

How to Cite:

Alhebs, M. A., Al Mutairi, S. A., Alharbi, S. S. E., & Al Nosyan, M. A. A. (2021). The role of radiology in early detection: Evaluating new techniques for disease prevention-COVID-19 case study. *International Journal of Health Sciences*, 5(S1), 1156–1169. <https://doi.org/10.53730/ijhs.v5nS1.15102>

The role of radiology in early detection: Evaluating new techniques for disease prevention-COVID-19 case study

Mohammed Abdulrahman Alhebs

KSA, National Guard Health Affairs Radiology Technician

Sami Abdullah Al Mutairi

KSA, National Guard Health Affairs Radiology Technician

Sultan Sulaiman E Alharbi

KSA, National Guard Health Affairs

Mohammed Abdullah Ali Al Nosyan

KSA, National Guard Health Affairs Health Information

Abstract--Introduction: The outbreak of COVID-19, caused by the novel coronavirus SARS-CoV-2, has prompted the use of various diagnostic methods to manage the disease. Although Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold standard for COVID-19 diagnosis, its limitations in sensitivity and availability have highlighted the role of radiological techniques. **Aim:** This study aims to evaluate the effectiveness of different radiological techniques—chest X-ray (CXR), computed tomography (CT), and ultrasound imaging—in the early detection and management of COVID-19. **Methods:** A review of existing literature and case studies was conducted to assess the diagnostic utility, sensitivity, and limitations of CXR, CT, and ultrasound in COVID-19. Comparative analysis was performed based on imaging characteristics, diagnostic accuracy, and clinical outcomes. **Results:** CT is identified as the most sensitive modality for detecting COVID-19, showing high sensitivity in identifying lung abnormalities and disease progression. CXR, while cost-effective and widely available, offers lower sensitivity and is less effective for early-stage disease. Ultrasound imaging, though less common, provides useful supplementary information and is beneficial for bedside assessments. **Conclusion:** CT is crucial for diagnosing and monitoring COVID-19 due to its high sensitivity and detailed imaging capabilities. CXR remains valuable for initial screening, while ultrasound is an emerging tool for specific scenarios. Integrating these modalities enhances diagnostic accuracy and patient management.

Keywords--COVID-19, radiology, chest X-ray, computed tomography, ultrasound imaging, diagnostic techniques.

Introduction

In December 2019, an outbreak of pneumonia with unidentified etiology was documented in Wuhan, Hubei province, China. Epidemiological investigations indicated that a majority of these cases were associated with a local seafood wholesale market in Wuhan, where illegal sales of live animals, including poultry, snakes, bats, and other species, occurred (1, 2). Genetic analysis of the virus isolated from these patients revealed a high degree of similarity with a virus found in bats (3). On January 7, 2020, it was confirmed that this outbreak was caused by a novel coronavirus, later designated as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), previously referred to as 2019-nCoV, as officially classified by the World Committee on Virus Classification (4). Subsequently, on February 12, 2020, the World Health Organization (WHO) named the disease resulting from this virus as Coronavirus Disease 2019 (COVID-19). By March 17, the virus had disseminated to over 100 countries, with more than 180,000 cases and over 7,000 fatalities reported. Consequently, the WHO declared COVID-19 a global pandemic. Currently, the Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) technique is the primary diagnostic method for COVID-19, although its utility is hampered by high false-negative rates and limited availability in the early stages of the outbreak (5). Radiological evaluations, particularly chest computed tomography (CT), have become crucial in managing COVID-19 (6). Chest CT is instrumental in the early detection of lung abnormalities and supports broader public health surveillance and response systems (7, 8). Recent studies suggest that chest CT may offer greater sensitivity than RT-PCR (9, 10). Since February 13, 2020, chest CT findings have been recommended as a key diagnostic tool, particularly in regions severely affected by the epidemic, such as Hubei. A thorough and prompt assessment of the radiological contributions to COVID-19 management remains critical and necessary.

Different Radiological Techniques Used in COVID-19 Diagnosis

The COVID-19 pandemic has significantly underscored the importance of radiological imaging in diagnosing and managing infectious diseases. Several radiological techniques have been employed to detect, assess, and monitor COVID-19, each with unique roles and advantages. This discussion provides an overview of the primary radiological techniques used in COVID-19 diagnosis, including chest X-ray (CXR), computed tomography (CT), and ultrasound imaging.

1. Chest X-Ray (CXR)

Technique: Chest X-ray (CXR) is one of the most basic and widely available imaging modalities. It utilizes ionizing radiation to create images of the chest cavity, including the lungs, heart, and surrounding structures. During a CXR, the patient is positioned between an X-ray tube and a detector. The X-rays pass

through the body, with varying degrees of absorption depending on tissue density, creating a radiographic image.

Role in COVID-19 Diagnosis: CXR is often used as a preliminary imaging technique due to its wide availability and low cost. It is particularly useful in the initial screening of patients with respiratory symptoms. In COVID-19, CXR findings may include bilateral ground-glass opacities, consolidations, and sometimes pleural effusions. However, CXR is less sensitive compared to CT for detecting early-stage disease or subtle abnormalities. Its primary role is in triaging patients, especially in settings where CT is not readily available. CXR can help identify severe cases that require further evaluation or immediate intervention.

Advantages:

- Widely available and cost-effective.
- Lower radiation dose compared to CT.
- Useful for rapid assessment in emergency settings.

Limitations:

- Lower sensitivity and specificity for detecting early or mild disease compared to CT.
- Limited ability to differentiate between COVID-19 and other respiratory infections based on radiographic features alone.

2. Computed Tomography (CT)

Technique: Computed tomography (CT) uses X-rays and advanced computer algorithms to produce detailed cross-sectional images of the body. During a CT scan, the patient is positioned on a table that moves through a ring-shaped scanner, which takes multiple X-ray images from different angles. These images are then reconstructed into a series of slices or three-dimensional images.

Role in COVID-19 Diagnosis: CT is a critical tool for diagnosing and assessing the severity of COVID-19. It provides high-resolution images that can reveal the extent of lung involvement, which is crucial for managing patients and making clinical decisions. Typical CT findings in COVID-19 include bilateral ground-glass opacities (GGO), consolidations, and a crazy-paving pattern. CT can also reveal the progression of disease over time, making it valuable for monitoring patients and evaluating treatment response.

Advantages:

- High sensitivity for detecting lung abnormalities.
- Detailed imaging allows for assessment of disease extent and severity.
- Useful for identifying complications such as pulmonary embolism or superimposed bacterial infections.

Limitations:

- Higher radiation dose compared to CXR, though recent advances have aimed to reduce this.

- Less effective in detecting early disease compared to some other modalities.
- Variability in findings based on disease stage and individual patient factors.

3. Ultrasound Imaging

Technique: Ultrasound imaging utilizes high-frequency sound waves to create images of internal structures. A transducer emits sound waves that penetrate the body and are reflected back by tissues, creating an image based on these reflections. Unlike X-ray-based techniques, ultrasound does not use ionizing radiation.

Role in COVID-19 Diagnosis: Ultrasound is emerging as a complementary tool in COVID-19 diagnosis, particularly in settings where CT is not available or feasible. It is particularly useful for evaluating lung conditions at the bedside, such as in critically ill patients or during pregnancy. In COVID-19, ultrasound may show pleural line abnormalities, B-lines (indicative of interstitial edema), and consolidations.

Advantages:

- No ionizing radiation, making it safer for frequent use and suitable for certain patient populations like pregnant women.
- Portable and can be used at the bedside.
- Useful for detecting pleural effusions and guiding interventions.

Limitations:

- Limited ability to assess the entire lung volume compared to CT.
- Operator-dependent with variability in image quality and interpretation.
- Less effective in visualizing deep or diffuse lung abnormalities.

Comparison and Integration

Each radiological technique plays a distinct role in the diagnosis and management of COVID-19. CXR provides a quick and cost-effective preliminary assessment but may miss early or subtle abnormalities. CT offers a more detailed and sensitive evaluation of lung involvement, making it essential for diagnosing and monitoring severe cases. Ultrasound, while less commonly used for COVID-19 diagnosis, provides valuable supplementary information and is particularly useful in specific clinical contexts.

Integrating Modalities: In practice, a combination of these techniques is often employed to optimize patient care. For instance, initial screening may start with CXR, followed by CT for more detailed assessment if necessary. Ultrasound may be used in specific scenarios where it provides additional insights or where CT is contraindicated. The choice of radiological technique in COVID-19 diagnosis depends on the clinical scenario, patient characteristics, and available resources. While CT is the most sensitive modality for detecting and monitoring COVID-19, CXR and ultrasound each offer unique benefits and play important roles in the overall diagnostic and management strategy. Ongoing research and technological

advancements continue to refine these techniques, aiming to enhance their effectiveness and safety in the context of COVID-19 and other respiratory diseases.

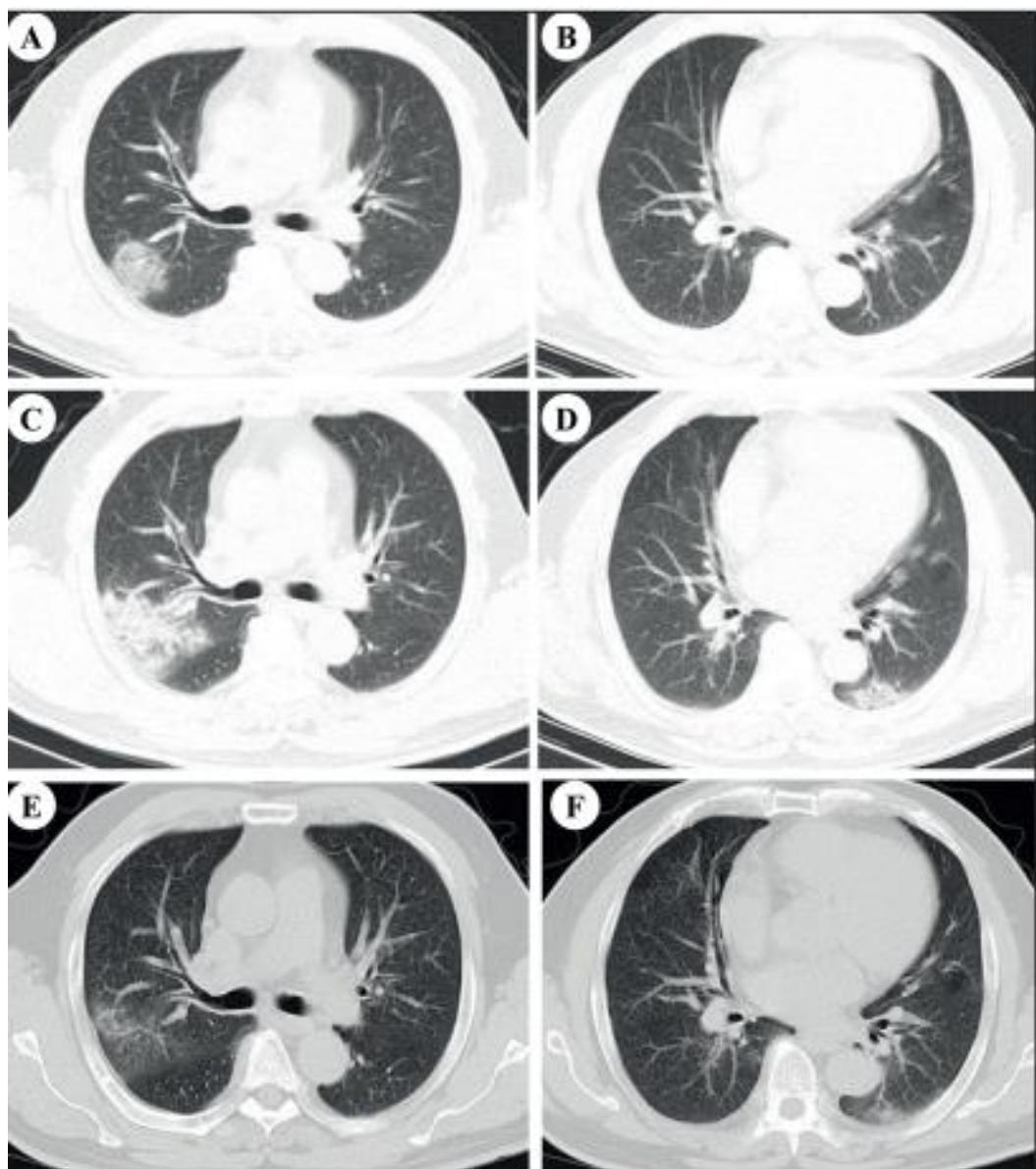
Radiological Role in the Detection of COVID-19

Computed tomography (CT) has emerged as a crucial imaging modality for the early detection of COVID-19 pneumonia. Song et al. (11) conducted a review of CT findings in 51 confirmed COVID-19 patients, revealing that 77% exhibited a pure ground-glass opacification (GGO) pattern, 75% showed GGO with interstitial and/or interlobular septal thickening, and 59% had GGO with consolidation. GGO remains a predominant CT imaging characteristic in COVID-19 pneumonia, particularly in cases with mild symptoms or low severity. However, GGO is frequently undetectable on chest radiography, posing a challenge for even experienced radiologists. Future research is needed to explore the application of artificial intelligence in enhancing the detection of such abnormalities in chest radiographs of suspected cases.

On February 12, 2020, chest CT was incorporated into the diagnostic criteria by the National Health Commission of China for Hubei Province. This change led to a sharp increase in COVID-19 diagnoses in the region. The revised criteria were implemented to address delays in RT-PCR testing and to manage the large influx of patients with respiratory symptoms. Chest CT may provide higher diagnostic sensitivity for COVID-19 compared to initial RT-PCR tests (12), as RT-PCR can be influenced by low viral loads or inadequate clinical sampling (13, 14). Studies (9, 15) have demonstrated that many cases ultimately confirmed as COVID-19 were initially RT-PCR negative, yet abnormalities were detected by chest CT. Fang et al. (10) found that 98% of 51 patients had positive CT results, while only 71% had initially positive RT-PCR results, indicating that chest CT had superior sensitivity compared to RT-PCR. Ai et al. (12) investigated 1,014 cases and confirmed that chest CT exhibited high sensitivity for diagnosing COVID-19. Xie et al. (9) found that 3% of patients had initially negative RT-PCR results but positive CT findings, while 4% had negative CT results but positive RT-PCR results. Similarly, another retrospective study revealed that 4% of patients with initial negative chest CT findings later showed positive results upon follow-up (16). Xu et al. (17) reported that 23% of 90 patients had no abnormalities on initial chest CT. While the role of CT in detecting COVID-19 is still evolving, it may serve as a valuable supplementary tool to RT-PCR in highly suspected cases. Nevertheless, RT-PCR remains the gold standard for definitive COVID-19 diagnosis.

To date, a total of 26 case series (6, 9-12, 16-36) have explored the radiological characteristics of COVID-19. Initial CT scans of COVID-19 patients typically reveal bilateral, multifocal, and multilobe ground-glass opacifications (GGO) with patchy consolidations. These features often have a peripheral/subpleural or posterior distribution, predominantly affecting the lower lobes (**Figure 1**) (6, 9-12, 16-35). GGO is characterized by a hazy increase in attenuation associated with interstitial and alveolar processes while maintaining bronchial and vascular margins (37). Consolidation, on the other hand, represents an opaquer area that obscures these margins (38). GGO or GGO combined with consolidation are the most prevalent radiological features observed. Other common findings include

interlobular septal thickening, a crazy-paving pattern, air bronchogram/traction bronchiectasis, halo or reverse halo signs, peripheral/subpleural involvement, and pleural thickening (6, 11, 16-18, 21, 23, 26, 28-30, 34, 36). Less frequently, pleural effusion, pericardial effusion, lymphadenopathy, cavitation, pulmonary emphysema, and pneumothorax have been noted (11, 17). Additionally, a PET/CT study indicated that pulmonary lesions often exhibit high 18F-FDG uptake, with potential involvement of lymph nodes (32).


Figure 1. Patchy Ground-Glass Opacity Pattern: A 43-year-old woman with a history of close contact and presenting with fever. A scan taken on the second day of illness revealed patchy, pure ground-glass opacity in both lower lobes.

In the early stages of the outbreak, elderly patients were predominantly affected, and pediatric cases were relatively rare, leading to the belief that children were less susceptible to COVID-19. However, with the emergence of familial clusters, COVID-19 cases in children became more apparent. Li et al. (22) reviewed chest CT scans of five pediatric patients and observed similar, though more subdued, lung abnormalities (patchy GGO) compared to adults. Xia et al. (31) studied 20 pediatric inpatients, finding radiological features such as consolidation with surrounding halo signs (50%), GGO (60%), fine mesh shadows (20%), and tiny nodules (15%). Consolidation with a surrounding halo sign was more common in children relative to adults, suggesting it may be a characteristic radiological finding in pediatric cases. Liu et al. (33) examined 15 pregnant women with COVID-19 pneumonia and found that pregnancy and childbirth did not exacerbate the severity of symptoms or alter chest CT features. While chest CT can enhance the sensitivity of COVID-19 diagnosis, it is essential to minimize

radiation exposure, particularly for children and pregnant women. Chest X-ray may serve as an alternative imaging modality, especially for serial monitoring, as noted in a case report from the United States (39). Ultrasound imaging is another viable alternative for chest imaging, as demonstrated in a case report from Italy (41). For CT scans, utilizing low radiation dose protocols is recommended to reduce radiation exposure (42).

Monitoring Covid-19 Using Radiology:

Chest computed tomography (CT) plays a crucial role in assessing the severity of COVID-19 and guiding clinical management. Huang et al. (2) reported that patients with severe COVID-19 upon admission typically exhibited bilateral, multiple lobular, and subsegmental consolidations on chest CT, whereas mild cases predominantly displayed bilateral ground-glass opacifications (GGO) and subsegmental consolidations. Numerous radiological studies (6, 11, 18, 19, 23, 28, 35) have explored the temporal evolution of imaging findings throughout different stages of the disease. Song et al. (11) observed that an increase in consolidative opacities was associated with disease progression in COVID-19. Shi et al. (6) categorized patients based on the interval between symptom onset and their first CT scan into four groups: group 1 (scans performed before symptom onset), group 2 (scans ≤ 7 days after symptom onset), group 3 (>7 to 14 days), and group 4 (>14 to 21 days). Their analysis revealed that the predominant lesions in group 1 were unilateral and multifocal GGO, which evolved rapidly to bilateral and diffuse GGO in group 2. In groups 3 and 4, there was a noticeable decrease in GGO prevalence, with consolidation and mixed patterns becoming more frequent (**Figure 2**).

Figure 2. Series of CT Scans in a 66-Year-Old Man with COVID-19 Pneumonia: A, B: Scans taken on day 2 of illness revealed ground-glass opacity with intralobular septal thickening (crazy-paving pattern) in the posterior segment of the right upper lobe. C, D: Scans on day 8 showed an increase in consolidative opacities, with newly developed patchy ground-glass opacity in the left lower lobe. E, F: Scans on day 13 displayed resolution of abnormalities, with pure ground-glass opacity remaining in the posterior segment of the right upper lobe and the posterior basal segment of the left lower lobe.

Pan et al. (18) conducted a longitudinal follow-up study to examine changes in radiological findings between initial and follow-up CT scans taken at 3-14 day intervals. They found that 85.7% of patients exhibited progression, with CT findings showing increased number and size of consolidations, enlarged fibrous stripes, and an increase in nodules. Pan et al. (19) further explored CT changes over four stages with 4-day intervals, noting that early-stage scans primarily showed GGO with fewer affected lobes. Over time, there was an increase in the number of involved lobes, the appearance of a crazy-paving pattern, and consolidation in most patients. They concluded that lung abnormalities on CT peaked around day 10 after symptom onset, with 75% of patients in stage 4 (≥ 14 days) showing improvement, including reduced lobar involvement and resolution of the crazy-paving pattern and consolidation. Additionally, another longitudinal study (35) analyzed serial CT findings in 90 patients over time, demonstrating that lung abnormalities were most severe between days 6-11 of illness. Early follow-up CT scans typically revealed increased lobar involvement, mixed GGO patterns, consolidative opacities, and pleural effusion due to disease progression. Subsequent follow-up CT scans showed resolution of GGO and the emergence of fibrosis as the disease progressed towards recovery (23, 28).

Conclusion

The role of radiology in the management of COVID-19 has proven indispensable, particularly in the context of early detection and ongoing monitoring. Computed tomography (CT) has emerged as a pivotal tool in diagnosing COVID-19 due to its superior sensitivity in detecting lung abnormalities compared to other modalities. The ability of CT to identify bilateral ground-glass opacities, consolidations, and other characteristic patterns makes it a critical component in assessing the severity and progression of the disease. Studies have demonstrated that CT not only surpasses RT-PCR in sensitivity but also provides valuable insights into disease dynamics, aiding in effective clinical decision-making. Chest X-ray (CXR) serves as a cost-effective and readily available preliminary imaging tool, especially useful in emergency settings. Although it lacks the sensitivity of CT and may miss early or subtle abnormalities, CXR remains integral for triaging patients and guiding initial management. Its lower radiation dose compared to CT also makes it a preferred choice for initial screening, particularly in resource-limited settings. Ultrasound imaging, while not as widely utilized for COVID-19 diagnosis, has shown promise in specific clinical scenarios, such as bedside evaluations of critically ill patients or pregnant women. The absence of ionizing radiation and the ability to perform real-time assessments are notable advantages of ultrasound, though it is limited by its inability to comprehensively evaluate lung abnormalities compared to CT. The integration of these radiological techniques enhances diagnostic accuracy and patient management. CT's detailed imaging complements CXR's initial assessment, and ultrasound provides supplementary information in unique clinical contexts. Ongoing research and technological advancements continue to refine these techniques, aiming to improve their effectiveness and safety. As the COVID-19 pandemic evolves, the collaborative use of CXR, CT, and ultrasound will remain vital in optimizing patient care and informing public health strategies.

References

- Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. *The Lancet*, 395(10223), 507-513. [https://doi.org/10.1016/S0140-6736\(20\)30211-7](https://doi.org/10.1016/S0140-6736(20)30211-7)
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The Lancet*, 395(10223), 497-506. [https://doi.org/10.1016/S0140-6736\(20\)30183-5](https://doi.org/10.1016/S0140-6736(20)30183-5)
- Ji, W., Wang, W., Zhao, X., Zai, J., & Li, X. (2020). Cross-species transmission of the newly identified coronavirus 2019-nCoV. *Journal of Medical Virology*, 92(4), 433-440. <https://doi.org/10.1002/jmv.25682>
- Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. *Science China Life Sciences*. <https://doi.org/10.1007/s11427-020-1637-5>
- Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W. S., Tsui, H.-W., Lo, S. K., Chan, K. H., Poon, V. K.-M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. *The Lancet*, 395(10223), 514-523. [https://doi.org/10.1016/S0140-6736\(20\)30154-9](https://doi.org/10.1016/S0140-6736(20)30154-9)
- Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. *The Lancet Infectious Diseases*, 20(4), 425-434. [https://doi.org/10.1016/S1473-3099\(20\)30255-0](https://doi.org/10.1016/S1473-3099(20)30255-0)
- Kanne, J. P. (2020). Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist. *Radiology*, 295(1), 16-17. <https://doi.org/10.1148/radiol.2020200129>
- Pan, Y., & Guan, H. (2020). Imaging changes in patients with 2019-nCoV. *European Radiology*. <https://doi.org/10.1007/s00330-020-06713-z>
- Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., & Liu, J. (2020). Chest CT for typical 2019-nCoV pneumonia: Relationship to negative RT-PCR testing. *Radiology*. <https://doi.org/10.1148/radiol.2020200343>
- Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020). Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. *Radiology*. <https://doi.org/10.1148/radiol.2020200432>
- Song, F., Shi, N., Shan, F., Zhang, Z., Shen, J., Lu, H., Ling, Y., Jiang, Y., & Shi, Y. (2020). Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. *Radiology*, 295(1), 210-217. <https://doi.org/10.1148/radiol.2020200274>
- Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & Xia, L. (2020). Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. *Radiology*. <https://doi.org/10.1148/radiol.2020200642>

13. Peiris, J. S. M., Chu, C. M., Cheng, V. C. C., Chan, K. S., Hung, I. F. N., Poon, L. L. M., Law, K. I., Tang, B. S. F., Hon, T. Y., Chan, C. S., Chan, K. H., Ng, J. S. C., Zheng, B. J., Ng, W. L., Lai, R. W. M., Guan, Y., & Yuen, K. Y. (2003). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. *The Lancet*, 361(9371), 1767-1772. [https://doi.org/10.1016/S0140-6736\(03\)13412-5](https://doi.org/10.1016/S0140-6736(03)13412-5)
14. Hui, D. S. C., & Zumla, A. (2019). Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. *Infectious Diseases Clinics of North America*, 33(4), 869-889. <https://doi.org/10.1016/j.idc.2019.08.003>
15. Huang, P., Liu, T., Huang, L., Liu, H., Lei, M., Xu, W., Hu, X., Chen, J., & Liu, B. (2020). Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. *Radiology*, 295(1), 22-23. <https://doi.org/10.1148/radiol.2020200157>
16. Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., Cui, J., Xu, W., Yang, Y., Fayaad, Z. A., Jacobi, A., Li, K., Li, S., & Shan, H. (2020). CT imaging features of 2019 novel coronavirus (2019-nCoV). *Radiology*, 295(1), 202-207. <https://doi.org/10.1148/radiol.2020200230>
17. Xu, X., Yu, C., Qu, J., Zhang, L., Jiang, S., Huang, D., Chen, B., Zhang, Z., Guan, W., Ling, Z., Jiang, R., Hu, T., Ding, Y., Lin, L., Gan, Q., Luo, L., Tang, X., & Liu, J. (2020). Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. *European Journal of Nuclear Medicine and Molecular Imaging*, 47(4), 1275-1280. <https://doi.org/10.1007/s00259-020-04729-8>
18. Pan, Y., Guan, H., Zhou, S., Wang, Y., Li, Q., Zhu, T., Hu, Q., & Xia, L. (2020). Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): A study of 63 patients in Wuhan, China. *European Radiology*. <https://doi.org/10.1007/s00330-020-06731-x>
19. Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R. L., Yang, L., & Zheng, C. (2020). Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. *Radiology*. <https://doi.org/10.1148/radiol.2020200370>
20. Yoon, S. H., Lee, K. H., Kim, J. Y., Lee, Y. K., Ko, H., Kim, K. H., Park, C. M., & Kim, Y. H. (2020). Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID-19): Analysis of nine patients treated in Korea. *Korean Journal of Radiology*, 21(4), 494-500. <https://doi.org/10.3348/kjr.2020.0138>
21. Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayaad, Z. A., Zhang, N., Diao, K., Lin, B., Zhu, X., Li, K., Li, S., Shan, H., Jacobi, A., & Chung, M. (2020). Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection. *Radiology*. <https://doi.org/10.1148/radiol.2020200463>
22. Li, W., Cui, H., Li, K., Fang, Y., & Li, S. (2020). Chest computed tomography in children with COVID-19 respiratory infection. *Pediatric Radiology*. <https://doi.org/10.1007/s00247-020-04656-7>
23. Xu, Y. H., Dong, J. H., An, W. M., Lv, X. Y., Yin, X. P., Zhang, J. Z., Dong, L., Ma, X., Zhang, H. J., & Gao, B. L. (2020). Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. *Journal of Infection*, 80(4), 394-400. <https://doi.org/10.1016/j.jinf.2020.02.037>
24. Yang, W., Cao, Q., Qin, L., Wang, X., Cheng, Z., Pan, A., Dai, J., Sun, Q., Zhao, F., Qu, J., & Yan, F. (2020). Clinical characteristics and imaging

manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. *Journal of Infection*, 80(4), 388-393. <https://doi.org/10.1016/j.jinf.2020.02.016>

25. Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., Ma, H., Chen, W., Lin, Y., Zheng, Y., Wang, J., Hu, Z., Yi, Y., & Shen, H. (2020). Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. *Science China Life Sciences*. <https://doi.org/10.1007/s11427-020-1661-4>

26. Cheng, Z., Lu, Y., Cao, Q., Qin, L., Pan, Z., Yan, F., & Yang, W. (2020). Clinical features and chest CT manifestations of Coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China. *AJR American Journal of Roentgenology*. <https://doi.org/10.2214/AJR.20.23271>

27. Xiong, Y., Sun, D., Liu, Y., Fan, Y., Zhao, L., Li, X., & Zhu, W. (2020). Clinical and high-resolution CT features of the COVID-19 infection: Comparison of the initial and follow-up changes. *Investigative Radiology*. <https://doi.org/10.1097/RLI.0000000000000674>

28. Li, Y., & Xia, L. (2020). Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management. *AJR American Journal of Roentgenology*. <https://doi.org/10.2214/AJR.20.22954>

29. Zhou, S., Wang, Y., Zhu, T., & Xia, L. (2020). CT features of Coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. *AJR American Journal of Roentgenology*, 215(1), 1-8. <https://doi.org/10.2214/AJR.20.22975>

30. Han, R., Huang, L., Jiang, H., Dong, J., Peng, H., & Zhang, D. (2020). Early clinical and CT manifestations of Coronavirus disease 2019 (COVID-19) pneumonia. *AJR American Journal of Roentgenology*, 215(2), 1-6. <https://doi.org/10.2214/AJR.20.22961>

31. Xia, W., Shao, J., Guo, Y., Peng, X., Li, Z., & Hu, D. (2020). Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. *Pediatric Pulmonology*. <https://doi.org/10.1002/ppul.24718>

32. Qin, C., Liu, F., Yen, T. C., & Lan, X. (2020). (18)F-FDG PET/CT findings of COVID-19: A series of four highly suspected cases. *European Journal of Nuclear Medicine and Molecular Imaging*, 47(5), 1281-1286. <https://doi.org/10.1007/s00259-020-04719-2>

33. Liu, D., Li, L., Wu, X., Zheng, D., Wang, J., Yang, L., & Zheng, C. (2020). Pregnancy and perinatal outcomes of women with Coronavirus disease (COVID-19) pneumonia: A preliminary analysis. *AJR American Journal of Roentgenology*, 215(1), 1-6. <https://doi.org/10.2214/AJR.20.23639>

34. Zhao, W., Zhong, Z., Xie, X., Yu, Q., & Liu, J. (2020). Relation between chest CT findings and clinical conditions of Coronavirus disease (COVID-19) pneumonia: A multicenter study. *AJR American Journal of Roentgenology*, 215(1), 1-6. <https://doi.org/10.2214/AJR.20.22952>

35. Wang, Y., Dong, C., Hu, Y., Li, C., Ren, Q., Zhang, X., Shi, H., & Zhou, M. (2020). Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: A longitudinal study. *Radiology*. <https://doi.org/10.1148/radiol.2020200843>

36. Dai, W. C., Zhang, H. W., Yu, J., Xu, H. J., Chen, H., Luo, S. P., Zhang, H., Liang, L. H., Wu, L., Lei, Y., & Lin, F. (2020). CT imaging and differential diagnosis of COVID-19. *Canadian Association of Radiologists Journal*. <https://doi.org/10.1177/0846537120913033>

37. Franquet, T. (2011). Imaging of pulmonary viral pneumonia. *Radiology*, 260(1), 18-39. <https://doi.org/10.1148/radiol.2601100453>
38. Hansell, D. M., Bankier, A. A., MacMahon, H., McLoud, T. C., Müller, N. L., & Remy, J. (2008). Fleischner Society: Glossary of terms for thoracic imaging. *Radiology*, 246(3), 697-722. <https://doi.org/10.1148/radiol.2462070712>
39. Holshue, M. L., DeBolt, C., Lindquist, S., Lo, Y. C., Wiesman, J., Bruce, H., Spitters, C., Erickson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S. I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M. A., Weldon, W. C., Biggs, H. M., Uyeki, T. M., & Pillai, S. K. (2020). First case of 2019 novel coronavirus in the United States. *New England Journal of Medicine*, 382(10), 929-936. <https://doi.org/10.1056/NEJMoa2001191>
40. Reali, F., Sferrazzza Papa, G. F., Carlucci, P., Fracasso, P., Di Marco, F., Mandelli, M., Soldi, S., Riva, E., Centanni, S. (2014). Can lung ultrasound replace chest radiography for the diagnosis of pneumonia in hospitalized children? *Respiration*, 88(2), 112-115. <https://doi.org/10.1159/000365377>
41. Buonsenso, D., Piano, A., Raffaelli, F., Bonadìa, N., De Gaetano Donati, K., Franceschi, F. (2020). Point-of-care lung ultrasound findings in novel coronavirus disease-19 pneumonia: A case report and potential applications during COVID-19 outbreak. *European Review for Medical and Pharmacological Sciences*, 24(15), 2776-2780. https://doi.org/10.26355/eurrev_202008_23093
42. Kalra, M. K., Maher, M. M., Rizzo, S., Kanarek, D., & Shepard, J. A. (2004). Radiation exposure from chest CT: Issues and strategies. *Journal of Korean Medical Science*, 19(2), 159-166. <https://doi.org/10.3346/jkms.2004.19.2.159>

دور الأشعة في الكشف المبكر: تقييم تقنيات جديدة للوقاية من الأمراض-كوفيد 19 دراسة حالة

الملخص:

المقدمة: أدى انتشار COVID-19 ، الذي تسببت فيه الفيروس التاجي الجديد SARS-CoV-2 ، إلى استخدام طرق تشخيصية متعددة لإدارة المرض. على الرغم من أن اختبار تفاعل البوليميراز المتسلسل العكسي في الوقت الحقيقي (RT-PCR) يعتبر المعيار الذهبي لتشخيص COVID-19 ، فإن محدودياته من حيث الحساسية والتوافر قد سلطت الضوء على دور التقنيات الإشعاعية.

الهدف: تهدف هذه الدراسة إلى تقييم فعالية تقنيات الأشعة المختلفة—أشعة الصدر (CXR) ، التصوير المقطعي المحوسب (CT) ، وتصوير الموجات فوق الصوتية—في الكشف المبكر وإدارة COVID-19.

الطرق: تم إجراء مراجعة للأدبيات الحالية ودراسات الحالة لتقدير الفائد التشخيصية، والحساسية، والقيود المتعلقة بـ CXR ، CT ، وتصوير الموجات فوق الصوتية في COVID-19. وتم تنفيذ تحليل مقارن استناداً إلى خصائص التصوير، والدقة التشخيصية، والنتائج السريرية.

النتائج: تم تحديد CT كأكثر الوسائل حساسية للكشف عن COVID-19 ، حيث يظهر حساسية عالية في تحديد الشذوذات الرئوية وتقدم المرض. توفر CXR ، على الرغم من فعاليتها من حيث التكلفة وتوافرها الواسع، حساسية أقل وتكون أقل فعالية في المراحل المبكرة للمرض. يوفر التصوير بالموجات فوق الصوتية، على الرغم من كونه أقل شيوعاً، معلومات إضافية مفيدة ويكون مفيداً لتقديرات السرير.

الخاتمة: يعتبر CT أمراً حيوياً لتشخيص ومراقبة COVID-19 نظراً لحساسيته العالية وقدراته التفصيلية في التصوير. تظل CXR ذات قيمة للتوصيف الأولية، بينما يُعد التصوير بالموجات فوق الصوتية أداة ناشئة لسيناريوهات المحددة. يعزز دمج هذه الأساليب الدقة التشخيصية وإدارة المرضى.

الكلمات الرئيسية: COVID-19 ، الأشعة، أشعة الصدر، التصوير المقطعي المحوسب، تصوير الموجات فوق الصوتية، تقنيات التشخيص.