
How to Cite:

Deepa, T., & Thaddeus, S. (2022). Enhancing agile process with open unified process
framework (OUPF). International Journal of Health Sciences, 6(S2), 2034–2044.
https://doi.org/10.53730/ijhs.v6nS2.5429

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 27 Jan 2022, Manuscript revised: 18 Feb 2022, Accepted for publication: 09 March 2022

2034

Enhancing agile process with open unified
process framework (OUPF)

T. Deepa

Research Scholar, Thiruvalluvar University, Serkadu

Email: margaretdeepa23@gmail.com

S. Thaddeus
Assistant Professor, Department of Computer Science, Don Bosco College, Yelagiri

Hills, Tirupattur

Email: thad@boscoits.com

Abstract---The awareness and practice of the agile process has

increased very much in recent years. Yet, there are gaps among the

developers in agile adoption. A backup support from conventional

process standards can enhance the outcome of agile work. Choosing

Open Unified Process framework (OUPF) as process repository, a

semantic model is proposed to link an agile software project with
standard process components and guidelines. Any agile software

project can be instantiated in terms of requirements (as user stories)

and tasks using this semantic model, drawing guidance from OUPF.

This semantic model is applied on a real time project in an industrial

environment. The results show that there is an improvement in
project outcome when agile is combined with Open Unified Process

Framework.

Keywords---agile process, open unified, process framework,

requirement engineering, ontology, semantic web.

Introduction

There are different types of software process models in vogue. Agile model is the

popular and active model that the industry practitioners adopt today. Literature
of agile upholds it as healthier than conventional process models. However, there

are some demerits in agile which can be resolved by including standard process

components. This requires a framework which fits the conventional process

elements into an agile process without compromising on agility. In this paper, a

standard process model such as Open Unified Process Framework (OUPF) as an

ontology is connected to the agile model for process enactment using semantic
web standards and tools. Section 2 of this paper compares agile and conventional

https://doi.org/10.53730/ijhs.v6nS2.5429
mailto:margaretdeepa23@gmail.com
mailto:thad@boscoits.com

2035

process models taking requirement engineering as a sample. Based on the

methodology explained in Section3, the semantic model and related ontologies are

described in section 4. An experiment is shown with a real-time project to

compare the effectiveness of project management with agile alone and agile with
support from OUPF. Section6 concludes that mapping the tasks of agile with

OUPF-backed up agile enhances the efficacy of the agile development model.

Literature Study

Literature on agile processes has comparisons between conventional and agile
models from various perspectives [1,2,3]. Batool et al.[1] compared the key process

elements namely role, activities and artefacts in the context of requirement

elicitation and analysis. There is a strong indication that agile requirement

engineering is healthier than the traditional process. Agile process is superior

when mapped on factors such as project duration, risk analysis, flexibility,

testability and customer interaction. Additional requirement documentation is
proposed as a solution to the constraints of agile requirement engineering [2].

Inayat et al.[3]emphasized the importance of process, tools and documentation in

applying agile models. The challenges faced in using agile requirement

engineering are listed as lack of documentation, lack of methodologies to handle

non-functional requirements and inappropriate estimation. The requirement
specification is documented as test cases in [4] to improve the requirement
traceability. While Bjarnason et al. found advantages in this methodology like

better communication, effective change management and customer support, there

is a gap in elicitation, verification of quality requirements and change
management. Goyal and Ramesh [5,6] identified incomplete non-functional

requirements and poor change management as areas of concern in agile
requirement engineering. The conclusion of Goyal’s study was that the analysts

require sound domain knowledge and the skills to impart the knowledge to the

development team.

The review of literature converges on the following areas for improvement such as

Comprehensive Documentation - Requirements captured just in time for progress
and documented with less details. This is inadequate for the fresh entrants into

the project. It can lead to a misunderstanding and difficulties to define and take

up new features [3, 9]. There is a need for comprehensive documentation.

 Non-functional requirements - Requirement validation is done by face to face
communication [8]. The focus is more on whether the requirements satisfy the

user's needs rather than on its correctness and completeness. The consistency

and completeness of the requirements are not formally checked as in conventional

documentation [4, 9]. The least focus is on non-functional requirements. When

the documentations are not clear and the tasks are not specific and

comprehensive, it leads to a mismatch in cost or effort estimation. The developers
need to organize requirements throughout the project life cycle for imprecise

understanding and mismanagement of the project.

2036

Proposed Technique

The objective of this proposed work is not merely to analyze the superiority of the

agile model compared with the conventional but enhancing the productivity in the

agile model with the strengths of conventional models. The agile model has
limitations with regard to documentation and non-functional requirements. These

conditions increase due to avoidance of many tasks during process

implementation. The scenario is more critical when the development team is

heterogeneous in terms of experience and competency. Agile processes are generic

while standard process models like OUPF are prescriptive. The roles and tasks to

be done are specific and it provides direct enactment by the developers in OUPF
systems. It leads to better cost and effort estimation. Such a prescriptive process

model can be anchored to an agile project repository. OUPF is chosen as the

prescriptive process model. It can be linked to any agile project as a process

ontology.

OUPF provides the components for process implementation such as: endeavors,

stages, producers, work units, work products, languages and usage guidelines [6].

OUPF is designed as three components namely meta model, components

repository and guidelines for construction and usage. The Meta model defines the

fundamental reusable method components namely process elements. Component

repository gives the actual description of all reusable methods while Construction
and Usage Guidelines state how to reuse the method components in situation-

specific. The OUPF repository is exhaustive and addresses all scenarios of process

implementation. Based on the situation, it could be tailored. This is suitable to

give prescriptive tasks for the developers when generic tasks are listed down in an

agile sprint based on product back-log.

A semantic model is suggested to link OUPF with any agile process. OUPF is

linked to any agile project through an agile process framework. Every task listed

in a project sprint is elaborated with tasks from OUPF. This will facilitate the

developers to be comprehensive and specific in development activities. More

precise estimation and requirement management can be obtained.

Semantic Model

Earlier research [7] on Semantic Enabled Software Engineering (SeSEE) developed

a semantic model for software process management. This model is based on
Description Logic combined with Semantic web standards. The knowledge base is

defined as K= (T, A, R) where T denotes terminologies, A denotes assertions and R

denotes rules. The rules are represented as C => D that if an element e In

Figure 1, represents the ontology used to represent the terminologies and
assertions of a domain where TBox covers Terminologies, Abox covers assertions

and Rbox comprises the rules of domain. Three operations make the

knowledgebase usable. TELL is to build or modify the knowledgebase. ASK is for

retrieval of information. ACT is used as an additional operation to extend

knowledge base for automation.

2037

Figure 1 – DL Based Knowledge System with Extended Operations.

This semantic model is implemented using OWL-DL, semantic web language,

promoted by World Wide Web Consortium. OWL-DL reduces the inherent
constraints in representing knowledge using DL and makes it appealing for the

end users. OWL-DL represents the process knowledge with regard to OUPF or

agile model as terms, assertions and rules. Thus, two distinct ontologies are

developed for OUPF and agile process framework. Ontologies are developed using

Protégé, an open source ontology editor [7]. These ontologies are mapped by the
common terminology: Task. Every agile project is instantiated using the agile

process framework ontology. Task in sprint Backlog of agile project is linked with

task of OUPF repository where ever required and feasible to provide process-

specific guidance to the developers. Inference system of the OWL-DL engine

provides the most fitting support for the developers. The application interface is

linked to any project management tool of a software development environment.

Ontology For OUPF

OUPF ontology represents the metamodel elements namely Guidelines, WorkPlan,

Role, Activities, Process, Tasks and Steps. Using this conceptual schema, details
of process enactment are stored as assertions.

2038

Figure 2 – Open Unified Process Framework Ontology

In Figure 2, all the meta-model elements are method components. The component

which produces anything that is valid is called Work Products. These are the

products produced by producers while some performance of Work units. Activity,
Task and Techniques are the three kinds of Work Units. The section which is

used to document the work product is called language. Endeavors are the module

which is further divided into projects. The duration refers to time taken by the

work unit to produce the product delivery. Work Performance is the section which

models the work units by producers.

Agile Process Ontology

The key process elements of an agile model are : project, user stories, sprint,

deliverables, and tasks. Every project is stored as an instance or assertion with its

distinct user stories. These user stories are connected to the sprints and
deliverables and expressed in terms of tasks to be done.

2039

 Figure 3 – Ontology for Agile Software Development

A project has many sprints and every sprint is assigned with a list of user stories.

Sprint is also associated with a set of tasks and deliverables.

Mapping Agile And OUPF

Figure 4, explores the mapping of Agile and OUPF. This mapping is achieved by

mapping TASK in an agile model to TASK in OUPF with an object property as

OWL-DL allows. Mapping possibilities are presented to the end user using the

inference mechanism of ontology-driven knowledge systems. The tool developed
for software process management using semantic web in the research work is

used for this mapping purpose [7]. It enables the developers to understand

Activities, Work Plan, Guidelines and Role in a better way. It helps them to

estimate effort better and thus gain improvement on project management.

Figure 4- Mapping Agile and OUPF

2040

Experimental Validation

SmartSchool+ is a software product, developed and supported by a dedicated

software development team in BoscoSoft Technologies Pvt Ltd. This project is

chosen for the experiment. The developers adopt an agile process. Earlier two
sprints are taken and their burn-down chart is studied with their product

backlog. Burn-down chart is the tool which helps to calculate the development of

the project by plotting the number of days of sprints against the number of

remaining working hours to complete the project. This helps the developers to

verify whether they are in progression with the software development.

Phase – I: Sprint Backlog(1) - Using Agile model Development

There are 5 user stories in this sprint. The developers have taken 14 days to

complete the sprint. Here the ideal time is 380 hours to complete the project. The

Ideal hour represents the estimated hours to complete the sprint by the
developers.

Table. 5.1 Data table for plotting Burndown Chart

2041

Figure. 5.2 Burn Down Chart for the Data of Table 5.1

The figure 5.2 clearly shows that from the Day1 to Day2, The Ideal and the actual
plots are fallen in the same line which shows that the developers are on track in

working. From the Day2 to Day6, The Actual line is above the Ideal line which

shows that the developers are behind the schedule. During the Day9 to Day14,

the Actual line is below the Ideal line and hence it shows that the team is ahead

the schedule during those days. But the chart exhibits that the developers are

behind the schedule from the Day14 to Day17, in their development work

Phase – II Sprint Backlog (2) - Using Agile Model Development

There are 6 user stories in this sprint. The total estimated work hour for this

sprint is 295 hours.

Table 6.1 Data table for plotting Burndown Chart

2042

Figure. 6.2 Burn Down Chart for the Data of Table 6.1

Figure 5.2, clearly shows that from Day1 to Day2, the progress is as per schedule.

But from the Day2 to Day16, the Actual line is above the Ideal line which means

that the number of remaining hours of working is high and the days alone burned

down which reveals that the progress of the development is behind the schedule.
It feeds back the developers that they must increase the speed of their work or to

act differently.

Phase – III Sprint Backlog(3) - Using OUPF Semantic Model

The developers are trained to use the semantic web tool which provides process
guidance on every task. 7 user stories were in the sprint. The developers took 20

days to complete the sprint. Here the estimated hours were 366 to complete the

project.

2043

Table 7.1 - Data table for plotting Burndown chart

Figure.7.2 BurnDown Chart for the data of Table7.1

Figure 7.2, showed that, after adopting the prescriptive model that is mapping the
agile tasks with OUPF using ontology that is using the semantic web tool, the

development is consistent and the developers can be ahead of the estimated

schedule of working hours.

Conclusion

A single project alone cannot assert the base of the proposal. Additional of varying

nature and complexity should be experimented to validate and bring out the

effectiveness of combining OUPF with agility. As a further, research will be

2044

complemented to focus on other problems on agile development of intricacy and

large software systems, as well as, broadening the research to comprise other

projects of different levels of complexity.

References

1. Asmabatool ,yasirhafeezmotla and Bushra Hamid, “Comparative Study of

Traditional Requirement Engineering and Agile Requirement Engineering”,

15th International Conference on Advanced Communication Technology

(ICACT), January 2013, pp. 1006-1014, Pyeongchang.

2. Ville T. Heikkil, Casper Lassenius, Daniela Damian and Maria Paasivaara,
“A Mapping Study on Requirements Engineering in Agile Software

Development”, in Proc. SEAA, 2015, DOI.10.1109, p.70.

3. IRUM INAYAT, SITISALWASALIM AND MAYA DANEVA, “A SYSTEMATIC

LITERATURE REVIEW ON AGILE REQUIREMENTS ENGINEERING

PRACTICES AND CHALLENGES”, IN COMPUTERS IN HUMAN BEHAVIOR,
2014, DOI.10/1016, P. 46.

4. Elizabeth Bjarnason and Michael Unterkalmsteiner, “Multi-Case Study of

Agile Requirements Engineering and the Use of Test Cases as

Requirements”, in Information and Software Technology, 2016, DOI.

10.1016, p.008.

5. VishvadeepTripathi, Arvind Kumar Goyal, “Agile Requirement Engineer :
Roles and Responsibilities”, in Proc. IJISET, Vol. 1 Issue 3, May 2014.

6. D. Zowghi, D.G. Firesmith and B. Henderson-Sellers, “Using the Open

Process Unified Framework to Produce a Situation-Specific Requirements

Engineering Method”, Basic Concepts and Taxonomy of Dependable and

Secure Computing (2004).
7. S. Thaddeus, “Semantic Web-Enabled Approach to Software Process

Management” ,Ph.D thesis, Bharathidasan University, Tiruchirapalli, India,

Apr. 2011.

8. Balasubramaniam Ramesh, Lan Cao and Richard Baskerville, “Agile

requirements engineering practices and challenges: an empirical study”, in

Info Systems J, 2010,vol.20, p. 449–480.
9. FraukPaetsch, Dr. Armin Eberlein and Frank Maurer, “Requirements

Engineering and Agile Software Development”, in Proc WETICE’03, 2003.

10. Monika Agarwal and Prof.RanaMajumdar, “Tracking Scrum projects Tools,

Metrics and Myths about Agile”, in Proc. IJETAAE, ISSN 2250-2459, Vol. 2,

Issue 3, March 2012

