
How to Cite:

Krishna, V. R., Rao, T. S., & Roy, L. D. (2022). Arranged sample in GHLD for software
reliability growth model. International Journal of Health Sciences, 6(S2), 1853–1861.
https://doi.org/10.53730/ijhs.v6nS2.5400

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 27 Jan 2022, Manuscript revised: 18 Feb 2022, Accepted for publication: 09 March 2022

1853

Arranged sample in GHLD for software
reliability growth model

V. Rama Krishna

Professor, Vignan’s Foundation for Science, Technology and Research,

Vadlamudi, Guntur

Email: vramakrishna2006@gmail.com

T Sbhamastan Rao

Associate Professor, CMR Technical Campus, Hyderabad

Email: mastan1061@gmail.com

Lakshmi Deepika Roy
Assistant Professor, CMR Technical Campus, Hyderabad

Email: deepikaroy.cse@cmrtc.ac.in

Abstract---As the size and complexity increases, it is difficult to

generate reliable software for the users. Reliability depends on
number of failures which create a great loss in the software system.

Though many software reliability growth models exist, but for time

domain data can be handled through Arranged sample approach and

one can construct NHPP leads to reliability function and formulate

SRGM. In this paper, an attempt is made to present the GHLD type - I
model with arranged sample as a software reliability growth model

and derive the expressions for Reliability function that facilitates to

compute the reliability of a product. Maximum likelihood estimation

procedure is used to estimate the parameters of the model. Through

the analysis of live data sets the results are exhibited.

Keywords---GHLD type I, arranged sample, maximum likelihood

estimation, SRGM.

Introduction

Programming dependability is perhaps the main attributes of programming

quality. Its estimation and the executives advancements utilized during the

product life cycle are fundamental for creating and looking after quality/solid

programming frameworks[14]. Programming Reliability is the likelihood of

disappointment free activity of programming in a predetermined climate during
determined time[1][13]. Over the most recent a very long while, numerous

https://doi.org/10.53730/ijhs.v6nS2.5400
mailto:vramakrishna2006@gmail.com
mailto:mastan1061@gmail.com
mailto:deepikaroy.cse@cmrtc.ac.in

1854

Software Reliability Growth Models (SRGMs) like Crowand Basu (1988), Goel

Okumoto(1979,1984), Musa(1980), Pham(2005), Lutfiah Ismail A turk1 & Wejdan

Saleem Al ahmadi (2018)[15] and a few models have been created to enormously

work with specialists and administrators in following and estimating the

development of unwavering quality as programming is being improved[2]. The
principle objective in fostering these models is to improve the product execution.

During the testing period of a product item, the disappointment information will

be gathered and these models anticipate the future framework operability

dependent on the disappointment information. As the product item is created by

humanities bound to have flaws and in such manner there was a persistent

examination going on in fostering the product unwavering quality development
models. The majority of the models accept that the time between disappointments

follows a remarkable appropriation so the boundaries differ with the blunders

staying in the product framework.

This paper presents the Generalized Half Logistic Type I model with orchestrated
example to investigate the dependability of the product framework. Section II

portrays the Generalized Half Logistic type - I model with organized example and

mean worth capacity for the fundamental NHPP, Section III clarifies the boundary

assessment for Generalized Half Logistic Type I The principle objective of this

paper is to foster a model that gives a quantifiable programming execution. The

design of this paper is as per the following: Section III with masterminded test
approach considering the time area information, Section IV depicts the strategy

used to examine the disappointment informational indexes for live applications

and segment V alludes to end.

Order generalized half logistic type I model

Programming dependability is the most significant and most quantifiable part of

programming quality and it is very client situated. With programming Reliability it

is feasible to quantify how well the program capacities in gathering its operational

prerequisites. Programming unwavering quality measures can advance

quantitative particular of plan objectives and timetables the assets as required.
These actions additionally help in the better administration of undertaking assets

[4]. The client will likewise be profited by programming unwavering quality

measure, in light of the fact that the client is principally worried about the

disappointment free activity of the framework. In the event that the operational

requirements concerning quality are precisely indicated, the client will either get a
framework at an unreasonably exorbitant cost or with an unnecessarily high

operational expense .The most well-known methodology in fostering the product

dependability models is the probabilistic methodology [3]. The probabilistic model

addresses the disappointment events and the issue expulsions as probabilistic

occasions. There are numerous software reliability models available for use

according to probabilistic assumptions. They are classified into various groups,
including error seeding models, failure rate models, curve fitting models,

reliability growth models, Markov structure Models and non-homogenous passion

process (NHPP) models[2]. Most of the models are NHPP based models.

A software system is subject to failures at random times due to the errors present
in the system. Let {N(t), t>0} be a counting process representing the cumulative

1855

number of failures by time t. Since there are no failures at t=0 we have N(0) = 0. It

is assumed that the number of software failures during non-overlapping time

intervals do not affect each other. It can be mentioned that for finite times

t1<t2<t3<….<tn , the n random variables N(t1), {N(t2)-N(t1)}, ….. {N(tn)-N(tn-1)} are
independent. It implies that the counting process {N(t), t>0} has independent

increments. Let m(t) denote the expected number of software failures by time ‘t’.

Since the expected number of errors remaining in the system at any time is finite,

m(t) is bounded, non-decreasing function of ‘t’ with the boundary conditions.

M(t) = 0, t=0
 = a, as t -> ∞

Where a is the expected number of software errors need to be detected. Assume

that N(t) is known to have a Poisson Probability mass function with parameters

m(t) i.e.,

𝑃{𝑁(𝑡) = 𝑛} =
𝑚(𝑡)𝑛𝑒−𝑚(𝑡)

𝑛!

Where N(t) is called NHPP. The behavior of software failure phenomena can be

illustrated through N(t) process. Several time domain models exist in the

literature [7] which specify that the mean value function m(t) will be varied for

each NHPP process The mean value function of Generalized Half Logistic Type I

[16] software reliability growth is given by

𝑚(𝑡) = [
1 − 𝑒−𝑏𝑡

1 + 𝑒−𝑏𝑡
]

𝜃

Here, we consider the performance given by the Generalized Half Logistic Type I

software reliability growth model based on order statistics and whose mean value
function is given by

𝑚(𝑡) = 𝑎𝑟 [
1 − 𝑒−𝑏𝑡

1 + 𝑒−𝑏𝑡
]

𝛳𝑟

Where [m(t)/a] is the cumulative distribution function of Ordered Generalized Half

Logistic distribution type – I model

lim
𝑛→∞

𝑃{𝑁(𝑡) = 𝑛} =
𝑎𝑛𝑒−𝑎

𝑛!

N(t)= N(∞)-N(t)

E [N(t)]= E[N(∞)]- E[N(t)]

= a - 𝑎 [
1−𝑒−𝑏𝑡

1+𝑒−𝑏𝑡]
𝛳

= a(1 - [
1−𝑒−𝑏𝑡

1+𝑒−𝑏𝑡]
𝛳

)

Let Sk be the time between (k-1)th and Kth failure of the software product. It is

assumed that Yk be the time up to the Kth failure. We need to find out the

1856

probability of the time between (k-1)th and Kth failures. The Software Reliability

function is given by

𝑅
𝑆𝑘

𝑋𝑘−1

(𝑆/𝑘) = 𝑒−[𝑚(𝑥+𝑠)−𝑚(𝑠)]

Parameter Estimation For Order Generalized Half Logisitc Type I Model

In this section, the expressions are generated for estimating the parameters of the

Ordered Generalized Half Logistic Type I model based on the time between the

failures. The expressions for a, b, and c has to be derived. Let S1, S2,…. be a
sequence of times between consecutive software failures associated with an NHPP

N(t). Let yk be equal to

∑ 𝑠𝑖

𝑘

𝑖=1

, 𝑘 = 1,2,3 …

This represents the time at which failure k occurs. Suppose we are given with ‘n’

software failure times say Y1, Y2, … , Yn, there are ‘n’ time instants at which the
first, second, third …. N th failure of software is observed. The mean value

function of Ordered Generalized Half Logistic Type I is given

𝑚(𝑡) = 𝑎𝑟 [
1 − 𝑒−𝑏𝑡

1 + 𝑒−𝑏𝑡
]

𝛳𝑟

The constants a and b in the mean value function are called parameters of the

proposed model. To assess the software reliability, it is necessary to compute the

expressions for finding the values of a, b. For doing this, Maximum Likelihood

estimation is used whose Likelihood function is given by

𝐿 = 𝑒𝑚(𝑡𝑖) ∏ 𝑚(𝑡𝑖)

𝑛

𝑖=1

The maximum likelihood estimators (MLEs) are the one that maximize the
Likelihood function ‘L’ and the method is called maximum likelihood method of

estimation. [5]Differentiating m(t) with respect to ‘t’

𝐿 = 𝑒𝑚(𝑡𝑖) ∏ 𝑚(𝑡𝑖)

𝑛

𝑖=1

Log L = log[𝑒−𝑚(𝑡𝑖) ∏ 𝑚′(𝑡𝑖)
𝑛
𝑖=1]

= −𝑚(𝑡𝑖) + ∑ 𝑙𝑜𝑔 [
2𝑎𝑟 Ɵ𝑟𝑒−𝑏𝑡𝑖(1−𝑒−𝑏𝑡𝑖)Ɵ𝑟−1

(1+𝑒−𝑏𝑡𝑖)Ɵ𝑟+1
]𝑛

𝑖=1

= −𝑎𝑟 [
1−𝑒−𝑏𝑡𝑖

1+𝑒−𝑏𝑡𝑖
]

𝛳𝑟

+ ∑ [log 2 + log 𝑏 + 𝑟 log 𝑎 + log 𝛳 + log 𝑟 − 𝑏𝑡𝑖]
𝑛
𝑘=1

1857

+(Ɵ𝑟-1)log(1 − 𝑒−𝑏𝑡𝑖) – (Ɵ𝑟 +1)log (1 + 𝑒−𝑏𝑡𝑖)]

1 𝜕 𝐿

𝐿 𝜕 𝑎
= −𝑟𝑎𝑟−1 [

1 − 𝑒−𝑏𝑡𝑖

1 + 𝑒−𝑏𝑡𝑖
]

𝛳𝑟

+ ∑ [
𝑟

𝑎
+ 0]

𝑛

𝑖=1

 =
𝑟

𝑎
[−𝑎𝑟 [

1−𝑒−𝑏𝑡𝑖

1+𝑒−𝑏𝑖]
𝛳𝑟

+ 𝑛]

1 𝜕 𝐿

𝐿 𝜕 𝑎
= 0 ⇒ 𝑎𝑟 = 𝑛 [

1−𝑒−𝑏𝑡

1+𝑒−𝑏𝑡]
𝛳𝑟

 3.1

1 𝜕 𝐿

𝐿 𝜕 𝑏
= −

2𝑎𝑟 Ɵ𝑟𝑒−𝑏𝑡𝑖(1 − 𝑒−𝑏𝑡𝑖)Ɵ𝑟−1

(1 + 𝑒−𝑏𝑡𝑖)Ɵ𝑟+1
+ ∑ [

𝑛

𝑏
− 𝑡𝑖 + 𝑏𝑒−𝑏𝑡𝑖 (

Ɵ𝑟 − 1

1 − 𝑒−𝑏𝑡𝑖
+

Ɵ𝑟 + 1

1 + 𝑒−𝑏𝑡𝑖
)]

𝑛

𝑖=1

On simplification,

𝑔(𝑏) = −
2𝑎𝑟 Ɵ𝑟𝑒−𝑏𝑡𝑖(1−𝑒−𝑏𝑡𝑖)

Ɵ𝑟−1

(1+𝑒−𝑏𝑡𝑖)
Ɵ𝑟+1 +

𝑛

𝑏
 − 𝑛𝑡𝑖 + ∑ [

2𝑏𝑒−𝑏𝑡𝑖 − 𝑒−𝑏𝑡𝑖

1−𝑒−2𝑏𝑡𝑖
]𝑛

𝑖=1 3.2

𝑔′(𝑏) =
2𝑛𝑒−𝑏𝑡𝑖[(1−𝑏𝑠𝑛)(1−𝑒−2𝑏𝑠𝑛)−2𝑏 2 𝑒−2𝑏𝑡𝑖]

(1−𝑒−2𝑏𝑡𝑖)
2 +

𝑛

𝑏2

+ 2𝜃𝑟 ∑
𝑒𝑏𝑡𝑖−𝑒−𝑏𝑡𝑖−𝑏𝑡𝑖(𝑒𝑏𝑡𝑖−𝑒−𝑏𝑡𝑖)

(𝑒𝑏𝑡𝑖−𝑒−𝑏𝑡𝑖)
2

𝑛
𝑖=1 -2n∑

𝑒2𝑏𝑡𝑖−1−2𝑏𝑡𝑖𝑒2𝑏𝑡𝑖

(𝑒2𝑏𝑡𝑖−1)
2

𝑛
𝑖=1 3.3

Arranged sample

Masterminded test can be utilized for a few applications. They can be utilized in a

few applications like information pressure, endurance investigation, Study of

Reliability and numerous others[9]. Allow Y to indicate a consistent irregular

variable with likelihood thickness work f(y) and combined conveyance work F(y),
and let (Y1 , Y2 , … , Yn) mean an arbitrary example of size n drawn on Y. The

first example perceptions might be unordered as for size. A change is needed to

create a comparing requested example. Let (Y(1) , Y(2) , … , Y(n)) signify the

arranged arbitrary example to such an extent that Y(1) < Y(2) < … < Y(n); at that

point (Y(1), Y(2), … , Y(n)) are all things considered known as the masterminded
test got from the parent Y. The different distributional attributes can be known

from Balakrishnan and Cohen [10]. The between disappointment time information

address the time pass between each two successive disappointments. Then again

if a sensible hanging tight an ideal opportunity for disappointments is certainly

not a major issue, we can bunch the between disappointment time information

into non covering progressive sub gatherings of size 4 or 5 and add the
disappointment times with in each sub gathering. For example if an information

of 100 interfailure times are accessible we can bunch them into 20 disjoint

subgroups of size 5. The whole in every subgroup would dedicate the time slip by

between each fifth organized example in an example of size 5. Overall for between

disappointment information of size 'n', if r (any characteristic no) not as much as

1858

'n' and ideally a factor n, we can helpfully partition the information into 'k'

disjoint subgroups (k=n/r) and the aggregate absolute in every subgroup

demonstrate the time between each rth disappointment. The likelihood circulation

of such a period slip by would be that of the arranged measurements in a

subgroup of size r, which would be equivalent to force of the dispersion capacity
of the first factor (m(t)). The entire interaction includes the numerical model of the

mean worth capacity and information about its boundaries. In the event that the

boundaries are referred to they can be taken as they are for the further

examination, if the boundaries are not realized they must be assessed utilizing an

example information by any allowable, proficient strategy for assessment. This is

fundamental on the grounds that as far as possible rely upon mean worth
capacity, which thus relies upon the boundaries. On the off chance that product

disappointments are very regular monitoring between disappointment is dreary.

On the off chance that disappointments are more continuous orchestrated

example are best [11].

Data Analysis

To analyze softwre reliability, CSR3 Data Set [12] has been considered.

Table.1 CSR3 Data Set (Michael R.Lyu., 1996a)

No Time
Between

failures

Failures(hrs)

Failure
No.

Time
Between

failures

FailureNo Time
Between

Failures(hrs)

Failure
No

Time
Between

failures

 1 33 27 10 53 1 79 20

2 9 28 2 54 400 80 79

3 4 29 22 55 294 81 24

4 66 30 53 56 227 82 540

5 0.5 31 19 57 118 83 52

6 18 32 58 58 13 84 1596

7 149 33 20 59 47 85 314

8 14 34 3 60 89 86 1

9 15 35 92 61 242 87 763

10 50 36 5 62 99 88 10

11 81 37 66 63 607 89 20

12 34 38 289 64 83 90 144

13 85 39 3 65 2 91 28

14 54 40 9 66 26 92 56

15 3 41 12 67 586 93 476

16 15 42 18 68 708 94 65

17 6 43 9 69 6 95 98

18 8 44 75 70 4 96 884

19 130 45 15 71 55 97 212

20 19 46 291 72 409 98 287

21 19 47 212 73 36 99 53

22 112 48 4 74 15 100 3

23 15 49 5 75 573 101 831

24 16 50 308 76 583 102 43

1859

25 154 51 269 77 60 103 55

26 50 52 276 78 19 104 109

Table. 2 CSR3 Data Set (4th and 5th order) (Michael R.Lyu., 1996a)

Failure

No

4th order

time

between

failures

 Sk days

4th order

cumulative time

between failures

 Xn = ∑ Sk days

 Sk days

5th order time

between

failures Sk

days

5th order

cumulative time

between failures

Xn = ∑ Sk days

 Sk days

1 112 112 112.5 112.5

2 181.5 293.5 246 358.5

3 180 473.5 257 615.5

4 157 630.5 178 793.5

5 163 793.5 316 1109.5

6 162 955.5 137 1246.5

7 216 1171.5 192 1438.5

8 152 1323.5 372 1810.5

9 120 1443.5 129 1939.5

10 367 1810.5 820 2759.5

11 114 1924.5 1240 3999.5

12 522 2446.5 494 4493.5

13 858 3304.5 1033 5526.5

14 922 4226.5 1330 6856.5

15 267 4493.5 1088 7944.5

16 1031 5524.5 761 8705.5

17 1322 6846.5 2526 11231.5

18 474 7320.5 938 12169.5

19 1207 8527.5 723 12892.5

20 178 8705.5 1439 14331.5

21 2212 10917.5

22 1088 12005.5

23 248 12253.5

24 1523 13776.5

25 555 14331.5

26 1038 15369.5

The CSR3 data set consists of 26 failures for 4th order statistics in 15369 days.
By solving the equations in section III by Newton Raphson method , we can obtain

the MLE’s of a and b when θ = 2 for CSR3 data set.

 a^ = 27.026768

 b^ = 1.000576

The estimator of the reliability function at any time x beyond 15369.5 days is

given by

 𝑅
𝑆𝑘

𝑋(𝑘−1)
(𝑆/𝑥) = 𝑒−[𝑚(𝑥+𝑠−𝑚(𝑠)]

 𝑅
𝑆27

𝑋26
(15369.5/955.5) = 𝑒−[𝑚(955.5+15369.5)−𝑚(15369.5)]

 = 0.999669

1860

The CSR3 data set consists of 20 failures for 5th order statistics in 14331 days.

By solving the equations in section III by Newton Raphson method , we can obtain

the MLE’s of a and b when θ = 2 for CSR3 data set.

 a^ = 21.00698
 b^ = 0.999933

The estimator of the reliability

𝑅
𝑆𝑘

𝑋(𝑘−1)
(𝑆/𝑥) = 𝑒−[𝑚(𝑥+𝑠−𝑚(𝑠)]

𝑅
𝑆27

𝑋26

(15369.5/955.5) = 𝑒−[𝑚(955.5+15369.5)−𝑚(15369.5)]

= 0.999765

Similarly we can obtain a, b values and reliability for θ = 3 presented in the table

below:

Table 5.1 Computed Reliability figures for different θ, a and b values of the model

 θ Order a b Reliability

 2 4

 5

 27.02676

 21.00698

1.000576

0.999933

0.999669

0.999765

 3 4

 5

 28.26547

 22.32759

1.000783

1.000325

0.999842

0.999784

Conclusions

In this paper, the Generalized half logistic distribution type – I model with request

measurements has been proposed. Today 70 to 80 % of individuals use

programming and it is a lot of fundamental for produce dependable programming.

The proposed model has been tried with live informational collection for fourth

and fifth order as shown in the table 5.1 and demonstrated that it has high

dependability. It is likewise seen that the unwavering quality is high for fifth order
measurement than fourth order insights. At last it tends to be presumed that the

model has created generally excellent outcomes and is especially agreeable to

register the unwavering quality.

References

1. Musa J.D, Software Reliability Engineering MCGraw-Hill, 1998.

2. Pham. H (2005) “A Generalized Logistic Software Reliability Growth Model”,

Opsearch, Vol.42, No.4, 332-331.

3. Musa,J.D. (1980) “The Measurement and Management of Software

Reliability”, Proceeding of the IEEE vol.68, No.9, 1131-1142
4. WOOD, A. predicting software Reliability, IEEE Computer, 1996; 2253-2264

5. Sitakumari.k, Satya Prasad.R , Assessing Software Quality with Time

Domain Pareto Type II using SPC SPC, IJCA, 2014

6. Dr.R.Satya Prasad, NGeetha Rani, Prof R.R.L.Kantham, Pareto Type II

1861

Based Software Reliability Growth Model, International Journal of Software

Engineering, Vol (2), 2011

7. R.R.L.Kantam and R.Subbarao, 2009. “Pareto Distribution: A Software

Reliability Growth Model”. International Journal of Performability
Engineering, Volume 5, Number 3, April 2009, Paper 9, PP: 275- 281.

8. J.D.Musa and K.Okumoto,”A Logorithmic Poisson Execution time modelfor

software reliability measure-ment”, proceeding seventh international

conference on software engineering, orlando, pp.230-238,1984

9. Arak M. Mathai ;Order Statistics from a Logistic Dstribution and

Applications to Survival and Reliability Analysis;IEEE Transactions on
Reliability, vol.52, No.2; 2003

10. Balakrishnan.N., Clifford Cohen; Order Statistics and Inference; Academic

Press inc.;1991

11. K.Ramchand H Rao, R.Satya Prasad, R.R.L.Kantham; Assessing Software

Reliability Using SPC – An Order Statistics Approach; IJCSEA Vol.1, No.4,
August 2011

12. Michael R.Lyu 1996a, Handbook of Software Reliability Engineering.

13. C. Jin and S.-W. Jin, “Parameter optimization of software reliability growth

model with S-shaped testing-effort function using improved swarm
intelligent optimization,” Applied Soft Computing, vol. 40, pp. 283–291,

2016.
14. DalilaAmara, Latifa BenArfa Rabai Towards a New Framework of Software

Reliability Measurement Based on Software Metrics”, Volume 109, 2017,

Pages 725-730

15. Lutfiah Ismail A turk1 & Wejdan Saleem Al ahmadi “Comparative Study of

the Non-Homogeneous Poisson Process Type-I Generalized Half-Logistic
Distribution”, International Journal of Statistics and Probability; Vol. 7, No.

6; November 2018.

16. V. Rama Krishna, R R L Kantam and T Subhamastan Rao “A Software

Quality measurement using Generalized Half Logistic Distribution”,

International Journal of Advanced Science and Technology (2020), Vol. 29,

No.3, pp. 9665-9669.

https://www.sciencedirect.com/science/article/pii/S1877050917311092#!
https://www.sciencedirect.com/science/article/pii/S1877050917311092#!
https://www.sciencedirect.com/science/journal/18770509/109/supp/C

