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Abstract---Background: Biologics have emerged as a transformative 
approach in the treatment of Rheumatoid Arthritis (RA), Inflammatory 

Bowel Disease (IBD), systemic lupus erythematosus (SLE), asthma, 

and multiple sclerosis (MS), addressing the underlying 
pathophysiological mechanisms of these complex diseases. Aim: the 

main aim of this review is to explore the main biologics used for the 

treatment of SLE, IBD, MS, RA, and Asthma. Methods: An updated 

data were collected and analyzed using research original articles, and 
reviewed articles. Results: Biologics like belimumab and rituximab 

target B cells, offering limited yet significant improvements in patient 
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outcomes. Other promising agents such as epratuzumab and low-dose 
IL-2 are under investigation, aiming to enhance treatment efficacy 

with improved safety profiles. In asthma management, monoclonal 

antibodies such as omalizumab, mepolizumab, and dupilumab target 
key cytokines involved in the inflammatory response, significantly 

reducing exacerbations and improving patient quality of life. Similarly, 

natalizumab represents a crucial advancement in MS therapy by 

inhibiting T cell migration into the central nervous system, effectively 
reducing disease activity. Despite their efficacy, the use of biologics is 

accompanied by challenges, including potential adverse effects and 

the need for personalized treatment strategies. Conclusion: 
Continued research and clinical trials are essential to refine these 

therapies and establish optimal treatment protocols for patients with 

SLE, asthma, and MS. 
 

Keywords---Biologics, Rheumatoid Arthritis, Lupus Erythematosus, 

Asthma, Inflammatory Bowel Disease, Autoimmune Disorders. 
 

 

Introduction  

 
In the United States, biologics are regulated mainly under the Public Health 

Service Act (PHSA), as opposed to solely under the Food, Drug, and Cosmetic Act 

(FDCA), with limited exceptions. This difference arises from their specific 
legislative and regulatory background [1]. The Biologics Control Act of 1902 

initially regulated biologics, aiming to ensure the “safety, purity, and potency of 

vaccines, serums, toxins, antitoxins, and related products.” This Act established 
regulatory protocols for biologics and their manufacturing sites, eventually 

becoming recodified in 1944 under the PHSA. Initially overseen by various 

government bodies, biologics shifted to FDA oversight from the National Institutes 
of Health (NIH) in 1972. This transition aimed to ensure the application of both 

PHSA and FDCA standards (safety, effectiveness, and protection against 

misbranding or adulteration) in biologic product approvals. The definition of 

“biologic” has expanded considerably. Today, over 250 biotechnology products, 
including healthcare products and vaccines, are commercially available worldwide 

(www.bio.org). According to the PHSA, a “biologic product” refers to “a virus, 

therapeutic serum, toxin, antitoxin, vaccine, blood, blood component or 
derivative, allergenic product, protein (excluding chemically synthesized 

polypeptides), or analogous products, or arsphenamine or derivatives (or other 

trivalent organic arsenic compounds) applicable for preventing, treating, or curing 
diseases in humans” [2]. These products may comprise sugars, proteins, nucleic 

acids, or complex combinations of these substances and can include living 

entities, such as cells and tissues. Thus, this category encompasses cell and gene 
therapies, therapeutic viruses, and CAR-T therapies, in addition to terms like 

biopharmaceuticals, biologics, and therapeutic proteins—broadening well beyond 

blood products and vaccines. Biopharmaceuticals differ from traditional 
pharmaceuticals primarily in their manufacturing and processing methods. While 

biologics are typically produced in living organisms (e.g., bacteria, yeast, 

mammalian cells), traditional “small-molecule” drugs result from a series of 

chemical synthesis steps, although there are grey areas with chemically 

http://www.bio.org/
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synthesized peptides. Recombinant DNA technology is frequently employed to 

produce biotechnology products. 

 
Various biologics subsets exist, categorized by FDA designations, though other 

regulatory frameworks also offer definitions. The International Council for 

Harmonization (ICH) initially defined biologics in its ICH S6 guidance on the 
preclinical safety evaluation of biotechnology-derived pharmaceuticals, describing 

biopharmaceuticals as products derived from identified cells, including bacterial, 

yeast, insect, plant, and mammalian cells. These products can include proteins, 
peptides, and their derivatives or related components, such as cytokines, 

proteins, growth factors, fusion proteins, enzymes, receptors, hormones, and 

monoclonal antibodies (International Council for Harmonization, 1997c [3]. While 
the European Medicines Agency (EMA) largely aligns with the ICH’s biologics 

definition, it also has a Committee for Advanced Therapies (CAT), which assesses 

advanced therapy medicinal products (ATMPs) defined as gene, cell, or tissue 

engineering-based human medicines [4]. As with traditional drugs, biologics can 
serve various purposes, from treating and preventing diseases to diagnosing 

conditions. Common examples of biologics today include vaccines, blood and 

blood products for transfusion or further manufacturing, allergenic extracts for 
diagnosis and treatment (e.g., allergy shots), human cells and tissues used for 

transplantation (e.g., tendons, ligaments, and bones), gene and cellular therapies, 

and tests for screening blood donors for infectious agents such as HIV [5]. 
 

Inflammatory arthritis, including rheumatoid arthritis (RA), ankylosing 

spondylitis (AS), and psoriatic arthritis (PsA), impose a considerable burden of 
morbidity and mortality on populations globally. A notable aspect of this burden 

is the two-fold increase in the risk of cardiovascular events (CVEs) [6], with 

evidence suggesting that this risk escalates with prolonged disease duration 

[7,8,9]. It has been posited that this association stems from inflammatory 
processes mediated by cytokines, particularly tumor necrosis factor (TNF). The 

high inflammatory load is thought to stimulate autoantibody production and 

induce apoptosis in endothelial cells, leading to vascular injury [10] and a pro-
thrombotic state [11]. Consequently, the administration of TNF inhibitors may 

offer a means to mitigate cardiovascular risk by managing systemic inflammation. 

A recent investigation indicated that individuals with RA whose disease onset 
occurred after 2000 did not exhibit an elevated mortality risk relative to the 

general population; conversely, those whose disease began prior to 2000 faced an 

increased risk [12]. Multiple studies have shown that the treatment of 
inflammatory arthritis with TNF inhibitors correlates with improvements in 

surrogate markers of cardiovascular health, such as endothelial stiffness, 

biochemical lipid profiles, and carotid intima-media thickness [13-18]. 

 
Conflicting evidence exists concerning clinical cardiovascular endpoints, including 

the rates of myocardial infarction, stroke, and cardiovascular-related mortality 

following treatment with biologics in RA patients. Some studies indicate a reduced 
risk of CVEs [19, 20], while others report no significant differences [21, 22]. 

Research examining cardiovascular risk in RA has been conducted in various 

regions, including North America [23-25], Britain [26], and Sweden [27]. However, 
to date, no studies have been conducted within the Australian context, where 

access to biologic therapy is governed by stringent criteria. Additionally, there has 
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been limited investigation into the impact of biologics on CVE rates for 
inflammatory arthritis beyond RA. Therefore, more extensive research is 

necessary across diverse arthritic conditions to determine whether biologic 

therapy provides benefits that extend beyond the direct management of arthritis 
in these patients. 

 

Biologics and Inflammatory Bowel Diseases: 

TNF-α Inhibitors: 
 

TNF-α inhibitors, such as adalimumab (Humira®) and certolizumab pegol 

(Cimzia®), are widely used in treating inflammatory diseases, particularly Crohn's 
disease (CD) and rheumatoid arthritis (RA). Adalimumab, approved by the FDA in 

2002, is a fully human monoclonal antibody that inhibits TNF-α, a cytokine 

involved in inflammation and immune responses (28, 29). Adalimumab 
specifically blocks interactions between TNF-α and its cell receptors, effectively 

reducing inflammatory symptoms without affecting TNF-β (30). Its indications 

include moderate-to-severe RA, juvenile idiopathic arthritis, psoriatic arthritis, 
ankylosing spondylitis, and CD, among others (31, 32). Adalimumab's efficacy in 

CD has been demonstrated through various clinical trials, such as CLASSIC-I and 

CLASSIC-II, which showed dose-dependent remission in moderate-to-severe CD 

patients (33, 34). Furthermore, in the CHARM and GAIN trials, long-term clinical 
remission was observed in both TNF-α inhibitor-naive and infliximab-intolerant 

patients, underscoring adalimumab's versatility (35, 36). The recommended 

adalimumab dosing for CD starts with an initial 160 mg, followed by 80 mg on 
day 15, and 40 mg biweekly from day 29 for up to a year. Pediatric use is 

supported by IMAgINE 1 and 2 trials, which reported sustained remission in 

children with CD unresponsive to other therapies, with comparable safety profiles 
to adults (37, 38). Adalimumab is also effective in ulcerative colitis (UC), with a 

meta-analysis showing higher remission and response rates compared to placebo 

(39, 40). Common side effects include injection pain, infections, and increased 
cancer risk, although incidence rates are consistent with age-matched 

populations (40, 42). It is categorized as pregnancy-safe in animals but should be 

cautiously prescribed for breastfeeding and elderly patients. 

 
Certolizumab pegol, FDA-approved in 2008, is a TNF-α inhibitor with unique 

properties due to its polyethylene glycol (PEG) conjugation, which improves 

bioavailability and stability (43). It lacks an Fc region, eliminating complement 
activation, making it safer in certain contexts (43). Indications for certolizumab 

include moderate-to-severe CD, RA, and psoriatic arthritis (42). In the PRECiSE 

trials, certolizumab showed superior clinical response and remission rates over 
placebo for CD management, with significant maintenance of remission in long-

term studies (44, 45). The recommended dosing in CD starts with 400 mg at 

weeks 0, 2, and 4, with a maintenance dose every four weeks (42). PRECiSE-3, a 
long-term study, demonstrated over 68% remission rates annually (46). The safety 

profile of certolizumab is favorable, with no significant risk of malignancies or 

tuberculosis reactivation in clinical trials. Adverse effects are generally mild, with 
gastrointestinal and injection-site reactions being the most common (43). Both 

adalimumab and certolizumab pegol thus represent vital tools in managing 

inflammatory conditions, offering effective, well-studied options for patients 

across various age groups and disease profiles. 
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Integrin Receptor Antagonists: 

 

Integrin receptor antagonists such as vedolizumab and natalizumab offer targeted 
therapeutic approaches for inflammatory conditions like Crohn’s disease (CD) and 

ulcerative colitis (UC). Vedolizumab, a humanized monoclonal antibody (MAb) 

approved by the FDA in 2014, targets the α4β7 integrin receptor, blocking the 
binding of Mucosal Addressin Cell Adhesion Molecule-1 (MAdCAM-1) and 

inhibiting T-cell adhesion to reduce inflammation specifically in the gut 

epithelium, where these receptors are predominantly located (47). Vedolizumab is 
currently indicated for moderate-to-severe CD and UC and is available as a 300 

mg dose in a lyophilized form for reconstitution (48, 51). Clinical trials in pediatric 

populations have been ongoing since 2017, indicating potential broader 
applications for this treatment (49, 50). Vedolizumab has a complex 

pharmacokinetic profile, with a half-life of approximately 25 days and nonlinear 

elimination at lower concentrations but a more predictable, linear elimination at 

higher therapeutic levels (51). 
 

The standard dosing regimen for both UC and CD involves an initial phase of 300 

mg IV infusions at weeks 0, 2, and 6, followed by maintenance infusions every 
eight weeks. If there is no clinical improvement, treatment is generally 

discontinued (51). In clinical trials, such as the GEMINI I, significant rates of 

clinical response and remission were observed at week 6, with 47% of UC patients 
responding to treatment versus 26% receiving placebo, and remission rates 

reaching 17% compared to 5% with placebo (P<0.001) (52). The GEMINI II and III 

trials, conducted for CD, yielded mixed results; while the response rates were 
generally favorable, statistical significance was not achieved for all endpoints. 

However, GEMINI II showed that among responders to induction therapy, long-

term remission rates at week 52 were significantly higher in the vedolizumab 

groups compared to placebo (53, 54). Common adverse reactions associated with 
vedolizumab include infusion reactions and infections due to its 

immunomodulatory effect (54). Long-term safety data indicate a low malignancy 

rate (0.4%) but suggest a potential for immunogenicity, with 13% of patients 
developing anti-vedolizumab antibodies by week 24 (57). Pediatric safety and 

efficacy have not been established, although no age-related differences have been 

observed in geriatric populations. The drug is rated as a Category B medication in 
pregnancy, with animal studies showing no fetal harm, though caution is advised 

for nursing mothers due to possible transfer into breast milk (57). 

 
Natalizumab, also a humanized IgG4 MAb, was the first integrin receptor 

antagonist approved by the FDA in 2004 (55, 56). Unlike vedolizumab, 

natalizumab acts on both α4β1 (VLA-4) and α4β7 integrins, affecting leukocyte 

translocation across blood vessel membranes (57). This dual mechanism makes 
natalizumab suitable for treating multiple sclerosis and CD. Natalizumab is 

administered as a 300 mg IV infusion every four weeks, with a steady-state 

concentration reached at approximately 24 weeks. Unlike vedolizumab, 
natalizumab should not be used in combination with other immunosuppressants 

or TNF-α inhibitors due to an increased risk of adverse effects (58). The ENACT-1 

and ENCORE trials demonstrated natalizumab’s efficacy in CD, with clinical 
responses observed in 56% of patients receiving the drug versus 49% with 

placebo by week 10, though remission rates did not reach statistical significance 
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(59). The ENCORE trial, which focused on maintenance, found clinical responses 
sustained in 61% of natalizumab-treated patients versus 28% for placebo 

(P<0.0001) (60). While natalizumab’s side effects are similar to vedolizumab’s, the 

FDA has flagged the risk of progressive multifocal leukoencephalopathy (PML) due 
to John Cunningham virus reactivation as a severe adverse effect (61). Like 

vedolizumab, natalizumab is classified as a Category B drug in pregnancy, with 

limited data on its safety in breastfeeding and elderly populations. 

 
IL-12 and IL-23 Antagonists: 

 

Ustekinumab (Stelara®) is a monoclonal antibody (MAb) targeting the p40 
subunit common to interleukin (IL)-12 and IL-23, cytokines involved in immune 

regulation and inflammatory pathways. Approved initially in Canada in 2008 and 

by the FDA in 2009, ustekinumab is primarily indicated for chronic inflammatory 
diseases, such as plaque psoriasis, psoriatic arthritis, and Crohn’s disease (CD), 

by inhibiting IL-12 and IL-23-mediated activation of natural killer cells and CD4+ 

T lymphocytes (62, 63). Available as both intravenous (IV) and subcutaneous (SC) 
formulations, ustekinumab is formulated for flexibility across conditions; IV 

administration is indicated for weight-based CD induction, while SC doses offer 

maintenance options (64). Mechanistically, ustekinumab reduces the expression 

of IL-12 and IL-23 mRNA, achieving a steady-state concentration by week 28, with 
an elimination half-life of approximately 15 to 45.5 days (64). 

 

For CD, the dosing regimen begins with a single, weight-based IV induction dose 
(260 mg for patients ≤55 kg, 390 mg for 55-85 kg, and 520 mg for >85 kg), 

followed by an SC maintenance dose of 90 mg administered every eight weeks 

(64). Clinical efficacy for CD was confirmed in UNITI-1 and UNITI-2 trials, where 
ustekinumab demonstrated significant improvements over placebo in clinical 

response and remission rates. Specifically, UNITI-1 (n=741) showed a week-6 

clinical response rate of 33.7% for ustekinumab versus 21.5% for placebo 
(P<0.01), while week-8 remission rates reached 20.9% compared to 7.3% 

(P<0.001) (71). UNITI-2 (n=628) showed even higher response and remission rates 

at week 6 and 8, with 55.5% versus 28.7% (P<0.001) for response and 40.2% 

versus 19.6% (P<0.001) for remission, favoring ustekinumab (65). The IM-UNITI 
trial further demonstrated the maintenance of remission with ustekinumab at 8-

week and 12-week intervals, achieving remission in 53.1% and 48.8% of patients 

at week 44, respectively, as compared to 35.9% for placebo (P=0.005 and P=0.04) 
(66). 

 

Side effects most frequently associated with ustekinumab include 
nasopharyngitis, injection site erythema, and vulvovaginal candidiasis, as well as 

serious infections like anal abscess, gastroenteritis, and pneumonia (63). 

Additionally, 0.2% of patients treated with ustekinumab developed nonmelanoma 
skin cancer (NMSC) and other malignancies, with none reported in placebo 

recipients (64). Immunogenicity rates differ slightly between conditions; 6% of 

psoriasis patients developed anti-ustekinumab antibodies, while only 3% did so 
among CD patients (64). Post-marketing data have reported hypersensitivity 

reactions, including anaphylaxis, angioedema, and urticaria, and though limited, 

human pregnancy data show no evidence of adverse fetal effects at doses 

exceeding 100 times the recommended human dose (64). Animal studies have 
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found the presence of ustekinumab in milk in lactating monkeys, but not in 

human milk. Ustekinumab’s safety and efficacy in the pediatric population 

remain unestablished, and there are insufficient data among the elderly to 
confirm differences from adults (64). 

 

Biologics in Rheumatoid Arthritis: 
 

Roughly 40% of newly diagnosed patients with rheumatoid arthritis (RA) fail to 

achieve disease remission or low disease activity using conventional synthetic 
disease-modifying antirheumatic drugs (csDMARDs) due to inadequate efficacy or 

dose-related intolerance. Although some patients achieve initial remission, long-

term treatment often sees a reduction in efficacy, even with csDMARDs and 
corticosteroids. In these cases, biologic DMARDs (bDMARDs) become essential 

and are frequently effective in reaching the desired treatment targets. If the 

response diminishes over time, switching to another bDMARD is often beneficial. 

In the UK, five tumour necrosis factor-α inhibitors (TNFis) are licensed for RA 
treatment, with biosimilars available for two of them. Additionally, bDMARDs with 

three distinct mechanisms of action are also approved. These drugs demonstrate 

effectiveness for RA patients who did not respond to methotrexate (MTX), showing 
clinical, structural, and functional benefits through randomized controlled trials. 

Trials typically compare bDMARDs in combination with MTX against a placebo 

plus MTX, with key results compiled in research summaries. 
 

First-line biologic use of bDMARDs generally yields American College of 

Rheumatology (ACR) response rates of 20% (ACR20), 50% (ACR50), and 70% 
(ACR70) in patients inadequately responding to MTX. On a broad scale, 

bDMARDs of differing actions perform similarly in first-line treatment. While co-

administration with MTX enhances efficacy, poor MTX tolerance leads about a 

third of patients to use bDMARDs with other csDMARDs or as monotherapy. 
Notably, the ADACTA and MONARCH trials showed that anti-interleukin-6 

receptor antibodies (e.g., tocilizumab and sarilumab) as monotherapies 

outperformed adalimumab monotherapy in patients who had inadequate 
responses to MTX. In second-line biologic use, bDMARD response rates generally 

decrease compared to first-line treatments, with response rates being similar 

across all bDMARD classes. However, patients switching from a TNFi to a biologic 
with a different mechanism of action often respond better than those who switch 

within the TNFi class. Assessing drug levels of some TNFis aids in determining 

whether to use another TNFi or a different bDMARD. Comparative studies of 
bDMARDs have shown no superiority within the TNFi class, as demonstrated by 

the EXXELERATE trial, which found no efficacy difference between certolizumab 

and adalimumab. Between-class trials also show comparable results, with the 

ORBIT study demonstrating rituximab's non-inferiority to TNFi, and the AMPLE 
trial showing similar outcomes between adalimumab and abatacept for early RA. 

Other studies, such as RA-BEAM and ORAL, support the efficacy of targeted 

synthetic DMARDs (tsDMARDs) like baricitinib and tofacitinib as comparable or 
superior to TNFis in MTX-inadequate responders. 

 

The introduction of bDMARDs has transformed RA management, significantly 
reduced erosive damage and preserved function. However, access to bDMARDs 

remains uneven, often restricted by cost-based eligibility criteria, as seen in 
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England and Wales, where a Disease Activity Score (DAS28) threshold of 5.1 is 
required for reimbursement. This threshold excludes patients with moderate 

disease activity (DAS28 scores above 3.2 but below 5.1), who typically fare poorly 

with csDMARDs alone, facing risks of functional impairment and joint 
destruction. While efficacy among bDMARDs appears similar at the group level, 

certain stratifiers support more tailored use in individual cases. For instance, 

TNFis are generally avoided in patients with interstitial lung disease, cardiac 

failure, or multiple sclerosis, where safer alternatives like rituximab and 
abatacept are preferred. Tocilizumab is not advised for patients with diverticular 

disease, while TNFis require screening for latent tuberculosis and hepatitis B 

before rituximab use due to increased risks. Rituximab is also recommended for 
patients with recent lymphoma histories, given the limited evidence linking TNFis 

to cancer, except non-melanoma skin cancer. 

 
Certain biomarkers also guide bDMARD selection. Sero-positivity for rheumatoid 

factor (RF) and anti-citrullinated protein antibodies (ACPAs) enhances responses 

to rituximab and abatacept, though not to tocilizumab or TNFis. Smoking 
adversely affects responses to TNFis and abatacept but does not significantly 

impact rituximab or tocilizumab efficacy. Obesity further complicates treatment 

outcomes, especially with fixed-dose TNFi injections, whereas drugs dosed by 

weight, like intravenous golimumab, are effective in patients over 100 kg. 
Although fixed-dose subcutaneous tocilizumab and abatacept match the efficacy 

of their intravenous counterparts across body mass indices, response rates 

remain lower in patients over 100 kg, a limitation not observed with rituximab. 
Patients experiencing diminished efficacy or tolerance loss with a bDMARD often 

switch to another. Across studies, subsequent responses to a second or third 

bDMARD are lower than with initial treatment, reflecting the challenge of 
matching patients to the most effective mechanism of action without predictive 

biomarkers for individual outcomes. Therapeutic drug levels of adalimumab and 

certolizumab can help guide treatment adjustments, as therapeutic levels suggest 
that the lack of response likely stems from inadequate TNF inhibition. Conversely, 

low drug levels may indicate non-adherence or anti-drug antibodies, suggesting 

that switching within the TNFi class may still be effective. Dose reduction has also 

become common in patients achieving sustained remission (typically over a year). 
Many patients with supratherapeutic TNFi levels maintain remission after 

reducing bDMARD doses by extending intervals or administering lower doses, 

such as 25 mg of etanercept where available. The future of RA treatment may 
shift toward precision medicine, aiming to optimize drug choice and dosing from 

the outset to improve outcomes and minimize trial-and-error adjustments. 

 
Biologics and Lupus Erythematosus: 

 

Because of the disease's variability and lack of a defined treatment plan, 
managing active systemic lupus erythematosus (SLE) is extremely difficult. 

Corticosteroids and immunosuppressants are the mainstays of current treatment 

strategies [67]. Complete remission is still uncommon in clinical practice, despite 
being the desired result for SLE care [268]. The effectiveness of standard therapy 

regimens using corticosteroids and immunosuppressants varies, helping only a 

small percentage of patients while also causing serious side effects like infections, 

osteoporosis, and cardiovascular problems [69-71]. As a result, treatments with 
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increased effectiveness and a lower profile of adverse effects are desperately 

needed. The development of targeted biologics, which try to modify specific 

components of immune responses, has increased due to advances in 
understanding the pathogenic mechanisms of SLE. Targeting B cells, T cells, 

cytokines, and other immunological mediators, new treatment medicines are 

being developed for SLE, and ongoing phase II and III trials are showing 
encouraging results. 

 

Belimumab and rituximab are two B cell-targeted treatments that have seen 
clinical success. For the treatment of SLE, belimumab, a fully humanized 

monoclonal antibody against B-cell activating factor (BAFF), has been approved 

by regulators in both Europe and the USA. Nevertheless, belimumab has only 
been shown to provide a slight improvement in clinical trials, with a 14% greater 

response rate at 52 weeks when compared to a placebo (SRI = 58%). Rituximab, a 

CD20-targeting medication, has been thoroughly investigated and may be used as 

a treatment [72-74]. For example, rituximab has shown promise efficacy in 
lowering corticosteroid reliance, according to a prospective study [75]. However, 

the major goals of the LUNAR study for lupus nephritis and the EXPLORER study 

for nonrenal SLE were not met [76, 77]. Despite rituximab's effectiveness in SLE, 
treatment outcomes may be improved by grouping patients according to their 

clinical traits. Furthermore, in phase II EMBLEM studies, the anti-CD22 antibody 

epratuzumab demonstrated positive clinical responses and reduced CD19+ B cell 
numbers with good tolerability [78]. However, as compared to placebo, the phase 

III EMBODY studies did not show a statistically significant increase in response 

rates (39.8% vs. 34.1%) [79]. To evaluate the effectiveness of anti-CD22 
treatments in SLE, more investigation is necessary. CD40L inhibitors are another 

possible treatment; they block the generation of high-affinity autoantibodies by 

preventing IgG class switching when they bind to CD40 on B cells. A phase I trial 

with dapirolizumab pegol, an anti-CD40L Fab fragment, recently showed that 
46% of patients achieved BICLA with no significant side effects; however, due to 

the small sample size, additional evaluation is required [80]. Low-dose IL-2 

showed effectiveness and tolerability in patients with active SLE in a recent proof-
of-concept study [81]. By week 12, 89.5% of subjects had experienced an SRI 

response, with improvements in proteinuria and autoantibody titers, increased C3 

and C4 levels, and decreases in clinical symptoms such rash, alopecia, arthritis, 
fever, leukopenia, and thrombocytopenia. By increasing Treg activity and 

decreasing pathogenic responses linked to Tfh and Th17 cells, low-dose IL-2 

seems to alter immunological balance [82-85]. Additionally, this strategy 
increases the activity of CD8 T cells and NK cells, which may improve SLE 

patients' immunological responses to infections. 

 

Furthermore, patients with active SLE frequently exhibit higher serum IFNα levels 
and IFN gene expression profiles [86-87]. Phase II and III trials have shown 

promising results for drugs such as sifalimumab (anti-IFNα mAb), rontalizumab 

(humanized IgG1 anti-IFNα antibody), and anifrolumab (anti-interferon receptor 1 
(IFNAR1)) [88-92]. Although very slightly so, a phase II trial of sifalimumab 

showed a statistically improved SRI-4 response in treatment groups (56.5–58.3%) 

as compared to placebo (45.4%). Patients who received the experimental 
medication had higher infection rates [89]. Phase III trials are currently being 

conducted to assess the effectiveness and safety of this strategy. Additionally, 
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ustekinumab has been shown to be effective in inhibiting the IL12/23 pathway, 
which is associated in the pathophysiology of SLE. In a phase II research, the 

SRI-4 response rate after 24 weeks was 60%, compared to 31% for a placebo [93]. 

A CTLA-4-Ig fusion protein called abatacept, which inhibits T-cell activity and has 
demonstrated disease-modifying potential in murine models of lupus nephritis, 

has attracted a lot of attention [94-96]. No significant clinical improvements have 

been noted in SLE patients despite abatacept's evaluation [97-101]. Although 

primary goals were not met, abatacept has shown biologic action, such as 
decreasing anti-dsDNA antibodies and raising C3 levels, with tolerability in 

patients with active lupus nephritis [101]. Lastly, therapeutic approaches that use 

T cell vaccines (TCVs) and mesenchymal stem cells (MSCs) have demonstrated 
safety and efficacy in SLE, and they may be promising future therapy choices 

[102-104]. In conclusion, therapies that target anti-CD22, IFN-α, CTLA-4-Ig, and 

other biologics are undergoing clinical trials, whereas treatments that target anti-
Blys, anti-CD20, low-dose IL-2, MSCs, and TCVs are currently in clinical usage 

for SLE. Researcher-rheumatologist cooperation seem to be ushering in a new era 

of tailored SLE therapy. 
 

Biologics and Asthma: 

 

Inhaled allergens activate B lymphocytes, prompting them to differentiate into 
plasma cells that produce immunoglobulin E (IgE) antibodies. These antibodies 

circulate in the bloodstream and bind to high-affinity IgE receptors on mast cells 

and basophils. When allergens re-enter the body, they bind to these IgE-bound 
receptors, triggering the release of inflammatory mediators like histamines and 

leukotrienes, which cause bronchoconstriction typical in asthma exacerbations. 

Omalizumab, the first monoclonal antibody approved for asthma management, 
interferes by binding to IgE, inhibiting its binding to high-affinity receptors on 

mast cells and basophils. This blockade reduces the release of allergic response 

mediators, significantly lowering asthma exacerbations in patients with poorly 
controlled allergic asthma despite inhaled corticosteroids. Studies highlight 

omalizumab’s efficacy, particularly in patients exhibiting type 2 inflammation, as 

indicated by elevated blood eosinophils, periostin, or nitric oxide levels (105). 

Although well tolerated, omalizumab can cause local pain at injection sites and 
occasionally hypersensitivity reactions, making it unsuitable for chronic 

obstructive pulmonary disease (COPD) (106-108). 

 
Interleukin-5 (IL-5), a cytokine, plays a vital role in eosinophil proliferation, 

maturation, and functioning. This cytokine, primarily produced by Th2 

lymphocytes, natural killer cells, and eosinophils, is elevated in asthma, 
especially with allergen exposure. Eosinophils, associated with inflammation in 

asthma and COPD, release granular proteins through IL-5–mediated pathways, 

which intensify airway inflammation. IL-5, therefore, has become a major target 
for treating eosinophilic asthma and COPD (10). Among IL-5-targeted biologics, 

mepolizumab, a monoclonal antibody targeting IL-5, demonstrated decreased 

exacerbations in patients with high eosinophil levels even under corticosteroid 
treatments. Cleared in 2015 for eosinophilic asthma patients over 12 years old, 

mepolizumab offers significant relief (109-111). Another monoclonal antibody, 

reslizumab, administered intravenously, reduces asthma symptoms and improves 

lung function. Approved in 2016 for adult eosinophilic asthma, it has shown 
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efficacy in lung function and symptom improvement (112). Benralizumab, 

targeting the IL-5 receptor, not only inhibits IL-5 binding but also attracts natural 

killer cells, aiding in eosinophil depletion and further improving asthma control. 
Cleared for eosinophilic asthma in 2017, benralizumab allows dosing every eight 

weeks after initial monthly administration, demonstrating long-term efficacy and 

a reduction in corticosteroid use (113-116). 
 

However, anti–IL-5 therapies have not yet received FDA approval for COPD 

treatment. Mepolizumab phase 3 trials in COPD patients with an eosinophilic 
phenotype did indicate a decrease in exacerbations in the METREX study but 

inconclusive results in the METREO trial, suggesting further research is needed 

to explore eosinophil roles in COPD (117). Although reslizumab has not been 
evaluated formally for COPD, early benralizumab trials in COPD patients with 

eosinophilic phenotypes yielded mixed results, warranting additional studies to 

clarify its benefits in COPD management (118). Newer therapeutic targets have 

emerged, such as interleukin-4 (IL-4) and interleukin-13 (IL-13), cytokines 
elevated in asthma patients. IL-4 facilitates Th2 cell development and B-cell 

isotype switching, while IL-13 impacts smooth airway muscle and promotes 

allergic responses. Dupilumab, a monoclonal antibody blocking IL-4 and IL-13, 
showed promising results in reducing exacerbations and improving lung function 

in asthma. Initial trials of IL-13-targeting antibodies, lebrikizumab and 

tralokinumab, demonstrated limited benefits in asthma and are currently not 
pursued further (119-122). These cytokine-focused therapies highlight ongoing 

advances in targeted asthma treatments, but further studies are necessary for 

COPD applications. 
 

Biologics in Multiple Sclerosis: 

 

A humanized IgG4 monoclonal antibody (mAb), natalizumab (NTZ) exclusively 
targets the vascular adhesion protein VLA-4, more especially its alpha-4 subunit, 

which is found on T cell membranes. Natalizumab efficiently blocks its interaction 

with VCAM-1, which is expressed on the surface of endothelial cells, by binding to 
VLA-4 (123). By stopping T cells from sticking to the endothelium and then 

moving into the central nervous system (CNS), this blockade lowers inflammation 

in this vital region. Natalizumab has been used as a second-line treatment for 
patients with relapsing-remitting multiple sclerosis (RRMS) since it was approved 

in 2006. In addition to considerably lowering MRI indications of disease activity, it 

has shown extraordinary efficacy, reducing recurrence rates and the buildup of 
impairment (124-125). Natalizumab administration carries several hazards 

despite its advantages. Progressive multifocal leukoencephalopathy (PML), which 

has an incidence rate of roughly 1 in 1,000, is one serious side effect linked to its 

use. The reactivation of the John Cunningham virus (JCV) causes PML, a 
demyelinating disorder of the central nervous system that can be deadly and 

destroy oligodendrocytes. JCV is unique to humans and species-specific. The 

virus can remain dormant in different organs since the initial infection usually 
happens in early childhood and is frequently asymptomatic (126-127). Individuals 

taking natalizumab for more than 24 months or those who have previously had 

immunosuppressive treatments are more likely to acquire PML (128-129). 
According to recent research, individuals receiving natalizumab medication may 

be at additional risk for PML if their blood anti-JCV antibody levels are elevated 
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(130). It is recommended to stop natalizumab treatment in such cases. When 
natalizumab is stopped, the disease activity may return to what it was before 

treatment. However, the immunological reconstitution inflammatory syndrome 

(IRIS) can cause serious clinical and radiological decline in certain patients. With 
a 20% fatality rate, this illness usually appears days to weeks after natalizumab 

therapy is stopped. Significant lymphocytic infiltration in the brain and an 

increased immune response to viral antigens are characteristics of IRIS, which 

causes damaging inflammation that affects glial cells and both healthy and 
infected neurons (131-132). 

 

Clinicians may decide to stop natalizumab therapy for a number of reasons, such 
as insufficient efficacy, tolerability issues, or patient preferences for oral drugs, in 

addition to the risk of PML. However, discontinuing medication might cause a 

recurrence of the illness in some people, which frequently manifests more 
strongly than the usual relapses seen in those who have never had treatment. 

This occurrence, referred to as "rebound" activity, most likely results from the 

blood-brain barrier being more permeable, which allows activated lymphocytes 
from the periphery to enter the central nervous system. According to several 

studies, the rebound rate varies between 10% and 30% of patients and usually 

happens three to six months after stopping natalizumab (133). Another oral 

disease-modifying drug for RRMS is tingolimod (FTY720), which is categorized as 
a second-line treatment. In 2010, it was first approved in the United States, and 

in 2011, it was also approved in Europe and Japan. Sphingosine-1-phosphate 

(S1P), a naturally occurring phospholipid that controls several vital physiological 
functions such as cellular survival, cytoskeletal organization, and motility, shares 

structural similarities with tingolimod, a chemical derivative of myriocin obtained 

from the fungus Isaria sinclairii (134). S1P binds to its particular receptors (S1P1-
S1P5) to produce its effects. To respond to the high levels of S1P in blood and 

other body fluids, for instance, S1P1 is necessary for lymphocyte egress from the 

thymus and secondary lymphoid organs (135). Sphingosine kinases cause 
fingolimod to become phosphorylated; the phosphorylated version, known as 

fingolimod-P, functions as an agonist on four of the five known S1P receptors, 

with the exception of S1P2 (134). Fingolimod-P binds to S1P1 inside lymphocytes, 

causing it to internalize irreversibly and preventing activated T cells from leaving 
secondary lymphoid organs. Thus, fingolimod therapy prevents inflammatory cells 

from migrating to sites of inflammation by selectively and reversibly sequestering 

T cells from the spleen and circulation into secondary lymphoid organs (136). 
 

Because the chemokine receptor CCR7 is expressed, naïve T and B lymphocytes 

settle in peripheral lymphoid organs. The efficient migration of T and B cells via 
high endothelial venules (HEV) into lymph nodes depends on the interaction 

between CCR7 and its ligands, CCL19 and CCL21, which are expressed on HEV. 

CCR7 (CCR7+CD45RA-) is also expressed by central memory T cells (TCM). 
Fingolimod-P preserves CCR7-negative effector memory T cells (TEM), a unique 

subpopulation of T cells crucial for immunological surveillance, while blocking the 

outflow of CCR7-positive naïve T cells and TCM from lymph nodes (137). 
Similarly, B cells express CCR7 and S1P receptors. B cell egress from lymph 

nodes is dependent on S1P1. Through receptor internalization, tingolimod 

decreases S1P receptor expression on B cells, which may alter how B cells exit 

lymph nodes and the spleen. But compared to B cells, it seems to affect CD4+ T 
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cells more strongly (138-139). The blood-brain barrier (BBB) is easily crossed by 

tingolimod, which may affect CNS cell activity there. According to recent research, 

fingolimod may have direct effects on the central nervous system, and these non-
immune processes could help stop the progression of MS (140). Since 

sphingosine-1-phosphate receptors are present in a wide variety of tissues, 

fingolimod may have negative effects on different organs and tissues (141). 
Headache, exhaustion, bradycardia, and atrioventricular (AV) block are the most 

commonly reported adverse effects; skin cancer and macular edema have also 

been observed (142-143). There have been reports of infections, such as 
disseminated herpes zoster virus infection (VZV), herpes simplex virus 

encephalitis, and B cell lymphoma linked to Epstein-Barr virus (EBV) infection, 

despite the fact that fingolimod has no effect on the function of effector memory T 
cells (TEM), suggesting that patients shouldn't be more susceptible to infections 

(144-145). 

 

Although PML can happen to patients using fingolimod, its frequency (1:10,000) 
is much lower than that of natalizumab (146). Notably, during the course of two 

decades, widespread usage of glatiramer acetate and interferon-β has not been 

linked to any recorded cases of PML. Like natalizumab, stopping fingolimod can 
cause exacerbations in the radiological and clinical manifestations, which are 

linked to the emergence of immune reconstitution inflammatory syndrome (147-

148). When IFN-β or glatiramer acetate treatment is ineffective for individuals 
with active multiple sclerosis, doctors frequently think about switching to 

natalizumab or fingolimod. However, other research suggests that natalizumab 

may be a better option than fingolimod for reducing relapse rates and short-term 
disability loads (149). Researchers have successfully studied novel small 

compounds that overcome the negative effects of fingolimod while maintaining its 

advantageous qualities. Ozanimod, a novel oral selective small drug that targets 

S1P1 and S1P5, is one intriguing possibility. Ozanimod does not require 
phosphorylation to function, in contrast to fingolimod. Ozanimod has a 19-hour 

half-life, which permits once-daily dosage and causes a dose-dependent decrease 

in the number of circulating lymphocytes. However, because of its short half-life, 
it promotes a quick recovery of lymphocytes when therapy stops. In phase II 

clinical studies, ozanimod was well tolerated (150), and no serious side events 

related to the heart, lungs, eyes, infections, or cancer were documented, including 
no cases of macular edema. Building on these encouraging results, phase III 

trials, like the RADIANCE trial, started in December 2013 and are expected to 

yield results in the upcoming year (150). 
 

Apart from fingolimod, two other drugs that are taken orally have surfaced: 

cladribine and dimethyl fumarate (DMF). In 2013, the FDA and EMA approved 

dimethyl fumarate, the methyl ester of fumaric acid, for the treatment of relapse 
multiple sclerosis. DMF is now one of the most commonly prescribed disease-

modifying drugs in both the US and Europe due to its good safety record. Memory 

vs naïve, conventional versus regulatory T cell subsets, and CD8+ versus CD4+ 
cells are all affected more by DMF's induction of apoptosis in T cells (151). DMF 

also affects dendritic cells, which results in less IL-12 and IL-23 being 

synthesized. This decrease in myeloid antigen-presenting cells therefore increases 
the production of the Th2 cytokine IL-4 and decreases the development of CD4+ T 

cells into pro-inflammatory Th1 and Th17 subtypes (151). DMF has been shown 
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to have a possible neuroprotective effect, which is most likely due to its influence 
on the nuclear factor NRF-2 in neurons, oligodendrocytes, and astrocytes. 

Numerous neuroprotective genes, including those involved in heme oxygenase-1 

production, have been demonstrated to have their transcription facilitated by 
NRF-2 binding to the antioxidant response element (ARE) (151). As a short-term 

therapy, cladribine, a purine nucleoside analog, is given. Rapidly dividing 

lymphocytes are specifically targeted by its immunosuppressive qualities, which 

deplete T and B cells while leaving resting cells—including memory T and B 
cells—unaffected. Cladribine has a special mode of action that uses the depletion 

of adenosine triphosphate (ATP) to cause programmed cell death (151). However, 

patients are continuously watched for the reactivation of latent infections, 
especially with the JC virus, as well as other opportunistic infections, because it 

might cause persistent lymphopenia. The long-term ramifications of cladribine 

treatment are yet unknown, despite its similar efficacy to fingolimod and 
comparatively low incidence of treatment-related side events (151). 

 

Conclusion 
 

The development of biologics has significantly altered the therapeutic landscape 

for systemic lupus erythematosus, inflammatory bowel disease, rheumatoid 

arthritis, asthma, and multiple sclerosis, offering targeted interventions that 
address specific immunological pathways. In SLE, while agents like belimumab 

and rituximab have shown moderate success, ongoing research into novel 

biologics such as anti-CD22 and anti-IFNα therapies could further improve 
treatment outcomes. In asthma, the introduction of IL-5 and IL-4 inhibitors has 

provided new avenues for managing severe forms of the disease, though further 

studies are needed to assess their role in chronic obstructive pulmonary disease 
(COPD). For multiple sclerosis, natalizumab demonstrates profound efficacy in 

managing relapsing forms of the disease, albeit with a risk of serious side effects 

like progressive multifocal leukoencephalopathy (PML). As our understanding of 
these diseases continues to evolve, personalized medicine approaches that 

consider individual patient profiles will be crucial in optimizing the use of 

biologics, minimizing adverse effects, and enhancing overall treatment efficacy. 

The collaboration between researchers and clinicians will be pivotal in advancing 
the development of these targeted therapies and addressing the unmet needs in 

the management of SLE, asthma, and MS. 
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 أثر العلاجات البيولوجية على إدارة الأمراض المناعية الذاتية: مراجعة شاملة للصيادلة

 
 :الملخص

الروماتويدي  :الخلفية المفاصل  التهاب  علاج  في  تحولي  كنهج  البيولوجية  العلاجات  الالتهابي (RA) برزت  الأمعاء  ومرض   ، (IBD)  والذئبة  ،

 .، من خلال معالجة الآليات الفسيولوجية المرضية الأساسية لهذه الأمراض المعقدة  (MS) والربو ، والتصلب المتعدد،  (SLE) الحمراء

الأمعاء  :الهدف ومرض  الحمراء،  الذئبة  علاج  في  المستخدمة  الرئيسية  البيولوجية  العلاجات  استكشاف  هو  المراجعة  هذه  من  الرئيس ي  الهدف 

 .الالتهابي، والتصلب المتعدد، والتهاب المفاصل الروماتويدي، والربو

 .تم جمع وتحليل بيانات محدثة باستخدام المقالات الأصلية البحثية والمقالات المراجعة :الطرق 

، مما يوفر تحسينات محدودة لكنها ملحوظة في نتائج المرض ى. كما أن B تستهدف العلاجات البيولوجية مثل بليموماب وريتوكسيماب خلايا :النتائج 

بجرعات منخفضة قيد التحقيق، بهدف تعزيز فعالية العلاج مع تحسين السلامة. في إدارة الربو،   IL-2هناك عوامل واعدة أخرى مثل إبراتوزوماب و

تهابية، مما تستهدف الأجسام المضادة أحادية النسيلة مثل أوماليزوماب ومابوليزوماب ودوبيلوماب السيتوكينات الرئيسية المشاركة في الاستجابة الال

المتعدد من خلال التصلب  في علاج  حاسمًا  تقدمًا  ناتاليزوماب  يمثل  بالمثل،  المرض ى.  حياة  نوعية  النوبات ويعزز  كبير من حدوث  بشكل  تثبيط    يقلل 

البيولوجية  T هجرة خلايا العلاجات  استخدام  فإن  فعاليتها،  الرغم من  المرض. على  نشاط  بشكل فعال من  يقلل  المركزي، مما  العصبي  الجهاز  إلى 

 .يرافقه تحديات، بما في ذلك الآثار الجانبية المحتملة والحاجة إلى استراتيجيات علاج شخصية

بالذئبة  :الخلاصة المصابين  للمرض ى  المثلى  العلاج  بروتوكولات  وإرساء  العلاجات  لتحسين هذه  المستمرة ضرورية  السريرية  والتجارب  الأبحاث  تظل 

 .الحمراء والربو والتصلب المتعدد

المفتاحية المناعية  :الكلمات  الاضطرابات  الالتهابي،  الأمعاء  مرض  الربو،  الحمراء،  الذئبة  الروماتويدي،  المفاصل  التهاب  البيولوجية،  العلاجات 

 .الذاتية

  


