response to the physiological conditions at the target site [19]. 

Among the various stimuli, pH, redox, enzymes, light, and 
temperature have emerged as prominent triggers for the design of 

smart polymeric DDSs [20, 29, 79]. 

2. pH-Responsive Polymers: 
o These polymers often feature ionizable groups that change their 

conformation in response to environmental pH. This can result in 

controlled drug release. For instance, pH-responsive polymeric 

micelles, such as those using hydrazone bonds to conjugate drugs 
like doxorubicin (DOX), can achieve a fast release of drugs in acidic 

environments like tumors. Surface charge-switchable polymers 

enhance cellular uptake by changing surface charges from negative 
to positive, improving drug delivery [21, 26, 27, 80-82]. 

Examples include: 

o pH-Sensitive Polymeric Micelles: The hydrazone bond conjugates 
doxorubicin with poly (styrene-co-maleic anhydride) derivatives, 

allowing controlled release in acidic tumor environments [85]. 

o Surface Charge Reversal Carriers: PIC⊕NP/Pt@PPC-DA 
nanoparticles enhance platinum drug accumulation in response to 

tumor pH changes with prolonged circulation time in the blood [87-
91]. 

Additionally, pH-sensitive polymers are used in tumor imaging. For example, ultra 

pH-sensitive (UPS) fluorescent nanoprobes activate strongly in response to acidic 
extracellular pH, aiding in high-resolution tumor imaging [94, 95]. 

3. Redox-Responsive Polymers: 

o These systems utilize the reduction of disulfide bonds by 
intracellular glutathione (GSH) to release drugs. Redox-responsive 

polymers can degrade in the presence of GSH, leading to the rapid 

release of the drug. For example, thioketal nanoparticles (TKNs) 
degrade in response to reactive oxygen species (ROS), releasing 

siRNA for treating intestinal inflammation [35]. 

Examples include: 

o Redox-Responsive Hyperbranched Polyglycerols: Disulfide 
bonds used as cross-linkers degrade under redox conditions, 

facilitating drug release [98]. 

o Thioketal Nanoparticles (TKNs): Designed for oral delivery of 
siRNA, these nanoparticles degrade in response to ROS, showing 

potential for treating gastrointestinal diseases [99]. 

4. Light-Responsive Polymers: 
o Light-responsive systems use photochromic moieties or 

photochemical reactions to trigger drug release. These systems 

often involve reversible transitions activated by light, such as 
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azobenzene or spiropyran. Photodynamic therapy (PDT) and 

photothermal therapy (PTT) are applications where light-responsive 
polymers are used for tumor destruction and imaging [100, 101]. 

Examples include: 

o Photosensitizers Coupled with Plasmonic Nanoparticles: 
Enhance PDT and imaging capabilities [102]. 

o Porphysome Nanovesicles: Used for photothermal therapy and 

imaging with long-wavelength responsiveness [103]. 

5. Temperature-Responsive Polymers: 
o Polymers like poly-N-isopropylacrylamide (PNIPAAm) exhibit a 

phase transition at specific temperatures, commonly used to 

control drug release. These polymers can switch between 
hydrophilic and hydrophobic states based on temperature changes 

[106]. 

6. Glucose-Responsive Polymers: 
o These polymers are being explored for diabetes treatment, 

responding to glucose levels to regulate drug release. Natural 

polymers such as chitosan and dextrin, which can be degraded by 
enzymes, are examples of glucose-responsive systems [107]. 

 

Natural Polymers: Chitosan and cyclodextrins, among other natural polymers, 

offer controlled release and have potential applications in smart DDS and bio-
imaging [108, 109]. Overall, polymeric nanoparticles represent a significant 

advancement in controlled drug delivery, offering potential for application in 

various diseases and preclinical investigations. Their versatility and 
responsiveness to multiple stimuli make them promising candidates for clinical 

use. 

 
Liposomes 

 

The description of swollen phospholipid systems was first reported by Alec 
Bangham and colleagues in 1965 [110]. Since then, a variety of enclosed 

phospholipid bilayer structures consisting of single bilayers have been described 

as "liposomes" [111]. In 1971, Gregoriadis et al. first used liposomes as drug 

delivery systems [112]. With the development of new preparation technology, large 
unilamellar liposomes (LUVs) can now be obtained by extruding multilamellar 

vesicles through polycarbonate filters. Particularly when the diameter of 

liposomes is reduced to within 100 nm or less, they have been widely used as 
advanced DDSs in numerous clinical trials, such as anti-cancer, anti-

inflammatory, anti-fungal drugs, and gene medicines [113, 114]. Some liposome 

formulations have even been approved for commercial use. Doxil®, the first Food 
and Drug Administration (FDA)-approved nanomedicine delivery system, is based 

on PEGylated liposomes [115]. Besides the liposomes available on the market, a 

number of lipidic nanoparticles are currently in the pipeline, moving from concept 
to clinical application. This indicates that the use of liposomes as drug carriers 

may be well-developed for clinical acceptance. 

 
Inspired by the promising clinical applications, the development of smart 

liposomes has become a hot topic in nanomedicine. These liposomes can be easily 

stimulated by several triggers, such as temperature, pH gradients, enzyme 
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changes, ultrasound (US), and light [116, 117]. These novel, smarter liposome 

delivery systems may exhibit even better potential in future clinical applications. 

Although various stimuli can be used to control drug release from liposomes, 

temperature stimuli might be particularly important due to considerations of 
safety and practicality [126, 127]. As a smart drug carrier system, ThermoDox, a 

temperature-sensitive doxorubicin (DOX) liposome developed by Celsion, may be 

the closest formulation to clinical use so far. Taking advantage of the 
dipalmitoylphosphatidylcholine (DPPC) lipid crystallization melting temperature at 

41.5°C, doxorubicin can be released from ThermoDox at this temperature [126]. 

Radiofrequency ablation (RFA) has also been used to activate DOX release from 
ThermoDox. In a Phase I clinical trial, the liver cancer-targeted ThermoDox DDS 

showed an improved safety profile compared to free doxorubicin. Although the 

results of Phase III clinical trials with ThermoDox were not entirely satisfactory—
the treatment did not extend life span by the target threshold of 33% [19]—the 

strategy of temperature-sensitive liposomes offers a promising clinical future for 

smart DDSs. 

 
To improve the control of drug release in response to mild heating, 

thermosensitive polymers have been used to modify liposomes, producing 

temperature-sensitive polymeric liposomes. A typical example of ultra-
temperature-sensitive liposomes based on a thermosensitive block copolymer has 

been developed by Kono's group. The synthesized poly [2-(2-ethoxy) ethoxyethyl 

vinyl ether (EOEOVE)], is a promising biomaterial for constructing temperature-
sensitive liposomes. The poly (EOEOVE)-modified liposomes showed even higher 

sensitivity to temperature than poly (N-isopropylacrylamide), which could further 

enhance the tumor selectivity and therapeutic effectiveness of payloads. 
 

The fabrication of liposome complexes has further advanced the development of 

smart liposomes. For example, after being loaded with magnetic nanoparticles 

(MNPs) and exposed to a magnetic field, magnetic liposomes are endowed with 
multifunctional properties, such as the vessel effect, surface effect, 

biocompatibility, targeting effect, and easy recovery. Plank and coworkers 

designed folate receptor-targeted magnetic liposomes. Under exposure to an 
external magnetic field, magnetic hyperthermia triggered drug release and 

localized the drug at high concentrations in tumor tissues, resulting in a 

significant improvement in anticancer efficacy [128]. 
 

Other recent advances in smart liposomes include the use of low pH 

environments for pH-triggered approaches [129-132], the use of enzymes as a 
trigger in enzyme-sensitive liposomes [133, 134], and US-responsive liposomes 

[135-137]. Additionally, light as a stimulus has been widely investigated in 

photosensitive liposomes [138-140]. Moreover, liposomes can serve as a platform 

for co-delivery of magnetic resonance imaging (MRI) agents and therapeutic drugs 
[141-143]. As an important smart drug carrier, stimuli-sensitive liposomes 

represent a pathway toward the design of nanocarriers with significantly improved 

efficacy. Although successful in vivo applications of these systems remain a 
challenge, it is believed that more clinical products based on smart liposomal 

platforms will emerge in the near future. 
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Organic-Inorganic Hybrid Smart Nanoparticles 

 
Organic-inorganic hybrid smart biomaterials refer to materials that combine the 

characteristics of organic and inorganic materials and can respond to stimuli 

after hybridization. The hybrid materials can be constructed by connecting 
organic or polymer molecules with nano-metal particles or nano-oxides like silica 

and titanium dioxide [144, 145]. Mesoporous silica materials as smart DDSs have 

attracted extensive attention in the past decade [145-148]. In addition, gold 

nanoparticles (AuNPs) have been widely explored for photothermal therapy (PTT) 
in the biomedical field [149-154]. Their specific surface chemistry, with facile 

functional modification, provides hybridization with more possibilities [145]. 

Besides, upconversion nanoparticles [155, 156], magnetic-sensitive nanocrystals 
in liposomes [157, 158], US-responsive liposomes with perfluorocarbon bubbles 

[159], and photoacoustic nanoparticles [160] can also be used as hybrid smart 

nano-DDSs for controlled drug release. 
 

Although mesoporous silica nanoparticles (MSNPs) possess a large loading 

capacity, the loaded drugs are often released immediately after administration. 
Similar to conventional therapy methods, this can lead to lower therapeutic 

efficacy and severe side effects due to off-target effects. To minimize the 

premature release of the payloads before reaching the target site, different organic 

molecules or polymers have been used as smart gatekeepers on the pore outlets 
to prevent drugs from leaking out of the carriers until the carrier is exposed to 

internal or external stimuli [161]. The outer layer can be operated by stimuli such 

as pH, temperature, photo irradiation, redox potential, electromagnetic fields, and 
biomolecules [162], which can adjust the drug release speed from the pores of 

MSNPs. The strategy of modifying MSNPs with organic molecules to make them 

smart is analogous to the approach used for smart polymers. The first enzyme-
sensitive cap on MSNPs was described in 2008 [163]. The MSNPs were 

functionalized by cyclodextrin (CD) torus with a PEG thread, connected by an 

enzyme-cleavable site. The drug was released when the enzyme-responsive bond 
was cleaved in the presence of esterase. Mondragón et al. [164] prepared two 

novel MSNP hybrid systems with a poly-L-lysine outer surface using two different 

anchoring strategies. One strategy utilized the formation of urea bonds, while the 

other focused on attachment by amide bonds. Almost no cargo was released into 
water for both nanoparticles. After introducing proteases into the release medium, 

a notable payload was released because the poly-L-lysine cap on the surface 

smartly responded to the enzyme in a controlled manner. Other organic 
constituents have also been used to modify inorganic compounds to fabricate 

smart hybrid materials, such as polypeptides, polyesters, and polysaccharides 

[165, 166]. These can act as capping agents when grafted to the entrance of the 
pores of MSNPs, and cargo will be released in the presence of protease, esterase, 

galactosidase, and other such enzymes [161]. Although MSNPs serve as organic-

inorganic hybrid smart DDSs and show superior biocompatibility compared to 
other inorganic nanoparticles, the pharmacokinetics and pharmacodynamics of 

MSNPs should be further evaluated. 
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Gold Nanoparticles (AuNPs) 

 Types and Development: AuNPs such as nanoshells, nanocages, and 

nanorods are advanced as photothermal therapy (PTT) agents [154, 167-

169]. 

 Biodegradability Issue: AuNPs, being inorganic, are not biodegradable 

and accumulate in the body. Surface modifications with organic functional 

groups can address this [170]. 

 Liposome Complexes: Kojima and colleagues found that liposomes 
enhance the stability of AuNPs in isotonic conditions [170]. 

 Dendrimers and AuNPs: PEG-attached poly(amidoamine) (PAMAM) 

dendrimers loaded with AuNPs show strong cytotoxicity against human 

cervical cancer (HeLa) cells under light [171]. 

 Drug Delivery Systems: Wang’s group developed a system with 

doxorubicin (DOX) modified onto AuNPs (DOX-Hyd@AuNPs) using an acid-

labile linkage, which helps overcome multidrug resistance (MDR) and 
achieves controlled drug release [153]. 

 

Magnetic Nanoparticles (MNPs) 

 Applications and Control: MNPs can be manipulated with an external 
alternating magnetic field (AMF) for drug and gene delivery, diagnostics, 

and therapeutics [75, 172]. 

 Magnetic Microbubbles: Superparamagnetic iron oxide (SPIO) Fe3O4 

nanoparticles in microbubbles are used for dual imaging and controlled 
delivery via ultrasound [75, 172]. 

 Smart Microcontainers: Polymeric microspheres with SPIO Fe3O4 

nanoparticles can switch between “open” and “closed” states under 
magnetic fields, facilitating gas generation and targeted therapy [73, 173]. 

 Theranostics: SPIOs serve as contrast agents for MRI and carriers for 

anticancer drugs, combining imaging with hyperthermia for tumor therapy 

[50]. Xie et al. developed magnetic nanocrystals (MNCs) with excellent 
imaging and therapeutic capabilities [55]. 

 

Exosomes 

 Characteristics and Applications: Exosomes are nano-sized vesicles 

used for drug delivery due to their specific tissue targeting, 

biocompatibility, and drug-loading capacity [174-178]. 

 Therapeutic Applications: Exosome-based systems like catalase-loaded 
exosomes (exoCAT) are used to treat neurodegenerative disorders [179]. 

Exosomes from mouse dendritic cells loaded with DOX and iRGD peptides 

efficiently target tumors with minimal toxicity [180]. 

 Challenges: Issues include maintaining biological properties during 
loading, achieving large-scale production, and developing effective 

evaluation and testing methods for clinical applications [181]. 

 
General Challenges for Smart Nanoplatforms in Clinical Applications 

 Design Simplicity: Smart DDSs often have complex structures, making 

them difficult to scale up. Simplicity in design is crucial for successful 

clinical translation [8, 182, 183]. 
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 Stimuli Control: Control of endogenous triggers (e.g., pH, enzyme levels) 

is challenging due to variability among patients. Exogenous stimuli-

responsive systems are easier to control but require improvements in 
tissue damage and penetration [19]. 

 Safety and Toxicity: Safety issues including biocompatibility, toxicity, 

and reproducibility need thorough investigation. The pharmacokinetics 
and pharmacodynamics of nanoscale DDSs must be well studied [184, 

190]. 

 Industrial Scale-Up: Challenges include ensuring reproducibility, 

scalability, and control over physicochemical properties. Standardization 
and regulatory frameworks are needed for widespread clinical application 

[191, 192]. 

 Regulatory Frameworks: Existing regulations are insufficient for nano-
pharmaceuticals. Comprehensive frameworks are needed to guide the 

development, characterization, and approval of nanomedicines [192]. 

 

Limitations Between Animal Evaluation and Clinical Effect 

 Model Relevance: Current animal models may not accurately reflect 

human disease complexity. Diverse and relevant models are needed for 

better predictive value [8, 193]. 

 Evaluation Standards: Different animal species should be used to assess 

various diseases, and drug dosage and administration must be aligned 

with human trials [194, 195]. 

 Advanced DDS Evaluation: Effective evaluation strategies for toxicology, 
pharmacokinetics, and pharmacodynamics in animal models are 

necessary for translating findings to clinical settings. 

 

Conclusion 
 

The advent of intelligent drug delivery systems (DDSs) has marked a 

transformative shift in therapeutic strategies, offering targeted and controlled 
drug release mechanisms that significantly enhance treatment efficacy while 

mitigating side effects. Conventional DDSs, characterized by their lack of 

specificity and uncontrolled release profiles, often lead to systemic drug 
distribution that can result in adverse effects and reduced therapeutic 

effectiveness. In contrast, advanced controlled DDSs, particularly those 

incorporating nanotechnology, provide a more refined approach to drug 
administration. Nanoparticle-based systems have emerged as a prominent 

solution, utilizing their unique properties to deliver drugs precisely to targeted 

sites. These systems leverage stimuli-responsive mechanisms to release drugs 

only in the presence of specific internal or external triggers, such as pH changes, 
redox conditions, or temperature variations. For example, pH-responsive 

nanoparticles can selectively target acidic environments typical of tumor tissues, 

while redox-responsive systems exploit the higher levels of glutathione in cancer 
cells to release drugs selectively. The review also highlights significant 

advancements in other DDS technologies, including smart polymers, liposomes, 

and organic-inorganic hybrid materials. Smart polymers, such as those 
responsive to temperature or light, provide controlled release capabilities that can 

be finely tuned to match the therapeutic needs. Liposomes, particularly those 

modified with stimuli-responsive features, offer enhanced drug delivery options 
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with improved safety profiles. Organic-inorganic hybrid nanoparticles combine the 

benefits of both organic and inorganic materials, providing versatile platforms for 

controlled drug release. Despite these advancements, several challenges remain, 

including ensuring biocompatibility, scalability, and regulatory approval. The 
complexity of stimuli-responsive mechanisms and the need for precise control 

over drug release further complicate the translation of these technologies from the 

laboratory to clinical practice. In conclusion, while intelligent DDSs represent a 
significant step forward in drug delivery technology, continued research and 

development are crucial to overcoming existing challenges and achieving 

widespread clinical implementation. The potential benefits of these advanced 
systems in improving patient outcomes and reducing treatment-related adverse 

effects underscore the importance of ongoing innovation in this field. 
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 التطورات في أنظمة توصيل الدواء الذكية وتطبيقاتها السريرية
 :الملخص

ثورة في كيفية إدارة الأدوية، بهدف تعزيز الفعالية العلاجية مع تقليل  (DDSs) لقد أحدثت أنظمة توصيل الدواء الذكية خلفية:

الآثار الجانبية. غالبًا ما تؤدي أنظمة توصيل الدواء التقليدية إلى توزيع الدواء على نطاق واسع وإطلاق غير متحكم فيه، مما يتسبب 

غوب فيها ونتائج علاجية دون المستوى المطلوب. لمواجهة هذه التحديات، تم تطوير أنظمة توصيل الدواء في آثار جانبية غير مر

 .المتقدمة، وخاصة تلك التي تعتمد على تكنولوجيا النانو، لاستهداف مواقع محددة مع تنظيم دقيق
ء الذكية، مع التركيز على تصميمها وآلياتها يهدف هذا الاستعراض إلى استكشاف التطورات الأخيرة في أنظمة توصيل الدواهدف: 

وتطبيقاتها السريرية. ويسلط الضوء على دور تكنولوجيا النانو في تعزيز خصوصية وفعالية توصيل الدواء من خلال آليات 

 .استجابة للمحفزات المختلفة
يجمع هذا الاستعراض بين النتائج المستخلصة من الدراسات الحديثة حول مختلف منصات توصيل الدواء الذكية، بما في ذلك  طرق:

الأنظمة القائمة على الجسيمات النانوية، والبوليمرات الذكية، والليبوسومات، والمواد الهجينة العضوية وغير العضوية. ويقوم بتقييم 

استجابتها للمحفزات الداخلية )مثل الرقم الهيدروجيني، التفاعلات الحمراء، الإنزيمات( والمحفزات الخارجية هذه الأنظمة بناءً على 

 .)مثل درجة الحرارة، الضوء، المجالات المغناطيسية( وقابليتها للتطبيق السريري
تستجيب للمحفزات للتحكم في إطلاق  يحدد هذا الاستعراض العديد من أنظمة توصيل الدواء المبتكرة التي تستخدم مواد نتائج:

الدواء. تشمل التطورات البارزة الجسيمات النانوية المستجيبة للرقم الهيدروجيني التي تستهدف الخلايا السرطانية، والأنظمة 

وقد  المستجيبة للتفاعلات الحمراء لعلاج السرطان، والليبوسومات الحساسة لدرجة الحرارة المستخدمة في العلاج بالحرارة.

أظهرت الأنظمة الهجينة التي تجمع بين المواد العضوية وغير العضوية وعداً بتحسين التحكم في إطلاق الدواء وقدرات 

 .الاستهداف
تمثل أنظمة توصيل الدواء الذكية قفزة نوعية في الطب الدقيق، حيث تقدم آليات لإطلاق الدواء بشكل مستهدف ومتحكم  استنتاج:

ائج العلاجية ويقلل من الآثار الجانبية. على الرغم من التطورات الواعدة، لا تزال هناك تحديات مثل القدرة على فيه، مما يعزز النت

التوسع، والسلامة، والعقبات التنظيمية. يجب أن يركز البحث المستقبلي على التغلب على هذه العقبات لتسهيل التبني السريري 

 .الواسع لهذه الأنظمة المتقدمة
أنظمة توصيل الدواء، تكنولوجيا النانو، البوليمرات الذكية، المواد المستجيبة للمحفزات، التطبيقات السريرية،  ت المفتاحية:الكلما

 .العلاج المستهدف

 

 
  


