

How to Cite:

Alharbi, A. S., Alreshidi, M. S., Alanazi, A. J., Almutairi, K. H. K., & Alotibi, F. S. (2021). Advancements and challenges in nanotheranostics for cancer: A comprehensive review. *International Journal of Health Sciences*, 5(S1), 1436–1443.
<https://doi.org/10.53730/ijhs.v5nS1.15352>

Advancements and challenges in nanotheranostics for cancer: A comprehensive review

Ali Sadun Alharbi

KSA, National Guard Health Affairs

Mohammad Saud Alreshidi

KSA, National Guard Health Affairs

Ali Jamal Alanazi

KSA, National Guard Health Affairs

Khalid Hazzaa K Almutairi

KSA, National Guard Health Affairs

Fares Saad Alotibi

KSA, National Guard Health Affairs

Abstract--Background: The area of nano theranostics, which combines therapeutic and diagnostic capabilities on nanoscale platforms, has the potential to completely transform the way cancer is treated. Despite considerable progress, clinical translation encounters obstacles, including variances in physiological responses between animal models and people, as well as issues related to toxicity and effectiveness. Nanomedicine employs diverse nanoparticles, such as liposomes and gold nanoparticles, to address the shortcomings of traditional cancer therapies. **Methods:** This work examines the developments and difficulties in the field of nanotheranostics for the treatment of cancer, with an emphasis on the creation of "intelligent" nanocarriers that combine treatments and diagnostics. The assessment encompasses tactics such as passive and active targeting, along with stimuli-responsive systems, emphasizing the potential of radionuclide integration for improved tumor imaging and therapy. **Results:** Through real-time medication distribution monitoring and controlled release mechanisms, nanotheranostics show the potential to enhance therapeutic effectiveness and safety. Nonetheless, challenges like toxicity, regulatory approval, and scalability impede their clinical translation. **Conclusion:** To overcome present obstacles

and bring nanotheranostics into the mainstream of cancer treatment, teamwork and creative thinking are essential. This emphasizes the need for better preclinical models, updated manufacturing processes, and increased biocompatibility.

Keywords--Theranostic platforms, intelligent nanocarriers, nanomedicine, cancer therapy, and nano theranostics.

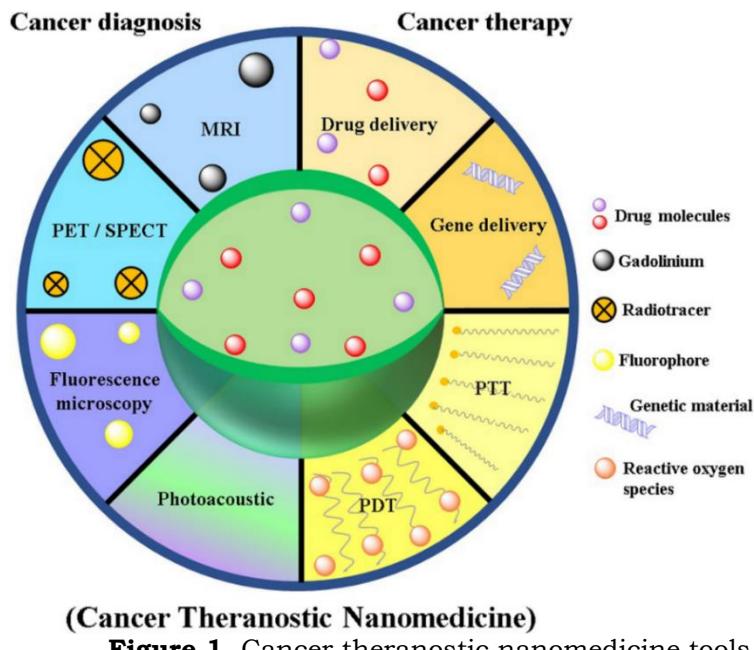
1. Introduction

Nanotheranostics, which combines diagnostic and therapeutic functions on a single nanoscale platform, is an emerging research domain with considerable promise to transform cancer treatment (1). Despite significant advancements, clinical translation continues to be impeded by many problems, including discrepancies in the physiological behavior of nanotheranostic systems between animal models and human individuals, along with apprehensions surrounding their toxicity and safety profiles (2). Although several nanotheranostic devices have remarkable diagnostic performance, they often lack equivalent therapeutic effectiveness, and vice versa. Initiatives to improve these systems have concentrated on investigating innovative nanomaterials, altering current systems, and rigorously assessing their *in vivo* efficacy in animal models (3).

Despite the promising results of many of these systems in preclinical environments, their implementation in people often encounters a failure, mostly attributable to variations in nanoparticle diffusion pathways among species. The potential toxicity of metallic nanoparticles (NPs) and carbon nanotube (CNT)-based systems, characterized by sluggish degradation and ambiguous *in vivo* behavior, raises concerns (4). To tackle these problems, researchers have used tactics that include surface coating with biocompatible polymers and the creation of theranostic platforms using clinically approved nanoparticles. Notwithstanding these developments, the practical use of nano theranostics needs more innovation and stringent testing (5).

2. Oncology and the Potential of Nanomedicine

Cancer continues to be one of the most formidable illnesses globally, with 18.1 million new cases and 9.6 million fatalities documented in 2018. Projections indicate that the worldwide incidence of cancer-related fatalities may reach 30 million per year by 2030. Prompt diagnosis accompanied by accurate, timely intervention is essential for enhancing survival rates. Conventional diagnostics and medicines often prove inadequate owing to constraints including limited bioavailability, off-target biodistribution, multidrug resistance (MDR), and toxicity to healthy organs (6, 7).


Nanomedicine has emerged as a viable way to address these restrictions, facilitating tailored administration of chemotherapeutics and imaging agents while reducing side effects. A diverse array of organic and inorganic nanoparticles, such as liposomes, solid lipid nanoparticles (SLNs), polymeric micelles, gold nanoparticles, iron oxide nanoparticles, and carbon nanotubes

(CNTs), has been engineered for cancer diagnostics and treatment (8). These platforms utilize tumor-specific attributes to enhance treatment efficacy and are categorized into three primary strategies: passive targeting via the enhanced permeability and retention (EPR) effect, active targeting through surface-functionalized nanoparticles directed by cancer-specific ligands, and stimuli-responsive systems (9).

3. The emergence of "Intelligent" Nanotheranostics

Advancements in nanotechnology have enabled the creation of "smart" nanocarriers that integrate therapeutic and diagnostic functions within a single platform, referred to as nanotheranostics (10). These technologies provide real-time surveillance of drug biodistribution, tumor localization, and controlled drug release, therefore improving the efficacy and safety of cancer therapies. Researchers have investigated the incorporation of radionuclides into nanotheranostic devices, which provide distinctive diagnostic and therapeutic functions via the emission of ionizing radiation. This method has shown significant potential for tumor imaging and targeted radionuclide treatment (11).

Nanomedicines exhibit many compositions and structures, including categories such as biodegradable polymers (e.g., PLGA, chitosan, dextran), carbon-based materials (e.g., CNTs, graphene), metallic nanoparticles (e.g., gold, iron oxide), and semiconductor quantum dots (QDs) (3). These materials have unique physicochemical features that affect their efficacy as drug carriers or imaging agents. The transition of these sophisticated systems from laboratory settings to clinical use has been sluggish, impeded by obstacles like toxicity, scalability, and regulatory approval. Figure 1 represents the cancer theranostic nanomedicine tools.

4. Sanctioned Nanomedicines and Their Constraints

Numerous nanomedicines have effectively penetrated the clinical market, such as Doxil® (a liposomal formulation of doxorubicin for breast and ovarian malignancies), Abraxane® (albumin-bound paclitaxel for metastatic breast carcinoma), and Resovist® (iron oxide nanoparticles for hepatic lesion imaging) (12). Notwithstanding these achievements, the predominant number of nanomedicine candidates fail in clinical trials. These failures often arise from an inadequate comprehension of tumor biology, the incapacity of preclinical animal models to emulate human settings, and the intricacies involved in scaling up nanoparticle manufacturing (13).

The variability of tumor microenvironments hampers patient selection since existing diagnostic methods cannot consistently identify people who would get the most benefit from nanomedicine-based therapy. The EPR effect, essential for passive tumor targeting, is affected by several aspects including nanoparticle-protein interactions, blood circulation dynamics, and cellular internalization. The large differences in these factors between animal models and humans diminish the predictive validity of preclinical investigations (14).

The repeatable manufacture of nanoparticles with exact physicochemical parameters at an industrial scale continues to be a significant obstacle. The intricate procedures associated with nanoparticle synthesis need creative scale-up solutions that maintain quality and consistency while adhering to good manufacturing principles (GMP) and regulatory regulations. Metallic nanoparticles, while promising as theranostic agents, often demonstrate toxicity owing to their accumulation in tissues and their capacity to provoke oxidative stress and DNA damage (15). Gold nanoparticles smaller than 50 nm induce substantial immune responses, but cadmium-based quantum dots emit hazardous ions during disintegration. Likewise, gadolinium nanoparticles, often used in imaging, provide chances of nephrogenic systemic fibrosis in individuals with renal deficiencies (16).

5. Approaches to Mitigate Obstacles

The modification of surfaces with biocompatible polymers or the use of biodegradable materials has shown potential in mitigating the toxicity of metallic nanoparticles. Researchers are investigating the creation of hybrid systems that integrate organic and inorganic components to improve safety and functionality (17). The creation of animal models that more accurately replicate the anatomical and histological characteristics of human cancers is essential for augmenting the predictive validity of preclinical research. Models must include variables such as tumor metastasis and microenvironmental heterogeneity. Innovations in nanoparticle synthesis, including microfluidics and automated assembly technologies, may enable the large-scale manufacturing of nanomedicines with uniform characteristics. These methods must also tackle regulatory obstacles by guaranteeing adherence to rigorous quality control requirements (18, 19).

6. Toxicity and Enduring Effects

The enduring effects of nanomedicines on human health and the environment are a significant issue. Residual compounds from nanoparticle formulations and their buildup in biological systems may cause cellular and metabolic changes. Moreover, inconsistencies between *in vitro* and *in vivo* toxicity evaluations underscore the need for consistent testing methods and improved methodologies for assessing the behavior of nanomedicines inside intricate biological systems (20).

Despite considerable progress in cancer nanotechnology, extensive efforts are still required for the broad clinical use of nanotheranostics. Recent advancements, including the endorsement of mRNA-based liposomal vaccines, have revitalized interest in nanomedicine research, especially concerning cancer immunotherapy. Researchers must confront critical hurdles, such as refining patient classification, optimizing nanoparticle design, and augmenting the scalability of production methods (21).

Nanotheranostics offers significant promise to revolutionize cancer care via the facilitation of precise, tailored therapies. Ongoing multidisciplinary cooperation and innovation will be crucial to surmounting existing obstacles and advancing these promising technologies to clinical use. Through persistent efforts, the objective of incorporating nanotheranostics into standard cancer treatment may soon materialize.

7. Conclusion

In conclusion, the realm of nanotheranostics for cancer reveals both significant promise and substantial obstacles. The amalgamation of diagnostic and therapeutic capabilities on nanoscale platforms represents a transformative advancement in cancer therapy, ensuring accurate and customized medicines. Notwithstanding this potential, the transition from preclinical success to clinical implementation is laden with obstacles that need new solutions and joint endeavors.

The review emphasizes the essential need for tackling significant obstacles in the domain. Improved biocompatibility by surface modifications and biodegradable materials has the potential to reduce the toxicity linked to metallic nanoparticles. Advanced manufacturing methods like microfluidics and automated assembly provide prospects for large-scale production with consistent attributes, crucial for regulatory endorsement and market feasibility.

Furthermore, the creation of advanced preclinical models that precisely replicate human cancer traits is essential. These models must include characteristics such as tumor metastasis and microenvironmental heterogeneity to improve the prediction validity of preclinical studies. The lasting impacts of nanomedicines on human health and the environment are a major issue, requiring ongoing testing protocols and enhanced toxicity evaluation techniques. The differences between *in vitro* and *in vivo* assessments underscore the need for thorough investigations to comprehend the behavior of nanomedicines in complex biological systems.

Future multidisciplinary cooperation and ongoing innovation will be crucial in advancing nanotheranostics for wider therapeutic use. Recent advancements in mRNA-based liposomal vaccines and the renewed focus on cancer immunotherapy highlight the promise of nanomedicine in revolutionizing cancer treatment. Overcoming current challenges and using upcoming technology may soon enable the integration of nanotheranostics into conventional cancer therapy methods.

References

1. Stephen BJ, Suchanti S, Mishra R, Singh A. Cancer nanotechnology in medicine: a promising approach for cancer detection and diagnosis. *Critical Reviews™ in Therapeutic Drug Carrier Systems*. 2020;37(4).
2. Ahmad J, Ahmad MZ, Akhter H. Surface-engineered cancer nanomedicine: rational design and recent progress. *Current pharmaceutical design*. 2020 Mar 1;26(11):1181-90.
3. Akhter S, Amin S, Ahmad J, Khan S, Anwar M, Ahmad MZ, Rahman Z, Ahmad FJ. Nanotechnology to combat multidrug resistance in cancer. *Resistance to Targeted ABC Transporters in Cancer*. 2015:245-72.
4. Kang C, Kim D. Nanoconfinement-mediated cancer theranostics. *Archives of pharmacal research*. 2020 Jan;43(1):110-7.
5. Haider N, Fatima S, Taha M, Rizwanullah M, Firdous J, Ahmad R, Mazhar F, Khan MA. Nanomedicines in diagnosis and treatment of cancer: an update. *Current Pharmaceutical Design*. 2020 Mar 1;26(11):1216-31.
6. Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. *CA: a cancer journal for clinicians*. 2013 Nov;63(6):395-418.
7. El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. ⁹⁹mTc-Doxorubicin-loaded gallic acid-gold nanoparticles (⁹⁹mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. *International journal of pharmaceutics*. 2020 Aug 30;586:119514.
8. Wang R, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. *Journal of Nanomaterials*. 2013;2013(1):629681.
9. Sakr TM, El-Hashash MA, El-Mohty AA, Essa BM. ⁹⁹mTc-gallic-gold nanoparticles as a new imaging platform for tumor targeting. *Applied Radiation and Isotopes*. 2020 Oct 1;164:109269.
10. Indoria S, Singh V, Hsieh MF. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. *International journal of pharmaceutics*. 2020 May 30;582:119314.
11. Ahmad J, Akhter S, Ahmed Khan M, Wahajuddin M, H. Greig N, Amjad Kamal M, Midoux P, Pichon C. Engineered nanoparticles against MDR in cancer: The state of the art and its prospective. *Current pharmaceutical design*. 2016 Aug 1;22(28):4360-73.
12. Ferrari M. Cancer nanotechnology: opportunities and challenges. *Nature reviews cancer*. 2005 Mar 1;5(3):161-71.
13. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. *Advanced drug delivery reviews*. 2015 Aug 30;91:3-6.
14. Eliasof S, Lazarus D, Peters CG, Case RI, Cole RO, Hwang J, Schluep T, Chao J, Lin J, Yen Y, Han H. Correlating preclinical animal studies and human

clinical trials of a multifunctional, polymeric nanoparticle. *Proceedings of the National Academy of Sciences*. 2013 Sep 10;110(37):15127-32.

- 15. Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME, Yen Y. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. *Proceedings of the National Academy of Sciences*. 2014 Aug 5;111(31):11449-54.
- 16. Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. *Science translational medicine*. 2012 Apr 4;4(128):128ra39-.
- 17. Picco N, Sahai E, Maini PK, Anderson AR. Integrating models to quantify environment-mediated drug resistance. *Cancer research*. 2017 Oct 1;77(19):5409-18.
- 18. Bhatia S, Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. *Natural polymer drug delivery systems: Nanoparticles, plants, and algae*. 2016:33-93.
- 19. Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. *Medical microbiology and immunology*. 2016 Dec;205:603-13.
- 20. Adewale OB, Davids H, Cairncross L, Roux S. Toxicological behavior of gold nanoparticles on various models: influence of physicochemical properties and other factors. *International journal of toxicology*. 2019 Sep;38(5):357-84.
- 21. Schmid G, Kreyling WG, Simon U. Toxic effects and biodistribution of ultrasmall gold nanoparticles. *Archives of toxicology*. 2017 Sep;91:3011-37.

التطورات والتحديات في النانوثيرانوستيك لعلاج السرطان: مراجعة شاملة

الملخص

الخلفية: يتمتع مجال النانوثيرانوستيك، الذي يجمع بين القدرات العلاجية والتشخيصية على منصات نانوية، بإمكانية تحويل طريقة علاج السرطان بشكل جذري. على الرغم من التقدم الملحوظ، تواجه الترجمة السريرية عقبات، بما في ذلك التباينات في الاستجابات الفسيولوجية بين نماذج الحيوانات والبشر، بالإضافة إلى مشكلات تتعلق بالسمية والفعالية. تستخدم النانوميدسين جزيئات نانوية متنوعة، مثل الليبوسومات وجزيئات الذهب، لمعالجة أوجه القصور في العلاجات التقليدية للسرطان.

الطرق: تستعرض هذه الدراسة التطورات والتحديات في مجال النانوثيرانوستيك لعلاج السرطان، مع التركيز على إنشاء "حاملات نانوية ذكية" تجمع بين العلاجات والتشخيصات. تشمل التقييمات استراتيجية مثل الاستهداف السلبي والفعال، بالإضافة إلى الأنظمة المستجيبة للتحفيز، مع التأكيد على إمكانية دمج النظائر المشعة لتحسين تصوير الأورام والعلاج.

النتائج: من خلال مراقبة توزيع الأدوية في الوقت الفعلي وأليات الإفراج المنضبط، تظهر النانوثيرانوستيك إمكانات في تعزيز فعالية العلاج وسلامته. ومع ذلك، فإن التحديات مثل السمية، والموافقة التنظيمية، وقابلية التوسيع تعيق ترجمتها السريرية.

الخلاصة: للنيل على العقبات الحالية وإدخال النانوثيرانوستيك إلى التيار الرئيسي لعلاج السرطان، يعد التعاون والتفكير الإبداعي أمرين أساسيين. وهذا يؤكد الحاجة إلى تحسين النماذج قبل السريرية، وتحديث عمليات التصنيع، وزيادة التوافق الحيوي.

الكلمات المفتاحية: منصات العلاج والتشخيص، حاملات نانوية ذكية، النانوميدسين، علاج السرطان، النانوثيرانوستيك.