

How to Cite:

Alotaibi, B. N., Alshamri, A. S., Alanazi, M. A., Alharbi, M. S. S., & Alsomali, O. H. (2019). Assessing the impact of health information technology on community health administration. *International Journal of Health Sciences*, 3(S1), 408–422.
<https://doi.org/10.53730/ijhs.v3nS1.15277>

Assessing the impact of health information technology on community health administration

Bader Naif Alotaibi

Emergency Medical Technician

Ahmed Saer Alshamri

KSA, National Guard Health Affairs

Mohammed Ayyat Alanazi

KSA, National Guard Health Affairs

Muteb Saeed Saud Alharbi

KSA, National Guard Health Affairs

Omar Hussain Alsomali

KSA, National Guard Health Affairs

Abstract--Background: Health Information Technology (HIT) plays a crucial role in patient care, especially in managing laboratory test results. Inadequate follow-up of these results is a significant patient safety concern globally. This systematic review aims to synthesize existing quantitative and qualitative research on the impact of HIT on test result management and patient engagement, highlighting the effectiveness of various HIT systems and identifying gaps in current practices. **Aim:** The review seeks to assess how HIT improves follow-up and management of test results, enhances patient engagement, and identifies challenges associated with its implementation.

Methods: A systematic review methodology was employed, incorporating 57 studies published primarily between 2006 and 2018. The studies included randomized controlled trials, observational studies, mixed-methods studies, and qualitative studies, focusing on HIT interventions such as electronic alerts, electronic health records (EHRs), and patient portals. **Results:** The review revealed that HIT systems, particularly electronic alerts and patient portals, significantly improve clinician awareness of test results and reduce missed follow-ups. However, the evidence quality varied, with many studies indicating an increased clinician workload due to alert fatigue and the

complexity of hybrid paper/electronic systems. **Conclusion:** While HIT has the potential to enhance test result management and patient engagement, its effectiveness is limited by integration challenges with clinical workflows and the need for sensitive communication in critical cases. Further research is needed to explore patient-managed health records and improve organizational practices.

Keywords--health information technology, test result management, patient engagement, electronic health records, systematic review.

Introduction

The findings from laboratory tests and medical imaging reports play a critical role in influencing clinical decision-making, aiding in the diagnosis, treatment, prevention, and overall management of patient care [1]. The World Alliance for Patient Safety has highlighted inadequate follow-up of test results as a significant global concern in patient care [2], and in 2017, the US Emergency Care Research Institute identified insufficient follow-up of test results as a major patient safety challenge [3]. Numerous healthcare professionals, recognizing the prevalence of poor test result management, have voiced concerns regarding systemic flaws in organizational follow-up practices within and across healthcare settings [4]. Various strategies have been proposed to enhance follow-up processes for test results, including leveraging health information technology (IT) for communicating results through automated notifications [2,5,6]. The adoption of IT has been complemented by efforts to create guidelines and recommendations for its effective implementation, continuous quality improvement, and comprehensive evaluation [7-12]. Additionally, emphasis has been placed on involving patients as active partners in efforts to improve safety in care delivery [13,14]. This is particularly significant in scenarios where failure to inform patients of their test results has been deemed legally indefensible in malpractice cases [15]. Electronic health records (EHRs) are considered essential for fostering greater patient engagement, as they enable patients to securely access their medical information through electronic patient portals. These portals not only grant access to personal health data but also support communication with healthcare providers [16]. There is substantial evidence indicating that although IT can help prevent medical errors, it can also introduce a distinct set of errors [17]. This issue is especially pertinent to test result management, where the methods of data collection, reporting, and presentation can have significant safety implications [18,19]. Despite an expanding body of evidence regarding the adoption of health IT systems [6], their effects on test result follow-up, management, and patient engagement remain largely unexplored and insufficiently understood [20,21]. This systematic review synthesizes quantitative and qualitative research on the use of health IT to engage patients, offering an overview of the current evidence on how health IT addresses test result management and follow-up, and identifying gaps and challenges highlighted by existing research.

Findings

A total of 57 studies were incorporated into the systematic review, with 53 (93%) published between 2006 and 2018. The earliest study dated back to 1999, and a noticeable increase in research occurred from 2006 onward. A significant portion of the studies (72%, n = 41) were conducted in the United States. The studies employed various research methodologies, including 7 randomized controlled trials (RCTs) (12%), 32 observational studies (56%), 12 mixed-methods studies (21%), and 6 qualitative studies (11%). The overall quality of the evidence was assessed as fair (n = 35) or good (n = 20), with only 2 studies deemed to be of poor quality.

Health IT Systems Utilized for Test Result Management and Follow-up

The literature identified a wide array of health IT systems used in clinical management and follow-up of test results, including:

- **Electronic alerts** (both interruptive and non-interruptive) that notify clinicians of abnormal or critical results [26–45].
- **Computerized provider order entry (CPOE) systems** with electronic result viewing capabilities [46,47], and clinical information systems where results are viewed electronically but orders are placed manually [48–50].
- **Electronic medical record (EMR)/electronic health record (EHR) systems** [51–58].
- **Electronic results acknowledgment systems**, where physicians are required to electronically confirm they have seen a test result [59–62].
- **Electronic results tracking systems** that enable users to monitor test progress and result status (e.g., viewed or pending at discharge) [63,64].
- **EHR-based trigger algorithms** designed to identify patients at risk of diagnostic delays [65].
- **Electronic report generation systems** for abnormal results [66,67].

These categories are based on the manner in which each study described their intervention. The health IT interventions varied depending on whether they assessed the influence of an EMR/EHR system (e.g., category 3) or a specific feature within an EMR/EHR system (e.g., categories 1, 2, and 4). These distinctions reflect the progressive development and increasing specialization of health IT systems over time.

Patient Engagement and Follow-up via Health IT Systems

Studies examining IT-facilitated patient engagement and test result follow-up primarily focused on two types of electronic systems: 1) **patient portals** and 2) **personal health records (PHRs)**. Patient portals [68–79] provide access to personal health information via a secure website [80], while integrated (tethered) PHRs [81–83] are institutionally managed and connected to a healthcare organization's EHR system, allowing patients direct access to their medical records [84,85]. No studies assessed patient-managed PHRs (i.e., standalone or untethered systems not linked to a healthcare organization). The majority of the systems (n = 13) provided patients with real-time access to test results as they

became available. In two studies, patients were able to view results after a delay, allowing clinicians to review them beforehand [75,83]. Eighteen studies examined the effect of electronic results management on reducing missed test results. Most studies in this category were rated as either good [30,33,35,48,51,57,59] or fair [29,32,38–40,45,47,50,52,66], with one study classified as poor quality [34].

Alerts

A cluster-randomized controlled trial (RCT) conducted by Dalal et al. evaluated an automated email notification system. Survey responses from 152 hospital physicians and 112 primary care physicians (PCPs) indicated that those using the notification system were significantly more aware of actionable test results than the control group, with a 24–28 percentage point difference in awareness [29]. Similarly, a prospective cluster-RCT by El-Kareh implemented an email-based alert system to notify physicians of untreated positive culture results post-discharge, resulting in a 15% increase in follow-up documentation for these test results [40]. However, not all studies reported consistent results. A cross-sectional study by Wahls et al. involving 106 PCPs found that despite the use of an electronic medical record (EMR) with a result-alerting function, 37% of PCPs had encountered at least one patient with a missed test result [39]. Another cross-sectional survey of 143 PCPs found that 30% reported at least one instance of diagnosis or treatment delay due to a missed test result, with only 55% utilizing the electronic notification system consistently [38].

Computerized Provider Order Entry (CPOE) and Clinical Information Systems

Several studies explored the impact of CPOE systems and clinical information systems on test result follow-up. These studies revealed varying rates of physician awareness and result review. In emergency department settings, failure to follow up on radiology and microbiology results ranged from 1.5% [47] to as high as 45% for emergency biochemistry tests [48]. Additionally, one study found that both inpatient and primary care physicians were unaware of 61.6% of pending results at hospital discharge, with 37.1% of these results deemed actionable and 12.6% requiring urgent attention [52]. An Australian study investigated the impact of an electronic results acknowledgment system that included escalation procedures for unacknowledged results. The system, which assigned specific follow-up responsibilities, resulted in the clinical acknowledgment of all test results [59].

Impact of Health IT Interventions on Clinicians' Test Results Management Work Practices

Studies assessing the impact of health IT on clinicians' test results management covered key areas: 1) workload changes, 2) hybrid paper/electronic systems, 3) organizational context, 4) time to test results follow-up, and 5) implications for patient outcomes. These studies were rated as either good (n=11) [26,36,37,43,44,53,55,56,60,65,67] or fair quality (n=13) [27,28,31,41,42,46,49,54,58,61–64].

Changes in Workload

Clinicians noted increased workloads due to health IT systems, especially in managing irrelevant alerts. A qualitative U.S. study reported that acknowledging clinically irrelevant electronic health record (EHR) alerts added to clinicians' time burden [37]. A web survey of 2,590 primary care physicians (PCPs) found that 85.6% of respondents had to work after hours or weekends to manage test result notifications [54].

Hybrid Paper/Electronic Systems

Studies found that hybrid systems combining paper and electronic processes negatively impacted test results follow-up. Two studies noted that mixed-media environments complicated workflow and follow-up practices [46,58]. Menon et al. reported that 43% of 2,554 surveyed PCPs used workarounds involving paper or a combination of paper and electronic systems to manage test results [56]. Additionally, a mixed-method study concluded that health IT alone could not achieve optimal safety levels, as none of the sites achieved superior test results management despite varying degrees of IT adoption [55].

Effect of Organizational Context

Organizational factors influenced the success of health IT interventions. A qualitative study by Li et al. revealed that the success of electronic results acknowledgment systems depended on how well they aligned with existing work practices and the staff mix within departments [62]. Menon et al. highlighted that weaknesses in existing test follow-up policies and escalation procedures could contribute to missed test results, and interventions should account for organizational influences on health IT outcomes [53].

Time to Test Results Follow-up

Several studies assessed the effect of health IT interventions on the timeliness of test results follow-up. One RCT investigated a real-time paging system for critical lab values and found no significant difference in median response times between control and intervention groups (39.5 vs 16 minutes, $p=0.33$) [27]. In another study, Park et al. found a significant reduction in time to treatment orders in general wards (249 to 63 minutes, $p<0.001$) after introducing SMS notifications, but this effect was not observed in the ICU [42]. Lin et al. reported that abnormal hyperkalemia results were more likely to be followed within 4 days after implementing a system that flagged abnormal results and tracked their status (90% post vs 62.2% pre, $p=0.003$) [64].

Implications for Patient Outcomes

Health IT interventions generally resulted in positive patient outcomes, including faster diagnostic evaluations and follow-up actions. Several studies reported reductions in time to diagnostic evaluations [31,41,44,65], time to follow-up care for referred patients [28,44], time to diagnostic resolution [41,67], and increased

likelihood of diagnostic resolution [67]. These findings suggest that health IT systems can improve both the speed and quality of patient care.

Impact of Health IT Systems on Patient Engagement in Test Results Follow-up

Studies investigating the impact of health IT systems on patient engagement in the follow-up of test results utilized methods such as qualitative interviews, surveys, and observational data. The quality of these studies varied, with two studies rated as good [70,72], twelve rated as fair [68,69,71,73–79,81,83], and one rated as poor [82]. The key themes covered include patient utilization of portals, considerations related to patient access, and handling abnormal or critical test results.

Patient Utilization of Patient Portals

Patient portals emerged as a valuable tool for engagement, with Ling et al.'s survey of 429 patients from a sexually transmitted infection clinic showing that 75% of respondents accessed their results online to check them at their convenience [70]. Woywodt et al. found that 42% of 295 renal patients, mainly transplant patients, accessed their results after clinic appointments, with 78% using the portal 1–5 times per month [76]. Most patients (93%) believed the portal aided them in managing their condition.

Key Considerations Related to Patient Access to Results

Patient portals were generally associated with positive experiences. In Christensen's survey of patients using a tethered personal health record (PHR), patients felt satisfaction and relief from accessing laboratory results and often discussed the results with family and friends [81]. Wiljer et al. found that breast cancer patients primarily needed technical support to access their reports, with 98% of support requests being technical (e.g., difficulties accessing results) [74]. Cimino et al.'s mixed-method study reported that patients who tracked their laboratory test results felt more empowered and believed it enhanced communication with their physicians [82]. Clinician responses to patient access were similarly positive. In a survey involving 508 patients and 48 physicians, 88% of both groups viewed patient access to radiology reports as useful. Only 8% of physicians stopped releasing reports online due to patient confusion or anxiety [83].

Abnormal or Critical Test Results

The release of abnormal or critical test results, however, raised concerns. Giardina et al. found that while most patients supported electronic access to test results, they preferred verbal communication for results with high emotional impact, such as life-threatening diagnoses or genetic tests [68]. Winget et al. surveyed 82 oncologists, and nearly half (49%) believed that releasing results indicative of disease progression online negatively affected communication with patients. Many oncologists felt that sensitive information requiring counseling should be shared in person [75]. Overall, health IT systems, particularly patient portals, enhanced patient engagement in test result management, though

sensitive results required more careful handling to prevent misunderstandings or distress. This systematic review spans two decades and integrates findings from multiple research methodologies (both qualitative and quantitative), a variety of health IT systems and software, as well as investigations into clinical practices and patient engagement. By examining these aspects, the review presents a clearer understanding of how the broader socio-technical system—comprising technology, clinicians, patients, processes, and organizations—affects the follow-up of test results. While randomized controlled trials (RCTs) indicate that health IT systems can improve documented follow-up by 15 percentage points and enhance physician awareness of test results by 24-28 percentage points, the overall evidence remains weak. This suggests that health IT alone cannot resolve the issue of inadequate test result follow-up.

Key Dimensions of Test Results Follow-up

1. **Organizational-Communication Environment:** The communication of test results reflects existing patterns of accountability, responsibility, and authority, shaped by clinical governance and contextual factors within healthcare settings. Communication is not a one-way process but requires iteration and feedback to ensure effective linkage between people across different settings. Health IT's role in disrupting or enhancing these processes depends largely on its ability to change how communication bridges activities across time and space.
2. **Diagnostic Process:** The diagnostic process is complex, involving multiple people and settings. Health IT systems support this by facilitating information sharing, test tracking, and alerting physicians when results are available. However, even with systems like CPOE (Computerized Physician Order Entry) and tracking alerts, the alignment between IT and clinical workflows is often insufficient, especially when subsequent actions (e.g., acting on test results) are overlooked. The partial integration of electronic systems and the co-existence of paper-based processes also pose risks to patient safety by increasing the cognitive workload on healthcare professionals and contributing to errors.
3. **Patient Engagement in Test Results Follow-up:** Many studies emphasize the role of patient engagement, particularly how IT systems facilitate access to test results. Patient-centered IT tools, such as portals, allow patients to view results in real time, leading to improved communication with physicians and better management of health conditions. However, in cases of serious diagnoses, patients prefer in-person consultations for the initial disclosure of results. Although privacy and security concerns are frequently cited in the literature, none of the studies in this review focused on these issues. Future IT solutions, such as patient-managed personal health records (PHRs), may offer more personalized and patient-centered healthcare options. In summary, while health IT systems enhance test results management and patient engagement, they are not a complete solution. The integration of IT must be better aligned with clinical workflows and patient preferences, particularly in high-stakes situations requiring sensitive communication.

Conclusion

The findings from this systematic review underscore the pivotal role that Health Information Technology (HIT) can play in enhancing the management of laboratory test results and fostering patient engagement. Despite the potential benefits, the evidence presented indicates that the effectiveness of HIT systems is not uniformly realized across different healthcare settings. The review highlighted that a considerable number of studies demonstrated improvements in clinician awareness of actionable test results, particularly through automated alert systems and electronic health records (EHRs). For instance, randomized controlled trials illustrated significant increases in follow-up documentation and clinician awareness when HIT interventions were implemented. However, challenges persist. The review noted that many clinicians experienced increased workloads attributed to irrelevant alerts and the complexities arising from hybrid systems that combine paper and electronic processes. These factors can lead to cognitive overload, thereby exacerbating the risk of errors in test result management. Additionally, the review emphasizes that while HIT systems promote timely access to health information for patients, sensitive results still require careful handling to ensure appropriate communication. The findings also reflect a pressing need for improved organizational practices. Effective implementation of HIT requires alignment with clinical workflows and a supportive organizational culture that facilitates communication and accountability. Future developments in HIT, such as patient-managed personal health records (PHRs), may provide innovative solutions to enhance patient involvement in their healthcare. In summary, while HIT shows promise in addressing the challenges of test result management and enhancing patient engagement, its success is contingent on strategic implementation and integration within existing clinical frameworks. Ongoing research should focus on refining these systems to optimize safety and efficacy, particularly in high-stakes situations involving critical health information. As healthcare evolves, embracing patient-centered approaches in HIT will be crucial for achieving better health outcomes.

References

1. Wolcott J , Schwartz A, Goodman C. Laboratory Medicine: A National Status Report;2008. Available at:<https://stacks.cdc.gov/view/cdc/30726..>
2. World Health Organization, World Alliance for Patient Safety, Research Priority Setting Working Group. World Alliance for Patient Safety - Summary of the Evidence on Patient Safety: Implications for Research. Geneva: World Health Organization; 2008.
3. ECRI Institute. Top 10 Patient Safety Concerns for Healthcare Organizations; 2017. www.ecri.org/PatientSafetyTop10. Accessed July 2017.
4. Poon EG , Gandhi TK, Sequist TD, et al . “ I wish I had seen this test result earlier!”: dissatisfaction with test result management systems in primary care. *Arch Intern Med*2004; 164(20): 2223–8.
5. Callen J , Georgiou A, Li J, et al . The safety implications of missed test results for hospitalized patients: a systematic review. *BMJ Qual Saf*2011; 20(2): 194–9.

6. Slovis BH , Nahass TA, Salmasian H, et al. . Asynchronous automated electronic laboratory result notifications: a systematic review. *J Am Med Inform Assoc*2017; 24(6): 1173–83.
7. Hanna D , Griswold P, Leape L, et al. . Communicating critical test results: safe practice recommendations. *Jt Comm J Qual Patient Saf*2005; 31(2): 68–80.
8. Ash J , Singh H, Sittig D. Test Results Reporting and Follow-Up SAFER Guide; 2014. Available at: https://www.healthit.gov/sites/default/files/safer_test_results_reporting.pdf
9. Singh H , Sittig DF. Measuring and improving patient safety through health information technology: The Health IT Safety Framework. *BMJ Qual Saf*2016; 25(4): 226–32.
10. Schiff GD , Reyes Nieva H, Griswold P, et al. . Randomized trial of reducing ambulatory malpractice and safety risk: results of the Massachusetts PROMISES Project. *Med Care*2017; 55(8): 797–805.
11. Agency for Healthcare Research and Quality. Improving Your Laboratory Testing Process: A Step-by-Step Guide for Rapid-Cycle Patient Safety and Quality Improvement; 2018. Available at: <https://www.ahrq.gov/news/improving-lab-testing.html>
12. Partnership for Health IT Patient Safety. Closing the Loop: Using Health IT to Mitigate Delayed, Missed, and Incorrect Diagnoses Related to Diagnostic Testing and Medication Changes. ECRI Institute; 2018. Available at: https://www.ecri.org/Resources/HIT/Closing_Loop/Closing_the_Loop_Toolkit.pdf.
13. The National Patient Safety Foundation. Safety Is Personal; Partnering with Patients and Families for the Safest Care; 2014. <http://www.npsf.org/about-us/lucian-leape-institute-at-npsf/lli-reports-and-statements/safety-is-personal-partnering-with-patients-and-families-for-the-safest-care/>.
14. Australian Commission on Safety and Quality in Health Care (ACSQHC). National Safety and Quality Health Service Standards. Sydney, Australia: Commonwealth of Australia; 2012.
15. Bolton P. A doctor's duty to follow up preventable conditions: Young v Central Australian Aboriginal Congress - a bridge too far? *NT LJ* 2012; 2(3): 154.
16. Ammenwerth E , Schnell-Inderst P, Hoerbst A. The impact of electronic patient portals on patient care: a systematic review of controlled trials. *J Med Internet Res*2012; 14(1): e162.
17. Committee on Patient Safety and Health Information Technology; Institute of Medicine. Health IT and Patient Safety: Building Safer Systems for Better Care. Washington, DC: National Academies Press; 2011.
18. Carr S. Health IT and diagnostic safety: promise and peril. *Improve Diagnosis*2015; 2(1): 1–4.
19. Sittig DF , Murphy DR, Smith MW, et al. . Graphical display of diagnostic test results in electronic health records: a comparison of 8 systems. *J Am Med Inform Assoc* 2015; 22(4): 900–904.
20. Whitehead N , Williams L, Meleth S, et al. . Interventions to improve follow-up of laboratory test results pending at discharge: a systematic review. *J Hosp Med*2018. doi: 10.12788/jhm.2944. (Epub ahead of print).

21. Darragh PJ , Bodley T, Orchanian-Cheff A, et al . A systematic review of interventions to follow-up test results pending at discharge. *J Gen Intern Med* 2018; 33(5): 750–758.
22. Moher D , Liberati A, Tetzlaff J, et al . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med*2009; 67: e1000097.
23. Gruber ML , Franklin N, Gordon R. Diagnostic error in internal medicine. *Arch Intern Med*2005; 16513: 1493–9.
24. Critical Appraisal Skills Program. CASP Qualitative Checklist. <https://casp-uk.net/casp-tools-checklists/>. Accessed June 2018.
25. National Heart Lung and Blood Institute. Study Quality Assessment Tools: US Department of Health and Human Services. <https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools>.
26. Chen TC , Lin WR, Lu PL, et al . Computer laboratory notification system via short message service to reduce health care delays in management of tuberculosis in Taiwan. *Am J Infect Control*2011; 395: 426–30.
27. Etchells E , Adhikari NK, Cheung C, et al . Real-time clinical alerting: effect of an automated paging system on response time to critical laboratory values—a randomised controlled trial. *Qual Saf Health Care*2010; 192: 99–102.
28. Humphrey LL , Shannon J, Partin MR, et al . Improving the follow-up of positive hemoccult screening tests: an electronic intervention. *J Gen Intern Med*2011; 267: 691–7.
29. Dalal AK , Roy CL, Poon EG, et al . Impact of an automated email notification system for results of tests pending at discharge: a cluster-randomized controlled trial. *J Am Med Inform Assoc*2014; 213: 473–80.
30. Laxmisan A , Sittig DF, Pietz K, et al . Effectiveness of an electronic health record-based intervention to improve follow-up of abnormal pathology results: a retrospective record analysis. *Medical Care*2012; 5010: 898–904.
31. Staes CJ , Evans RS, Rocha BH, et al . Computerized alerts improve outpatient laboratory monitoring of transplant patients. *J Am Med Inform Assoc*2008; 153: 324. [Erratum appears in *J Am Med Inform Assoc* 2008; 15 (5): 708].
32. Singh H , Arora HS, Vij MS, et al . Communication outcomes of critical imaging results in a computerized notification system. *J Am Med Inform Assoc*2007; 144: 459–66.
33. Singh H , Thomas EJ, Mani S, et al . Timely follow-up of abnormal diagnostic imaging test results in an outpatient setting: are electronic medical records achieving their potential? *Arch Intern Med*2009; 169: 1578–86.
34. Singh H , Wilson L, Petersen LA, et al . Improving follow-up of abnormal cancer screens using electronic health records: trust but verify test result communication. *BMC Med Inform Decis Mak*2009; 9(1): 49.
35. Singh H , Thomas EJ, Sittig DF, et al . Notification of abnormal lab test results in an electronic medical record: do any safety concerns remain? *American Journal of Medicine*2010; 1233: 238–44.
36. Hysong SJ , Sawhney MK, Wilson L, et al . Provider management strategies of abnormal test result alerts: a cognitive task analysis. *J Am Med Inform Assoc*2010; 171: 71–7.

37. Hysong SJ , Sawhney MK, Wilson L, et al . Understanding the management of electronic test result notifications in the outpatient setting. *BMC Med Inform Decis Mak*2011; 11: 22.
38. Wahls T , Haugen T, Cram P. The continuing problem of missed test results in an integrated health system with an advanced electronic medical record. *Jt Comm J Qual Patient Saf*2007; 338: 485–92.
39. Wahls TL , Cram PM. The frequency of missed test results and associated treatment delays in a highly computerized health system. *BMC Fam Pract*2007; 8(1): 32.
40. El-Kareh R , Roy C, Williams DH, et al . Impact of automated alerts on follow-up of post-discharge microbiology results: a cluster randomized controlled trial. *J Gen Intern Med*2012; 2710: 1243–50.
41. Kuperman GJ , Teich JM, Tanasijevic MJ, et al . Improving response to critical laboratory results with automation: results of a randomized controlled trial. *J Am Med Inform Assoc*1999; 66: 512–22.
42. Park H-I , Min W-K, Lee W, et al . Evaluating the short message service alerting system for critical value notification via PDA telephones. *Ann Clin Lab Sci*2008; 382: 149–56.
43. Hayes SA , Breen M, McLaughlin PD, et al . Communication of unexpected and significant findings on chest radiographs with an automated PACS alert system. *J Am Coll Radiol*2014; 118: 791–5.
44. Browning T , Kasper J, Rofsky NM, et al . Quality improvement initiative: enhanced communication of newly identified, suspected GI malignancies with direct critical results messaging to surgical specialist. *BMJ Qual Saf*2013; 222: 168–75.
45. Dalal AK , Schaffer A, Gershanik EF, et al . The impact of automated notification on follow-up of actionable tests pending at discharge: a cluster-randomized controlled trial. *J Gen Intern Med* 2018; 33(7): 1043–1051.
46. WorldCat
47. Callen J , Georgiou A, Prgomet M, et al . A qualitative analysis of emergency department physicians' practices and perceptions in relation to test result follow-up. *Stud Health Technol Inform*2010; 160 (Pt 2): 1241–5.
48. Callen J , Paoloni R, Georgiou A, et al . The rate of missed test results in an emergency department: an evaluation using an electronic test order and results viewing system. *Methods Inf Med*2010; 49: 37–43.
49. Kilpatrick ES , Holding S. Use of computer terminals on wards to access emergency test results: a retrospective audit. *BMJ*2001; 3227294: 1101–3.
50. Topol P , Porat N, Zelker R, et al . Quality improvement program to assure the delivery of pathology test results: a systemic intervention in a large general hospital. *Dermatol Nurs*2007; 19: 253–7.
51. Rodriguez-Borja E , Villalba-Martinez C, Barba-Serrano E, et al . Failure to review STAT clinical laboratory requests and its economical impact. *Biochem Med*2016; 26: 61–7.
52. Kern LM , Callahan MA, Brillon DJ, et al . Glucose testing and insufficient follow-up of abnormal results: a cohort study. *BMC Health Serv Res*2006; 6: 87.
53. Roy CL , Poon EG, Karson AS, et al . Patient safety concerns arising from test results that return after hospital discharge. *Ann Intern Med*2005; 1432: 121–8.

54. Menon S , Smith MW, Sittig DF, et al. . How context affects electronic health record-based test result follow-up: a mixed-methods evaluation. *BMJ Open*2014; 411: e005985.
55. Singh H , Spitzmueller C, Petersen NJ, et al. . Primary care practitioners' views on test result management in EHR-enabled health systems: a national survey. *J Am Med Inform Assoc*2013; 204: 727–35.
56. Elder NC , McEwen TR, Flach JM, et al. . Management of test results in family medicine offices. *Ann Fam Med*2009; 74: 343–51.
57. Menon S , Murphy DR, Singh H, et al. . Workarounds and test results follow-up in electronic health record-based primary care. *Appl Clin Inform*2016; 0702: 543–59.
58. Bhise V , Meyer AND, Singh H, et al. . Errors in diagnosis of spinal epidural abscesses in the era of electronic health records. *Am J Med*2017; 1308: 975–81.
59. Ferris TG , Johnson SA, Co JPT, et al. . Electronic results management in pediatric ambulatory care: qualitative assessment. *Pediatrics*2009; 123 (Suppl 2): S85–91.
60. Georgiou A , Lymer S, Forster M, et al. . Lessons learned from the introduction of an electronic safety net to enhance test result management in an Australian mothers' hospital. *J Am Med Inform Assoc*2014; 216: 1104–8.
61. Dalal AK , Pesterev BM, Eibensteiner K, et al. . Linking acknowledgment to action: closing the loop on non-urgent, clinically significant test results in the electronic health record. *J Am Med Inform Assoc*2015; 224: 905–8.
62. Georgiou A , McCaughey EJ, Tariq A, et al. . What is the impact of an electronic test result acknowledgement system on emergency department physicians' work processes? A mixed-method pre-post observational study. *Int J Med Inform*2017; 99: 29–36.
63. Li J , Callen J, Westbrook JI, et al. . What factors determine the use of an electronic test result acknowledgment system? A qualitative study across two EDs. In: Ryan A, Schaper L, Whetton S, eds. *Studies in Health Technology & Informatics*. Vol 239. Amsterdam:IOS Press; 2017: 70–6.
64. Dalal AK , Poon EG, Karson AS, et al. . Lessons learned from implementation of a computerized application for pending tests at hospital discharge. *J Hosp Med*2011; 61: 16–21.
65. Lin JJ , Moore C. Impact of an electronic health record on follow-up time for markedly elevated serum potassium results. *Am J Med Qual*2011; 264: 308–14.
66. Murphy DR , Wu L, Thomas EJ, et al. . Electronic trigger-based intervention to reduce delays in diagnostic evaluation for cancer: a cluster randomized controlled trial. *JCO*2015; 3331: 3560–7.
67. Choksi VR , Marn CS, Bell Y, et al. . Efficiency of a semiautomated coding and review process for notification of critical findings in diagnostic imaging. *AJR Am J Roentgenol*2006; 1864: 933–6.
68. Dupuis EA , White HF, Newman D, et al. . Tracking abnormal cervical cancer screening: evaluation of an EMR-based intervention. *J Gen Intern Med*2010; 256: 575–80.
69. Giardina TM , Varsha P, Danielle Singh H. The patient portal and abnormal test results: An exploratory study of patient experiences. *Patient Exp J*2015; 2: 148–54.

70. Hazara AM , Bhandari S. Barriers to patient participation in a self-management and education website Renal PatientView: a questionnaire-based study of inactive users. *Int J Med Inform*2016; 87: 10–4.
71. Ling SB , Richardson DB, Mettenbrink CJ, et al. . Evaluating a web-based test results system at an urban STI clinic. *Sex Transm Dis*2010; 374: 259–63.
72. Mak G , Smith Fowler H, Leaver C, et al. . The effects of web-based patient access to laboratory results in British Columbia: a patient survey on comprehension and anxiety. *J Med Internet Res*2015; 17: e191.
73. Miles RC , Hippe DS, Elmore JG, et al. . Patient access to online radiology reports: frequency and sociodemographic characteristics associated with use. *Acad Radiol*2016; 239: 1162–9.
74. Mukoro F , Sweeney G, Mathews B, editors. Providing patients online access to their live test results: an evaluation of usage and usefulness. In: IADIS International Conference e-Health, Lisbon; 2012.
75. Wiljer D , Urowitz S, Apatu E, et al. . Understanding the support needs of patients accessing test results online. PHRs offer great promise, but support issues must be addressed to ensure appropriate access. *J Healthc Inf Manag*2010; 24: 57–63.
76. Winget M , Haji-Sheikhi F, Brown-Johnson C, et al. . Electronic release of pathology and radiology results to patients: opinions and experiences of oncologists. *JOP*2016; 128: e792–9.
77. Woywodt A , Vythelingum K, Rayner S, et al. . Single-centre experience with Renal PatientView, a web-based system that provides patients with access to their laboratory results. *J Nephrol*2014; 275: 521–7.
78. Rodriguez ES , Thom B, Schneider SM. Nurse and physician perspectives on patients with cancer having online access to their laboratory results. *Oncol Nurs Forum*2011; 384: 476–82.
79. Okawa G , Ching K, Qian H, et al. . Automatic release of radiology reports via an online patient portal. *J Am Coll Radiol*2017; 149: 1219–21.
80. Giardina TD , Baldwin J, Nystrom DT, et al. . Patient perceptions of receiving test results via online portals: a mixed-methods study. *J Am Med Inform Assoc*2018; 254: 440–6.
81. Office of the National Coordinator for Health Information Technology. What is a patient portal? <https://www.healthit.gov/providers-professionals/faqs/what-patient-portal>.
82. Christensen KS. Viewing laboratory test results online: patients' actions and reactions. *J Participat Med*2013; 5: e38.
83. Cimino JJ , Patel VL, Kushniruk AW. The patient clinical information system (PatCIS): technical solutions for and experience with giving patients access to their electronic medical records. *Int J Med Inform*2002; 68 (1–3): 113–27.
84. Henshaw D , Okawa G, Ching K, Garrido T, Qian H, Tsai J. Access to radiology reports via an online patient portal: experiences of referring physicians and patients. *J Am Coll Radiol*2015; 126: 582–6. e1.
85. Institute of Medicine. Health IT and Patient Safety: Building Safer Systems for Better Care. Washington DC: Institute of Medicine of the National Academies; 2011.
86. Office of the National Coordinator for Health Information Technology. Are there different types of personal health records (PHRs)?

<https://www.healthit.gov/faq/are-there-different-types-personal-health-records-phrs>.

87. Georgiou A , Westbrook JI, Braithwaite J. Time matters - a theoretical and empirical examination of the temporal landscape of a hospital pathology service and the impact of e-health. *Soc Sci Med*2011; 7210: 1603.
88. Georgiou A , Westbrook JI, Braithwaite J. An empirically-derived approach for investigating health information technology: the elementally entangled organisational communication (EEOC) framework. *BMC Med Inform Decis Mak*2012; 12(1): 68.
89. Kuziemsky CE , Borycki EM, Purkis ME. An interdisciplinary team communication framework and its application to healthcare 'e-teams' systems design. *BMC Med Inform Decis Mak*2009; 9(1): 43.
90. Schiff GD , Bates DW. Can electronic clinical documentation help prevent diagnostic errors?. *N Engl J Med*2010; 36212: 1066–9.
91. National Academies Of Science Engineering and Medicine. *Improving Diagnosis in Health Care*. Washington, DC: The National Acadamies Press; 2015.
92. Georgiou A , Prgomet M, Paoloni R, et al. . The impact of computerized provider order entry systems on clinical care and work processes in emergency departments: a systematic review of the quantitative literature. *Ann Emerg Med*2013; 616: 644–53.
93. Scott P , Rigby M, Ammenwerth E, et al. . Evaluation considerations for secondary uses of clinical data: principles for an evidence-based approach to policy and implementation of secondary analysis. *IMIA Yearbook* 2017; 26(1): 59–67.
94. Giardina TD , Callen J, Georgiou A, et al. . Releasing test results directly to patients: a multisite survey of physician perspectives. *Patient Educ Couns*2015; 986: 788–96.
95. Rigby M , Georgiou A, Hyppönen H, et al. . Patient portals as a means of information and communication technology support to patient-centric care coordination—the missing evidence and the challenges of evaluation: a joint contribution of IMIA WG EVAL and EFMI WG EVAL. *Yearb Med Inform*2015; 10: 148.
96. Hordern A , Georgiou A, Whetton S, et al. . Consumer eHealth - an overview of the research evidence and the implications for future policy. *Health Inf Manag*2011; 402: 6–14.
97. Otte-Trojel T , de Bont A, Rundall TG, et al. . How outcomes are achieved through patient portals: a realist review. *J Am Med Inform Assoc*2014; 214: 751–7.
98. Sterne JA , Egger M, Moher D. Addressing reporting biases In: Higgins J, Green S, eds. *Cochrane Handbook for Systematic Reviews*. New York: Wiley; 2008: 297–333.
99. Carayon P , Karsh BT, Cartmill R, et al. . Incorporating Health IT into Workflow Redesign: Request for Information Summary Report (Publication No. 10-0098-EF). Rockville, MD: Agency for Healthcare Research and Quality; 2010.

تقييم تأثير تكنولوجيا المعلومات الصحية على إدارة الصحة المجتمعية.

الملخص:

الخلفية: تلعب تكنولوجيا المعلومات الصحية (HIT) دوراً حاسماً في رعاية المرضى، خاصة في إدارة نتائج الاختبارات المخبرية. إن المتابعة غير الكافية لهذه النتائج تعتبر قضية هامة تتعلق بسلامة المرضى على مستوى العالم. تهدف هذه المراجعة المنهجية إلى تلخيص الأبحاث الكمية وال النوعية الموجودة حول تأثير تكنولوجيا المعلومات الصحية على إدارة نتائج الاختبارات ومشاركة المرضى، مع تسليط الضوء على فعالية أنظمة تكنولوجيا المعلومات الصحية المختلفة وتحديد الفجوات في الممارسات الحالية.

المدفوع: تسعى المراجعة إلى تقييم كيف تحسن تكنولوجيا المعلومات الصحية من متابعة وإدارة نتائج الاختبارات، وتعزز مشاركة المرضى، وتحدد التحديات المرتبطة بتنفيذها.

الطرق: تم استخدام منهجية المراجعة المنهجية، والتي تضمنت 57 دراسة تم نشرها بشكل رئيسي بين عامي 2006 و 2018. شملت الدراسات تجارب عشوائية محكمة، ودراسات رصدية، ودراسات مختلطة الطرق، ودراسات نوعية، مع التركيز على تدخلات تكنولوجيا المعلومات الصحية مثل التنبهات الإلكترونية، والسجلات الصحية الإلكترونية (EHRs) ، وبوابات المرضى .

النتائج: كشفت المراجعة أن أنظمة تكنولوجيا المعلومات الصحية، وخاصة التنبهات الإلكترونية وبوابات المرضى، تحسن بشكل كبير من وعي الأطباء بنتائج الاختبارات وتقلل من المتابعات المفقودة. ومع ذلك، كانت جودة الأدلة متفاوتة، حيث أشارت العديد من الدراسات إلى زيادة عبء العمل على الأطباء بسبب إرهاق التنبهات وتعقيد الأنظمة البسيطة/الورقية/الإلكترونية .

الخاتمة: على الرغم من أن تكنولوجيا المعلومات الصحية لديها القدرة على تحسين إدارة نتائج الاختبارات ومشاركة المرضى، فإن فعاليتها محدودة بسبب تحديات التكامل مع تدفقات العمل السريرية وال الحاجة إلى التواصيل الحساس في الحالات الحرجة. هناك حاجة لمزيد من الأبحاث لاستكشاف السجلات الصحية المدارة من قبل المرضى وتحسين الممارسات التنظيمية.

الكلمات المفتاحية: تكنولوجيا المعلومات الصحية، إدارة نتائج الاختبارات، مشاركة المرضى، السجلات الصحية الإلكترونية، مراجعة منهجية.