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Abstract---Background: Acute kidney injury (AKI) is a critical clinical 

syndrome characterized by a rapid decline in renal function, with 
various precipitating factors including heart failure, sepsis, and 

nephrotoxic drugs. The prevalence in hospitalized patients is 

concerning, particularly among those with COVID-19, where AKI 

incidence has reached approximately 36.6%. The current diagnostic 
criteria primarily rely on serum creatinine (SCR) levels and urine 

output (UO), which often fail to identify AKI early enough for effective 

intervention. Aim: This review aims to consolidate current knowledge 
on AKI, highlighting its diagnosis, causes, and the latest treatment 

approaches, with a focus on emerging technologies that improve early 
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detection. Methods: The article reviews literature on AKI diagnostic 

criteria, imaging techniques, biomarkers, and the application of 

machine learning algorithms in predicting AKI. Emphasis is placed on 
novel biomarkers and biosensors that enhance early detection, as well 

as machine learning models that synthesize data from electronic 

health records. Results: Advances in biomarkers like NGAL and KIM-
1, alongside biosensors, offer improved sensitivity for early AKI 

detection. Additionally, machine learning models have demonstrated 

high predictive accuracy, achieving area under the receiver operating 
characteristic curve (AUC) values exceeding 0.9 across various clinical 

contexts. Conclusion: The integration of novel biomarkers, 

biosensors, and machine learning approaches can revolutionize AKI 
diagnosis and management, significantly improving patient outcomes. 

 

Keywords---Acute kidney injury, biomarkers, machine learning, 

diagnosis, treatment, nephrology. 
 

 

Introduction  
 

Acute kidney injury (AKI) represents a prevalent clinical syndrome marked by an 

abrupt impairment of renal function. The kidneys serve as critical metabolic 
organs within the human body. Various factors can precipitate AKI, including 

heart failure, sepsis, hemorrhage, nephrotoxic medications, and COVID-19, 

among others [1-8]. For instance, Hirsh et al. documented a significant prevalence 
of AKI among hospitalized COVID-19 patients, reported at 36.6% [9]. It is 

estimated that 20% of individuals admitted to hospitals progress to AKI, with 10% 

of those requiring renal replacement therapy (RRT). The mortality rate for patients 

undergoing RRT can reach 50%. Moreover, individuals who recover from AKI face 
an increased risk of chronic kidney disease and potentially end-stage renal 

disease [10-13]. Treatment alternatives for AKI are notably limited. Early 

identification of AKI, coupled with appropriate preventive interventions, can 
substantially enhance recovery outcomes. Presently, the diagnostic criteria for 

AKI rely on serum creatinine (SCR) levels and urine output (UO), as outlined in 

the 2012 guidelines from Kidney Disease: Improving Global Outcomes [14]. 
However, both SCR and UO exhibit non-specificity and may be delayed in the 

early identification of AKI. For example, SCR levels can be influenced by various 

non-renal factors, such as elevated muscle mass or the consumption of certain 
medications, including trimethoprim and cimetidine [15]. Additionally, only 

consistent oliguria serves as a reliable indicator of acute kidney injury, which 

complicates timely AKI diagnosis based on UO alone [16]. Furthermore, 

alterations in SCR and UO occur with a significant delay relative to critical 
structural changes in the kidneys associated with AKI. By the time SCR and UO 

exhibit substantial changes, renal function is often severely compromised, leading 

to missed opportunities for timely intervention in AKI treatment [17, 18]. 
 

Imaging modalities, including ultrasound and computed tomography, can 

evaluate renal morphology and offer insights into kidney function, perfusion, and 
potential AKI etiology [19, 20]. Nevertheless, these imaging techniques are 

accompanied by drawbacks, such as low resolution, the risk of radiation 
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exposure, and potential nephrotoxic effects from contrast agents, rendering them 
less suitable for early AKI diagnosis. 

 

In recent years, advancements in information technology, nanotechnology, and 
biomedicine have significantly enhanced early AKI diagnosis [21, 22]. On one 

hand, novel functions of artificial intelligence in biomedicine are being 

continuously explored [23-25]. Specifically, machine learning, a subset of artificial 

intelligence, has proven effective in predicting AKI by constructing predictive 
models through the analysis of extensive datasets related to medical treatments 

and patient outcomes [26]. On the other hand, the comprehensive investigation of 

AKI pathology has led to the discovery of increasingly effective early biomarkers, 
such as neutrophil gelatinase-associated lipoprotein (NGAL), γ-glutamyl 

transpeptidase (GGT), kidney injury molecule-1 (KIM-1), microRNA (miRNA), and 

reactive oxygen and nitrogen species (RONS) [27-30]. The concentrations of these 
biomarkers in renal tissues or body fluids (such as blood or urine) significantly 

rise prior to the manifestation of renal organic and functional diseases. 

Consequently, these biomarkers provide greater sensitivity for early AKI detection 
compared to SCR and UO. However, as clinical demands evolve, traditional 

detection techniques (such as ELISA and PCR) for these novel biomarkers are 

becoming increasingly impractical. In response, a variety of biosensors, including 

optical probes, electrochemical probes, and surface plasmon resonance (SPR) 
probes, have been developed using advanced nanotechnology, DNA technology, 

and synthesis techniques, enabling high-sensitivity and selective detection of 

these markers. This review elucidates the pivotal roles of RONS and other 
biomarkers in the early progression of AKI and systematically summarizes the 

applications of emerging detection technologies for RONS, NGAL, GGT, KIM-1, 

and miRNA in early AKI detection. Furthermore, we comprehensively summarize 
the application of machine learning in AKI prediction algorithms and specific 

contexts. Ultimately, we propose valuable strategies for advancing these 

technologies in clinical settings. 
 

Machine Learning 

 

Currently, the early diagnosis of acute kidney injury (AKI) poses significant 
challenges. Even seasoned clinicians cannot assure the accuracy of AKI diagnoses 

due to the complex and varied changes associated with the condition across 

different patients. Machine learning, which centers on algorithms that emulate 
human learning behaviors, holds great potential for enhancing diagnostic 

accuracy in disease detection [31-33]. Theoretically, with an adequate supply of 

biomedical and patient datasets, machine learning can reliably diagnose early AKI 
by leveraging "ground truth" data, where the relationships between data points 

and outcomes are established. However, data collection remains a critical 

bottleneck for machine learning applications [34]. 
 

On one hand, the effectiveness of machine learning training is constrained by 

dataset size. Small datasets or simplistic features may lead to overfitting, while 
overly large datasets with excessive features can significantly increase the 

training burden and computational complexity due to potential linear correlations 

among certain features. On the other hand, the data collection approach is 

contingent upon specific circumstances. A careful decision must be made 
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regarding whether to utilize manual extraction of data features, weighing the 

labeling costs against the algorithm's accuracy. Fortunately, the widespread 

implementation of electronic health records (EHR) has alleviated some data 
collection issues, leading to a substantial impact of machine learning on AKI 

prediction and patient monitoring. 

 
Numerous machine learning techniques have been developed for AKI prediction, 

with the Area Under the Receiver Operating Characteristic Curve (AUC) serving as 

a crucial metric. AUC quantifies the likelihood that a machine learning algorithm 
can prioritize positive samples (AKI patients) over negative samples (non-AKI 

patients) [35]. AUC is statistically consistent and offers greater discrimination 

than other performance metrics when evaluating classification problems. While it 
is challenging to definitively categorize an algorithm as good or bad due to 

variability in datasets and processing methods, AUC provides a reasonable 

benchmark for assessing predictive performance. Over the past five years, 

machine learning has advanced significantly in predicting AKI, with some models 
achieving exceptional accuracy, reflected in AUC values exceeding 0.9. Depending 

on the model's application scope, these machine learning methods can be 

classified into categories such as preoperative AKI risk prediction, AKI prediction 
during surgery, real-time postoperative AKI prediction, intensive care unit AKI 

prediction, and AKI prediction across all hospital wards. 

 
Preoperative AKI Risk Prediction 

 

Preoperative data encompasses various factors associated with the onset of acute 
kidney injury (AKI), including demographic characteristics (such as age, race, and 

sex), medical history and acuity (e.g., Charlson comorbidity index, smoking 

habits, and heart failure), physiological measurements (e.g., blood pressure, 

pulse, and heart rate), and the type of anesthesia used. Machine learning can 
effectively synthesize the relationships between preoperative data and AKI, 

enabling precise predictions through appropriate algorithms. For instance, 

Bihorac et al. developed an automated analytical framework employing 
generalized additive models and random forest techniques for the preoperative 

risk algorithm (MySurgeryRisk) within a single-center cohort of patients 

undergoing major surgeries [47]. Utilizing the University of Florida Health 
Integrated Data Repository as an Honest Broker, they established a perioperative 

longitudinal cohort that integrated electronic health records (EHR) with public 

datasets. The dataset consisted of 285 basic features, a sample size of 51,457 
patients, and a maximum of 10,000 feature classifications. MySurgeryRisk 

assessed the risks of morbidity and mortality across eight postoperative 

complications, including AKI, and autonomously determined the optimal 

threshold to categorize patients into low-risk and high-risk AKI groups, achieving 
an AUC of 0.88 for AKI prediction. The MySurgeryRisk prediction interface was 

user-friendly; patients with risk scores exceeding the threshold were labeled as 

high risk, with the associated disease area highlighted in red, while lower-risk 
patients were marked in green. MySurgeryRisk has also been integrated as a key 

component of the intelligent perioperative platform, facilitating real-time clinical 

workflows for automated surgical risk prediction and AKI forecasting. 
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Incorporating preoperative variables closely associated with AKI can further 
enhance the accuracy of machine learning models. For example, preoperative 

compound hemodynamic parameters, such as pulmonary artery pulsatility index 

(PAPI) and right atrial pressure (RAP), are significantly correlated with the 
incidence of AKI following heart transplantation [48]. Recently, Guven et al. 

developed a logistic regression model within a cohort of 595 patients to assess the 

impact of preoperative PAPI and RAP on AKI prediction within 30 days post-heart 

transplantation [49]. Patient data were gathered from the hospital database, 
electronic records, chart reviews, and catheterization reports at the Erasmus 

Medical Center. The findings indicated that the AUC of the model improved from 

0.76 to 0.79 with the inclusion of preoperative PAPI and RAP variables. 
 

AKI Prediction During Surgery 

 
The predictive accuracy for acute kidney injury (AKI) can be significantly 

enhanced by incorporating intraoperative data into machine learning algorithms. 

Recently, Xue et al. developed a model that utilized preoperative, intraoperative, 
and composite data from 111,888 operations performed at a single center to 

forecast the occurrence of postoperative AKI. They employed various methods, 

including logistic regression (LR), support vector machine (SVM), random forest 

(RF), gradient boosting decision tree (GBDT), and deep neural network (DNN) 
techniques [50]. For the RF model, the optimal hyperparameters were determined 

to be 300 base learners, a maximum depth of 200, and a minimum of 4 samples 

required for splits. For the DNN, a learning rate of 0.001 and a batch size of 2048 
were selected. Data elements were extracted from preoperative assessments and 

anesthesia records, while target outcomes related to AKI were sourced from 

electronic health records (EHR). Missing preoperative data were imputed using a 
dummy indication technique, substituting missing values with zeros, while 

intraoperative variables underwent data-level or feature-level imputation. 

 
Among the various models assessed, the GBDT model utilizing composite data 

demonstrated the highest predictive accuracy, achieving an AUC of 0.848. 

Interestingly, the model relying solely on preoperative data outperformed the 

model that utilized only intraoperative data, with the combined data model 
yielding the best results. However, the intraoperative datasets for these models 

lacked certain critical features, such as detailed descriptions of the operation, 

timing, blood transfusion data, urine output, and medication administered. 
 

In a complementary study, Tseng et al. explored the impact of these intraoperative 

data on predictive performance for AKI in the first week following heart surgery. 
They established models using both preoperative and intraoperative data, 

employing five individual methods: logistic regression, decision tree, SVM, RF, 

and extreme gradient boosting (XGBoost), as well as an integrated approach 
combining RF and XGBoost within a single-center cohort of 671 patients. The 

intraoperative time series data were collected within 240 minutes after the 

commencement of surgery, deliberately excluding the first 10 minutes (to avoid 
noise interference) and the 50-100 minute window (during cardiopulmonary 

bypass). Principal component analysis was then utilized to reduce the 

dimensionality of the dataset. 
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Among the individual models, the RF approach achieved the highest AUC of 

0.839, while the decision tree model exhibited the lowest performance with an 

AUC of 0.781. Notably, the integrated model (RF + XGBoost) demonstrated 
improved predictive performance over the individual models with an AUC of 

0.843. Additionally, key intraoperative factors—including urine volume, 

intravenous fluid administration, blood transfusion products, and hemodynamic 
parameters—were identified as significant contributors to AKI risk, which had 

previously been overlooked by traditional risk scoring models, as indicated by 

SHAP (SHapley Additive exPlanations) diagrams. 
 

Postoperative AKI Real-Time Prediction 

 
Patients are typically surrounded by monitoring instruments for 24 hours post-

surgery, generating a significant volume of data that presents opportunities for 

machine learning to monitor patient dynamics and issue timely AKI warnings 

based on this data. For instance, Rank et al. developed a recurrent neural 
network (RNN) model using data from a single-center cohort of 15,564 cases to 

predict AKI in real time within the first seven days following cardiothoracic 

surgery. Their study involved a retrospective analysis of EHR time series data 
collected at a tertiary care center specializing in cardiovascular diseases. The 

researchers selected 96 routinely collected clinical parameters, which included 

both static and dynamic features as well as medication data. 
 

In normal ward settings, AKI was defined solely by the creatinine criterion. 

However, in the recovery room or intensive care unit (ICU), both AKI criteria—
creatinine levels and urine output—were utilized to enhance prediction accuracy. 

The RNN model provided predictions every 15 minutes, enabling continuous 

monitoring of patient conditions and facilitating timely interventions in the event 

of potential AKI development. The ability to leverage real-time data through 
machine learning not only improves the accuracy of AKI predictions but also 

enhances clinical decision-making by allowing healthcare providers to respond 

swiftly to changes in patient status. This approach exemplifies the growing role of 
artificial intelligence in improving postoperative care and patient outcomes, 

ultimately leading to more effective management of complications such as AKI. 

 
Intensive Care Unit AKI Prediction 

 

Acute Kidney Injury (AKI) is a prevalent concern in Intensive Care Units (ICUs), 
where patients undergo constant monitoring, generating substantial data streams 

that are ideal for machine learning applications. Recently, Chiofolo et al. 

developed an AKI prediction model using the random forest method based on data 

from a single-center cohort to monitor AKI development in the ICU . Their data 
were sourced from the Multidisciplinary Epidemiology and Translational Research 

in Intensive Care Data Mart, employing a validated AKI detection tool known as 

the AKI "sniffer," which automatically identifies AKI based on the AKIN definition. 
The random forest model comprised 200 trees and utilized 19 distinct elements, 

reaching a sample size of 6,530. The model achieved an impressive AUC of 0.88, 

enabling AKI detection more than six hours earlier than serum creatinine (SCR) 
levels in 30% of patients, and in 53% of those with stages 2-3 AKI. Moreover, this 
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model facilitated dynamic monitoring, providing near real-time information on AKI 
status in the ICU. 

 

Flechet et al. further evaluated AKI diagnosis accuracy by comparing the random 
forest analysis model with Neutrophil Gelatinase-Associated Lipocalin (NGAL) 

measurements from arterial blood samples taken upon ICU admission. Using 

logistic regression, they assessed NGAL's predictive performance alongside the 

admission model. The combination of NGAL and admission information 
significantly enhanced the AUC of the prediction model; however, the decision 

curve revealed that this improvement was only applicable to high-risk AKI 

patients. The additional costs associated with measuring NGAL rendered the 
predictive benefit clinically insignificant in these cases, particularly in the 

absence of effective treatment options. 

 
In a similar vein, Dong et al. reported on an interpretable AKI prediction model 

designed for pediatric ICUs. This model was based on an age-dependent ensemble 

machine learning approach that utilizes multiple simpler "weak classifiers." The 
model incorporated four types of data elements—vital signs, laboratory values, 

medication history, and ventilation parameters—culminating in 250 candidate 

predictors. It accurately predicted moderate to severe AKI (AUC = 0.89) up to 48 

hours before its onset, using EHR data from 16,863 pediatric ICU patients aged 1 
month to 21 years. Notably, the model also provided actionable insights regarding 

potential interventions, such as recommended examination levels and dosages for 

aminoglycoside medications, enabling timely clinical responses to mitigate AKI 
risk. 

 

AKI Prediction in All Hospital Wards 
 

The application of machine learning has expanded beyond ICUs to emergency 

departments and general hospital wards for AKI prediction. For example, Tomasev 
et al. developed a machine learning method utilizing the U.S. Department of 

Veterans Affairs clinical database, encompassing data from 1,239 medical 

institutions with over 700,000 patients. The data, deidentified and transferred to 

DeepMind, were not subjected to missing numerical value imputation. The best-
performing recurrent neural network (RNN) architecture featured a cell size of 200 

units per layer across three layers, achieving an AUC of 0.92. Remarkably, this 

model predicted 55.8% of AKI cases accurately 48 hours in advance at critical 
points, with less than 3% of inpatients being alerted daily, making it suitable for 

low-cost but high-yield interventions. 

 
Koyner et al. developed another AKI prediction model based on Gradient Boosting 

Decision Trees (GBDT) for adult patients throughout the hospital. By accessing 

demographic, location, vital sign, laboratory value, intervention, medication, 
nursing documentation, and diagnostic order data through the Clinical Research 

Data Warehouse at the University of Chicago, the GBDT model effectively 

identified patients at risk of severe AKI or renal replacement therapy (RRT) 1-2 
days prior to SCR detection, with an AUC exceeding 0.9. Notably, GBDT models 

incorporating SCR parameters did not demonstrate superior accuracy for 

predicting severe AKI compared to those without SCR, indicating that SCR may 

not always serve as a reliable biomarker. 
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Furthermore, Sandokji et al. conducted a review of 8,473 EHRs for pediatric AKI 

diagnosis in patients under 18 years. Their logistic regression model, which 

employed a penalty level for selecting only ten variables, predicted the risk of AKI 
in pediatric patients 48 hours in advance, achieving high AUC values (0.76-0.81). 

While these machine learning models show promising results, they often function 

as black-box predictions, making it challenging for clinicians to interpret the 
outcomes. To address the need for transparency and interpretability in clinical 

applications of artificial intelligence, Lauritsen et al. developed the AKI Early 

Warning Score (XAI-EWS). This model consists of a temporal convolutional 
network (TCN) prediction component coupled with a deep Taylor decomposition 

(DTD) interpretation module. The TCN sequentially processes individual EHRs, 

providing predictions within a range of 0-100%. Meanwhile, the DTD module 
breaks down the TCN output concerning input variables, enhancing the 

understanding of predictions. The model was optimized to minimize cross-entropy 

loss using the Adam optimizer with a mini-batch size of 200, a learning rate of 

0.001, and a dropout rate of 10%. The AUC and precision-recall curve (PRC) of 
XAI-EWS outperformed traditional assessment scores, with AUC values ranging 

from 0.79 to 0.88 in the 24 hours leading up to AKI onset. XAI-EWS effectively 

communicated to clinicians the relevant EHR data that informed the prediction 
results from both a global and individual patient perspective [66]. 

 

How XAI-EWS Works 
 

The AKI Early Warning Score (XAI-EWS) is designed to enhance the 

interpretability and usability of machine learning models in predicting Acute 
Kidney Injury (AKI). Here’s a breakdown of its components and functionality: 

1. Model Architecture: 

o Temporal Convolutional Network (TCN): 

▪ The TCN component of XAI-EWS processes the electronic 
health records (EHRs) in a sequential manner. This allows 

the model to capture time-dependent patterns and trends in 

patient data, which is crucial for predicting AKI, as the 
condition often develops over time due to various 

physiological changes. 

▪ The TCN outputs a prediction score, representing the 
likelihood of an AKI event occurring within a specified 

timeframe. 

2. Input Data: 
o XAI-EWS utilizes a wide range of patient data collected from EHRs, 

which may include demographic information, vital signs, laboratory 

values, medication history, and other relevant clinical parameters. 

o The model can process both static (unchanging) and dynamic 
(changing over time) features, enabling it to make predictions based on 

the patient's clinical trajectory. 

3. Deep Taylor Decomposition (DTD): 
o Interpretation Module: 

▪ After the TCN generates a prediction, the DTD module 

interprets the prediction by breaking down the TCN output 
concerning the input features. This is achieved by 

decomposing the output into contributions from each input 
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variable, providing insight into which factors most 
influenced the prediction. 

▪ The DTD method helps identify and visualize the impact of 

specific clinical variables on the prediction score. This 
makes the model’s decision-making process more 

transparent and understandable for clinicians. 

4. Training and Optimization: 

o The XAI-EWS model is trained to optimize a loss function, typically 
cross-entropy loss, using the Adam optimizer. This involves adjusting 

the model parameters to minimize prediction errors based on the 

training dataset. 
o The model is trained with a mini-batch size of 200, a learning rate of 

0.001, and a dropout rate of 10% to prevent overfitting, ensuring that 

it generalizes well to unseen patient data. 
5. Performance Evaluation: 

o The performance of XAI-EWS is evaluated using metrics like the Area 

Under the Receiver Operating Characteristic Curve (AUC) and 
Precision-Recall Curve (PRC). High AUC values indicate that the model 

is effective in distinguishing between patients who will develop AKI and 

those who will not. 

o During evaluation, the AUC ranged from 0.79 to 0.88, demonstrating 
the model’s predictive capability in the 24 hours leading up to AKI 

onset. 

6. Clinical Utility: 
o The primary goal of XAI-EWS is to provide clinicians with actionable 

insights. By delivering understandable predictions along with 

explanations of the influencing factors, it empowers healthcare 
providers to make informed decisions and timely interventions to 

mitigate AKI risk. 

o The model outputs predictions within a range of 0-100%, indicating 
the probability of an AKI event occurring, which helps clinicians 

prioritize monitoring and management for at-risk patients. XAI-EWS 

combines advanced machine learning techniques with interpretability 

tools to enhance AKI prediction in clinical settings. By providing not 
only predictions but also clear explanations of how those predictions 

are derived, it aims to bridge the gap between complex AI models and 

clinical practice, thereby facilitating better patient management and 
outcomes. 

 

Conclusion 
 

Acute kidney injury (AKI) poses significant challenges for clinicians, particularly 

due to its insidious onset and the non-specificity of traditional diagnostic criteria. 
As the healthcare landscape evolves, the need for timely and accurate detection of 

AKI becomes paramount, particularly given the condition's association with high 

morbidity and mortality rates. Early diagnosis is crucial as it facilitates timely 
interventions that can prevent the progression to chronic kidney disease and 

potentially end-stage renal failure. The current reliance on serum creatinine (SCR) 

levels and urine output (UO) for AKI diagnosis is inadequate, as these metrics 

often fail to detect renal dysfunction in its earliest stages. The review emphasizes 
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the critical role of emerging biomarkers such as neutrophil gelatinase-associated 

lipoprotein (NGAL), kidney injury molecule-1 (KIM-1), and reactive oxygen and 

nitrogen species (RONS) in enhancing early detection. These biomarkers, detected 
through advanced biosensors, exhibit higher sensitivity and specificity compared 

to conventional methods, allowing for earlier intervention strategies. Furthermore, 

the integration of machine learning technologies into clinical practice presents a 
transformative approach to AKI prediction and management. Machine learning 

algorithms trained on extensive datasets derived from electronic health records 

(EHR) can identify risk factors and predict the likelihood of AKI with remarkable 
accuracy. As demonstrated in various studies, models that synthesize 

preoperative, intraoperative, and postoperative data have achieved AUC values 

exceeding 0.9, indicating their efficacy in clinical settings. Looking ahead, the 
incorporation of machine learning into clinical workflows can streamline AKI 

detection and risk stratification, leading to improved patient management. The 

ongoing evolution of biosensor technology, combined with machine learning 

advancements, holds promise for reshaping AKI diagnostics. However, addressing 
challenges related to data collection, model validation, and clinical 

implementation will be vital to fully realize the potential of these innovations in 

enhancing patient outcomes. As research continues to unfold, the integration of 
these technologies into routine clinical practice may ultimately transform AKI 

management and significantly reduce the associated healthcare burden. 
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 مراجعة محدثة -إصابة الكلى الحادة: التشخيص، الأسباب، وأحدث العلاجات 

 
 :الملخص

سريرية حرجة تتميز بانخفاض سريع في وظيفة الكلى، مع وجود عوامل مسببة متعددة بما في هي متلازمة   (AKI) الإصابة الحادة في الكلى :خلفية 

المصابين ب أولئك  بين  المستشفيات مقلق، خاصة  المرض ى في  بين  الحالة  انتشار هذه  إن  للكلى.  السامة  الإنتان، والأدوية  القلب،   فيروسذلك قصور 

COVID-19  حوالي الكلى  في  الحادة  الإصابة  حدوث  نسبة  بلغت  حيث  على 36.6،  أساس ي  بشكل  الحالية  التشخيص  معايير  تعتمد   .%

المصل في  الكرياتينين  البول  (SCR) مستويات  يكفي  (UO) وإنتاج  بما   
ً
مبكرا الكلى  في  الحادة  الإصابة  على  التعرف  في  تفشل  ما   

ً
غالبا والتي   ،

 .للتدخل الفعال

الضوء على تشخيصها، وأسبابها، وأحدث طرق  :الهدف الكلى، مع تسليط  الحادة في  الحالية حول الإصابة  المعرفة  إلى توحيد  المراجعة  تهدف هذه 

 .العلاج، مع التركيز على التقنيات الناشئة التي تحسن من الكشف المبكر

وتطبيق   :الطرق  الحيوية،  المؤشرات  وعوامل  التصوير،  وتقنيات  الكلى،  في  الحادة  للإصابة  التشخيص  معايير  حول  الأدبيات  المقال  يستعرض 

الكشف  تعزز  حيوية  استشعار  وأجهزة  التركيز على مؤشرات حيوية جديدة  يتم  الكلى.  في  الحادة  بالإصابة  التنبؤ  في  الآلي  التعلم  المبكر،    خوارزميات 

 .بالإضافة إلى نماذج التعلم الآلي التي تدمج البيانات من السجلات الصحية الإلكترونية

 إلى جنب مع أجهزة الاستشعار الحيوية، حساسية محسّنة للكشف  KIM-1و NGAL تقدم التطورات في مؤشرات حيوية مثل :النتائج 
ً
، جنبا

تنبؤية عالية، حيث حققت قيم منطقة تحت منحنى   الآلي دقة  التعلم  أثبتت نماذج  إلى ذلك،  الكلى. بالإضافة  الحادة في  التشغيل المبكر عن الإصابة 

 .عبر سياقات سريرية مختلفة 0.9تتجاوز  (AUC) الاستقبالي

الكلى   :الخلاصة في  الحادة  إلى ثورة في تشخيص الإصابة  الآلي  التعلم  استشعار حيوية، ونهج  أن يؤدي دمج مؤشرات حيوية جديدة، وأجهزة  يمكن 

 .وإدارتها، مما يحسن بشكل كبير من نتائج المرض ى

 .حيوية، التعلم الآلي، التشخيص، العلاج، طب الكلىالإصابة الحادة في الكلى، مؤشرات  :الكلمات الرئيسية

 
  


