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Abstract---Our aim in this paper is to introduce new integral 

transform which we will call it “Battor – AlTememe” transform. This 
transform is useful for solving many types of differential equations 

(ordinary and partial) and we will introduce some definitions, concepts 

and identities. Integral transform is used to solve differential and 

integral equations. In 2008 [2], the researcher introduced AlTememe 

transform, which is given by the integral T(f(x))=∫_1^∞▒x^(-p)  
f(x)dx=F(p), For a function f(x) which is defined on an interval (1, ∞), 

x^(-p) is the kernel of this transform and p is positive constant such 

that the above integral is converge. 

 

Keywords---integral transform, solving, differential, equations. 

 
 

Introduction  

 

Integral transform is used to solve differential and integral equations. In 2008 [2], 

the researcher introduced AlTememe transform, which is given by the integral 

𝑇(𝑓(𝑥)) = ∫ 𝑥−𝑝∞

1
𝑓(𝑥)𝑑𝑥 = 𝐹(𝑝), For a function 𝑓(𝑥) which is defined on an interval 

(1, ∞), 𝑥−𝑝 is the kernel of this transform and p is positive constant such that the 
above integral is converge. Many researchers [3-8] are used this transform to 

solve different types of differential and integral equations with applications.  

 
Definition (1) [1]: Integral transform 
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Let f be defined function for 𝑥 ∈ (𝑎, 𝑏), the integral transform for f whose symbol 

𝐹(𝜆) is defined as 𝐹(𝜆) = ∫ 𝐻(𝜆, 𝑥)
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 , where H is a function of the variables 𝜆 

and x, is the kernel of the integral transform and (a, b) are real numbers or ∓∞ 
such that the last integral converges. 

 
Definition (2) [2]: Al-Tememe transform 

Let f be a function defined in [1, ∞], Al-Tememe transform is defined by (A.T) 

(𝑓(𝑥)) = ∫ 𝑥−𝑝∞

1
𝑓(𝑥)𝑑𝑥, where the integral is converge and p is a positive number. 

 
Definition (3): Battor-AlTememe transform 

Let f be a function defined in [1, ∞], Battor-AlTememe transform is defined by the 

integral 𝐵𝐴(𝑓(𝑥)) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
𝑓(𝑥)𝑑𝑥 = 𝐹(𝜆); λ > 0 such that this integral is converge. 

 

Property (1): Battor-AlTememe transform has linearity property, that is 𝐵𝐴(𝑎𝑓(𝑥) ∓

𝑏𝑔(𝑥)) = 𝑎 𝐵𝐴(𝑓(𝑥)) ∓ 𝑏 𝐵𝐴(𝑔(𝑥)); a and b are constants, f and g are defined in [1, 

∞].   
 

Proof:  

𝐵𝐴(𝑎𝑓(𝑥) ∓ 𝑏𝑔(𝑥)) = ∫ 𝑥−
1

𝜆
∞

1
(𝑎𝑓(𝑥) ∓ 𝑏𝑔(𝑥))𝑑𝑥  

= ∫ 𝑎𝑥−
1

𝜆
∞

1
𝑓(𝑥)𝑑𝑥 ∓ ∫ 𝑏𝑥−

1

𝜆
∞

1
𝑔(𝑥)𝑑𝑥  

= 𝑎 ∫ 𝑥−
1

𝜆
∞

1
𝑓(𝑥)𝑑𝑥 ∓ 𝑏 ∫ 𝑥−

1

𝜆
∞

1
𝑔(𝑥)𝑑𝑥  

= 𝑎 𝐵𝐴(𝑓(𝑥)) ∓ 𝑏 𝐵𝐴(𝑔(𝑥))  

 
BA-Transform of fundamental functions 

 

In this section, we will introduce BA-transform of fundamental functions, like 

constants functions, logarithms functions, hyperbolic functions and triangular 

functions and other functions. 
 

1) 𝐵𝐴(1) =
𝜆2

1−𝜆
 ; 𝜆 ∈ (0,1) 

Proof: 𝐵𝐴(1) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
𝑑𝑥 = 𝜆

𝑥
−

1
𝜆

+1

−
1

𝜆
+1

] ∞
1
 =

𝜆2

1−𝜆
 

2) 𝐵𝐴(𝑘) =
𝑘𝜆2

1−𝜆
 ; k is constant, 𝜆 ∈ (0,1) 

Proof: from (1) and linearity property. 

3) 𝐵𝐴(𝑥𝑛) =
𝜆2

1−(𝑛+1)𝜆
 ;  𝜆 ∈ (0,

1

𝑛+1
) 

Proof: 𝐵𝐴(𝑥𝑛) = 𝜆 ∫ 𝑥−
1

𝜆
+𝑛∞

1
𝑑𝑥 =  𝜆

𝑥
−

1
𝜆

+(𝑛+1)

−
1

𝜆
+(𝑛+1)

] ∞
1
 =

𝜆2

1−(𝑛+1)𝜆
 

4) 𝐵𝐴(ln(𝑥)) =
𝜆3

(1−𝜆)2 ;  𝜆 ∈ (0,1) 

Proof: 𝐵𝐴(ln(𝑥)) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
ln(𝑥) 𝑑𝑥 = 𝜆 (

𝑥
−

1
𝜆

+1

−
1

𝜆
+1

ln(𝑥))] ∞
1

− 𝜆 ∫
𝑥

−
1
𝜆

−
1

𝜆
+1

∞

1
𝑑𝑥 =

−𝜆
𝑥

−
1
𝜆

+1

(−
1

𝜆
+1)

2] ∞
1

= 
𝜆3

(1−𝜆)2 
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5) 𝐵𝐴((ln(𝑥))2) =
2𝜆4

(1−𝜆)3 ;  𝜆 ∈ (0,1) 

Proof: 𝐵𝐴((ln(𝑥))2) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
(ln(𝑥))2𝑑𝑥 

= 𝜆 (
𝑥

−
1
𝜆

+1

−
1

𝜆
+1

ln(𝑥))] ∞
1

− 2𝜆 ∫
𝑥

−
1
𝜆

−
1

𝜆
+1

ln(𝑥)
∞

1
𝑑𝑥  

=
2𝜆

1−𝜆
𝐵𝐴(ln(𝑥)) =

2𝜆

1−𝜆
∙

𝜆3

(1−𝜆)2 =
2𝜆4

(1−𝜆)3  

 

6) 𝐵𝐴((ln(𝑥))3) =
6𝜆5

(1−𝜆)4 ;  𝜆 ∈ (0,1) 

Proof: 𝐵𝐴((ln(𝑥))3) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
(ln(𝑥))3𝑑𝑥 

= 𝜆 (
𝑥

−
1
𝜆

+1

−
1

𝜆
+1

(ln(𝑥))3)] ∞
1

− 3𝜆 ∫
𝑥

−
1
𝜆

−
1

𝜆
+1

(ln(𝑥))2∞

1
𝑑𝑥 =

3𝜆

1−𝜆
𝐵𝐴((ln(𝑥))2) =

6𝜆5

(1−𝜆)4    

7) 𝐵𝐴((ln(𝑥))𝑛) =
𝑛! 𝜆𝑛+2

(1−𝜆)𝑛+1 ;  𝜆 ∈ (0,1) 

Proof:  by induction 

8) 𝐵𝐴(cosh(𝑎 ln(𝑥))) =
𝜆2(1−𝜆)

(1−𝜆)2−𝑎2𝜆2 

Proof: 𝐵𝐴(cosh(𝑎 ln(𝑥))) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
cosh(𝑎 ln(𝑥))𝑑𝑥 = 𝜆 ∫ 𝑥−

1

𝜆
𝑥𝑎+𝑥−𝑎

2
𝑑𝑥

∞

1
=

1

2
(𝐵𝐴(𝑥𝑎) + 𝐵𝐴(𝑥−𝑎)) =

1

2
(

𝜆2

1−(𝑎+1)𝜆
+

𝜆2

1—(−𝑎+1)𝜆
) =

𝜆2(1−𝜆)

(1−𝜆)2−𝑎2𝜆2  

9) 𝐵𝐴(sinh(𝑎 ln(𝑥))) =
𝑎 𝜆3

(1−𝜆)2−𝑎2𝜆2 

Proof: 𝐵𝐴(sinh(𝑎 ln(𝑥))) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
sinh(𝑎 ln(𝑥))𝑑𝑥 = 𝜆 ∫ 𝑥−

1

𝜆
𝑥𝑎−𝑥−𝑎

2
𝑑𝑥

∞

1
=

1

2
(𝐵𝐴(𝑥𝑎) − 𝐵𝐴(𝑥−𝑎)) =

𝑎 𝜆3

(1−𝜆)2−𝑎2𝜆2 

10) 𝐵𝐴(cos(𝑎 ln(𝑥))) =
𝜆2(1−𝜆)

(1−𝜆)2 + 𝑎2𝜆2 

Proof: 𝐵𝐴(cos(𝑎 ln( 𝑥))) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
cos(𝑎 ln(𝑥)) 𝑑𝑥 = 𝜆 ∫ 𝑥−

1

𝜆
𝑥𝑎𝑖+𝑥−𝑎𝑖

2
𝑑𝑥

∞

1
=

1

2
(𝐵𝐴(𝑥𝑎𝑖) + 𝐵𝐴(𝑥−𝑎𝑖)) =

𝜆2(1−𝜆)

(1−𝜆)2 + 𝑎2𝜆2  

11) 𝐵𝐴(sin(𝑎 ln(𝑥))) =
𝑎 𝜆3

(1−𝜆)2 + 𝑎2𝜆2 

Proof: 𝐵𝐴(sin(𝑎 ln(𝑥))) = 𝜆 ∫ 𝑥−
1

𝜆
∞

1
sinh(𝑎 ln(𝑥)) 𝑑𝑥 = 𝜆 ∫ 𝑥−

1

𝜆
𝑥𝑎−𝑥−𝑎

2𝑖
𝑑𝑥

∞

1
 

=
1

2𝑖
(𝐵𝐴(𝑥𝑎) − 𝐵𝐴(𝑥−𝑎)) =

𝑎 𝜆3

(1−𝜆)2 + 𝑎2𝜆2  

 

Examples: In this section, we give some examples. 

 

1. 𝐵𝐴(𝑥) =
𝜆2

1−2𝜆
 

2. 𝐵𝐴(𝑥−1) = 𝜆2  

3. 𝐵𝐴((ln(𝑥))5) =
5! 𝜆7

(1−𝜆)6 

4. 𝐵𝐴(cosh(2 ln(𝑥))) =
𝜆2(1−𝜆)

(1−𝜆)2−4𝜆2 

5. 𝐵𝐴(sinh(3 ln(𝑥))) =
3  𝜆3

(1−𝜆)2−9𝜆2 

6. 𝐵𝐴 (cos(
1

2
ln(𝑥))) =

𝜆2 (1−𝜆)

(1−𝜆)2 + 
1

4
 𝜆2
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7. 𝐵𝐴 (sin(
3

2
ln(𝑥))) =

3

2
 𝜆3

(1−𝜆)2 + 
9

4
 𝜆2

 

 
Definition (4): Inverse of Battor-AlTememe transform: 

If 𝐵𝐴(𝑓(𝑥)) = 𝐹(𝜆) is Battor-AlTememe transform, then we call 𝑓(𝑥) = (𝐵𝐴)−1(𝐹(𝜆)) 

the inverse of Battor-AlTememe transform. 

 

Property (2): the (𝐵𝐴)−1(𝐹(𝜆)) has linearity property, i.e 

(𝐵. 𝐴)−1(𝑎 𝐹1(𝜆) ∓ 𝑏 𝐹2(𝜆))  

= 𝑎 (𝐵𝐴)−1(𝐹1(𝜆)) ∓ 𝑏(𝐵𝐴)−1 (𝐹2(𝜆)) = 𝑎𝑓1(𝑥) ∓ 𝑏 𝑓2(𝑥)  

Where a and b are constants. 

Example (8): to find (𝐵𝐴)−1 𝜆3

(1−2𝜆) (1−3𝜆)
 

Take 
𝜆

(1−2𝜆)(1−3𝜆)
=

𝐴

(1−2𝜆)
+

𝐵

(1−3𝜆)
 

−3𝐴 − 2𝐵 = 1  

𝐴 + 𝐵 = 0 → 𝐴 = −1;  𝐵 = 1  
𝜆

(1−2𝜆) (1−3𝜆)
=

−1

(1−2𝜆)
+

1

(1−3𝜆)
  

𝜆3

(1−2𝜆)(1−3𝜆)
= −

𝜆2

(1−2𝜆)
+

𝜆2

(1−3𝜆)
  

(𝐵𝐴)−1 𝜆3

(1−2𝜆) (1−3𝜆)
= −𝑥 + 𝑥2  

 
Definition (5): convolution of Battor-AlTememe transform: 

Let f and g be a function defined in [1, ∞] then the convolution of f and g is given 

by:  

(𝑓 ∗ 𝑔)(𝑥) = 𝜆 ∫ 𝑓(𝑢)
𝑥

1
𝑔 (

𝑥

𝑢
)

𝑑𝑢

𝑢
  

Proof: similar to proof of AlTememe convolution [5], the difference is only we 

multiply the convolution of AlTememe transform by 𝜆. 

Note (1): If 𝐵𝐴(𝑓(𝑥)) = 𝐹(𝜆) and 𝐵𝐴(𝑔(𝑥)) = 𝐺(𝜆), then 𝐵𝐴(𝑓 ∗ 𝑔) = 𝐹(𝜆) 𝐺(𝜆) [5]. 

 

Example (9): find (𝐵𝐴)−1 𝜆3

(1−2𝜆)(1−3𝜆)
  

(𝐵𝐴)−1 𝜆3

(1−2𝜆)(1−3𝜆)
=

1

𝜆
∙

𝜆4

(1−2𝜆)(1−3𝜆)
=

1

𝜆
∙

𝜆2

(1−2𝜆)
∙

𝜆2

(1−3𝜆)
  

𝐵𝐴(𝑥) =
𝜆2

1−2𝜆
;  𝐵𝐴(𝑥2) =

𝜆2

1−3𝜆
 

= ∫ 𝑢
𝑥

1
(

𝑥

𝑢
)

2 𝑑𝑢

𝑢
= 𝑥2 ∫ 𝑢−2𝑥

1
𝑑𝑢 = 𝑥2(

𝑢−1

−1
)] 𝑥

1
  

= 𝑥2(−𝑥−1 + 1) = −𝑥 + 𝑥2  
 

Battor-AlTememe of derivatives 

 
In this section we will introduce Battor-AlTememe of derivatives and this will 

simplify to solve the differential equations. 

1) 𝐵𝐴(𝑥𝑦́) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴(𝑦) 

Proof:  𝐵𝐴(𝑥𝑦́) = 𝜆 ∫ 𝑥−
1

𝜆
+1𝑦́ 𝑑𝑥 = 𝜆 [𝑥−

1

𝜆
+1] ∞

1
 

∞

1
– (−

1

𝜆
+ 1) ∫ 𝑥−

1

𝜆𝑦 𝑑𝑥 
∞

1
] 

= −𝜆 𝑦(1) +
1 − 𝜆

𝜆
𝐵𝐴(𝑦);   𝜆 ≠ 0 
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2) 𝐵𝐴(𝑥2𝑦′′) = −𝜆𝑦′(1) − (1 − 2𝜆)𝑦(1) +
(1−2𝜆)(1−𝜆)

𝜆2 𝐵𝐴(𝑦)  

Proof:  𝐵𝐴(𝑥2𝑦′′) = 𝜆 ∫ 𝑥−
1

𝜆
+2𝑦′′ 𝑑𝑥

∞

1
 

= 𝜆[𝑥−
1

𝜆
+2𝑦′] ∞

1
 − (−

1

𝜆
+ 2) ∫ 𝑥−

1

𝜆
+1𝑦′ 𝑑𝑥 

∞

1
] = −𝜆𝑦′(1) +

(1−2𝜆)

𝜆
𝐵𝐴(𝑥𝑦′) = −𝜆𝑦′(1) −

(1 − 2𝜆)𝑦(1) +
(1−2𝜆)(1−𝜆)

𝜆2 𝐵𝐴(𝑦)  

3) 𝐵𝐴(𝑥3𝑦′′′) = −𝜆𝑦′′(1) − (1 − 3𝜆)𝑦′(1) −
(1−3𝜆)(1−2𝜆)

𝜆
𝑦(1) +

(1−3𝜆)(1−2𝜆)(1−𝜆)

𝜆3 𝐵𝐴(𝑦)  

Proof: same as one and two. 

4) 𝐵𝐴(𝑥4𝑦𝐼𝑉) = −𝜆𝑦′′′(1) − (1 − 4𝜆)𝑦′′(1) −
(1−4𝜆)(1−3𝜆)

𝜆
𝑦′(1) −

(1−4𝜆)(1−3𝜆)(1−2𝜆)

𝜆2 𝑦(1) +
(1−4𝜆)(1−3𝜆)(1−2𝜆)(1−𝜆)

𝜆4 𝐵𝐴(𝑦)  

Proof: same as one and two. 

 

So, 

𝐵𝐴(𝑥𝑛𝑦(𝑛)) = −𝜆𝑦(𝑛−1)(1) − (1 − 𝑛𝜆) 𝑦(𝑛−2)(1) −  
(1−𝑛𝜆)(1−(𝑛−1)𝜆)

𝜆
 𝑦(𝑛−3)(1) … +

(1−𝑛𝜆)(1−(𝑛−1)𝜆)…(1−λ)

𝜆𝑛  𝐵𝐴(𝑦)  

 
Proof: By Induction. 

 
Example (10): 

(1) To solve the ODE 𝑥𝑦′ + 𝑦 = 1 ; 𝑦(1) = −2 
We take BA to both sides, we get 

−𝜆(𝑦(1)) +
1 − 𝜆

𝜆
 𝐵𝐴(𝑦) + 𝐵𝐴(𝑦) =

𝜆2

1 − 𝜆
 

BA(y) =
𝜆3

1−𝜆
− 2𝜆2 =

𝜆2

1−𝜆
− 3𝜆2       (By division) 

⇒ 𝑦 = 1 − 3𝑥−1 (𝐵𝑦 𝑖𝑛𝑣𝑒𝑟𝑠𝑒) 
(2)  To solve the ODE 

𝑥2𝑦′′ + 𝑥𝑦′ + 𝑦 = 𝑥 ; 𝑦(1) = 𝑦′(1) = 1 

By taking BA to both sides, we get 

𝐵𝐴(𝑦) =
𝜆4−2𝜆3+𝜆2

(2𝜆2−2𝜆+1)(1−2𝜆)
  

By partial fractions, we get 

𝐵𝐴(𝑦) =
1

2
𝜆2

2𝜆2−2𝜆+1
+

1

2
𝜆2

1−2𝜆
  

By taking inverse to both sides, we get 

𝑦 =
1

2
sin(ln(𝑥)) +

1

2
cos(ln(𝑥)) +

1

2
𝑥  

Since (𝐵𝐴(sin(ln(𝑥)) + cos (ln(𝑥)))) =
𝜆2

(1−𝜆)2+𝜆2 

 

(3) To solve the ODE 𝑥𝑦′ − 𝑦 = ln(𝑥) ; 𝑦(1) = 2 

      After taking BA to both sides, we get  

𝐵𝐴(𝑦) =
𝜆4

(1−2𝜆)(1−𝜆)2 +
2𝜆2

1−2𝜆
=

3𝜆2

1−2𝜆
−

𝜆2

(1−𝜆)2  (By taking partial fractions to first term) 

By taking (𝐵𝐴)−1 to both sides, we get 

𝑦 = 3𝑥 − ln(𝑥) − 1            Since 𝐵𝐴(ln(𝑥) + 1) =
𝜆2

(1−𝜆)2 
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Rules: In the following we will give some useful rules 

 

Rule (1): 𝐵𝐴(ln(𝑥) + 1) =
𝜆2

(1−𝜆)2 

Proof: L.S 𝐵𝐴(ln(𝑥) + 1) = 𝐵𝐴(ln(𝑥)) + 𝐵𝐴(1) =
𝜆3

(1−𝜆)2 +
𝜆2

1−𝜆
=

𝜆3+𝜆2(1−𝜆)

(1−𝜆)2 =
𝜆2

(1−𝜆)2 =

𝑅. 𝑆 

Rule (2): 𝐵𝐴(𝑠𝑖𝑛 (ln(𝑥)) + 𝑐𝑜𝑠 (ln(𝑥))) =
𝜆2

(1−𝜆)2+𝜆2 

Proof: L.S 

𝐵𝐴(𝑠𝑖𝑛 (ln(𝑥)) + 𝑐𝑜𝑠 (ln(𝑥))) = 𝐵𝐴(𝑠𝑖𝑛 (ln(𝑥))) + 𝐵𝐴(𝑐𝑜𝑠 (ln(𝑥))) =
𝜆3

(1−𝜆)2+𝜆2 +=

𝜆2(1−𝜆)

(1−𝜆)2+𝜆2 =
𝜆2

(1−𝜆)2+𝜆2 = 𝑅. 𝑆   

Rule (3): 𝐵𝐴(𝑠𝑖𝑛ℎ (𝑙𝑛(𝑥)) + 𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥))) =
𝜆2

1−2𝜆
 

Proof: L.S 

𝐵𝐴(𝑠𝑖𝑛ℎ (𝑙𝑛(𝑥)) + 𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥))) = 𝐵𝐴(𝑠𝑖𝑛ℎ (𝑙𝑛(𝑥))) + 𝐵𝐴(𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥))) =
𝜆3

(1−𝜆)2−𝜆2 +

𝜆2(1−𝜆)

(1−𝜆)2−𝜆2 =
𝜆2

1−2𝜆
= 𝑀. 𝑆 = 𝑅. 𝑆  

Rule (4): 𝐵𝐴(𝑛𝑥𝑛−1 − (𝑛 + 1)𝑥𝑛 =
−𝜆2

(1−𝑛𝜆)(1−(𝑛+1)𝜆)
∀    𝑛 𝜖 𝑅 

Proof: L. S = 𝑛
𝑛𝜆2

1−𝑛𝜆
− (𝑛 + 1)

𝜆2

1−(𝑛+1)𝜆
= 𝑛𝜆2[

1

1−𝑛𝜆
−

1

1−(𝑛+1)𝜆
] −

𝜆2

1−(𝑛+1)𝜆
=

                           𝑛𝜆2[
1−𝑛𝜆−𝜆−1+𝑛𝜆

(1−𝑛𝜆)(1−(𝑛+1)𝜆)
] −

𝜆2

1−(𝑛+1)𝜆
= 𝑛𝜆2[

−𝜆

(1−𝑛𝜆)(1−(𝑛+1)𝜆)
] −

                           
𝜆2

1−(𝑛+1)𝜆
=

𝜆2

1−(𝑛+1)𝜆
[

−𝑛𝜆−1+𝑛𝜆

1−𝑛𝜆
] =

−𝜆2

(1−𝑛𝜆)(1−(𝑛+1)𝜆)
   

 

Example (11): To find 𝐵𝐴(1 − 2𝑥) 
Here n = 1 

⇒ = 
−𝜆2

(1−𝜆)(1−2𝜆)
                               from rule (4)  

Now;  𝐵𝐴(1 − 2𝑥) = 𝐵𝐴(1) − 2𝐵𝐴(𝑥) 

=
𝜆2

1−𝜆
− 2

𝜆2

1−2𝜆
=

𝜆2−2𝜆3−2𝜆2+2𝜆3

(1−𝜆)(1−2𝜆)
=

−𝜆2

(1−𝜆)(1−2𝜆)
  

 
Identities: In this section we will introduce number of identities which we are used 

to solve differential equations. 

 

𝐵𝐴((𝑥 ln(𝑥))𝑦′ + 𝑦) =
1 − 𝜆

𝜆
𝐵𝐴(𝑦 ln(𝑥)) 

Proof: 𝐵𝐴((𝑥 ln(𝑥))𝑦′ + 𝑦) = 𝜆 ∫ 𝑥−
1

𝜆
+1∞

1
(ln(𝑥))𝑦′𝑑𝑥 

= 𝜆 (𝑥−
1

𝜆
+1(ln(𝑥))𝑦] ∞

1
− ∫ 𝑥−

1

𝜆
∞

1
𝑦 𝑑𝑥 − (−

1

𝜆
+ 1) ∫ 𝑥−

1

𝜆
∞

1
(ln(𝑥))𝑦 𝑑𝑥)  

= −𝜆 ∫ 𝑥−
1

𝜆
∞

1
𝑦 𝑑𝑥 + (

1−𝜆

𝜆
) . 𝜆 ∫ 𝑥−

1

𝜆
∞

1
(ln(𝑥))𝑦 𝑑𝑥   

⇒   𝐵𝐴((𝑥 ln(𝑥))𝑦′ + 𝑦) =
1−𝜆

𝜆
𝐵𝐴(𝑦 ln(𝑥)  

Example (12): to solve the DE ((𝑥 ln(𝑥))𝑦′ + 𝑦 = ln(𝑥)) by using the above identity 
1−𝜆

𝜆
𝐵𝐴(𝑦 ln(𝑥)) =

𝜆3

(1−𝜆)2   ⇒ 𝐵𝐴(𝑦 ln(𝑥)) =
𝜆4

(1−𝜆)3 

⇒(𝑦 ln(𝑥)) =
1

2
(ln(𝑥))2 ;           By using (𝐵𝐴)−1 
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⇒ 𝑦 =
1

2
ln(𝑥) 

Example (13): to solve the DE ((𝑥 ln(𝑥))𝑦′ + 𝑦 = 1) by using the above identity 
1−𝜆

𝜆
𝐵𝐴(𝑦 ln(𝑥)) =

𝜆2

1−𝜆
   ⇒ 𝐵𝐴(𝑦 ln(𝑥)) =

𝜆3

(1−𝜆)2 

⇒(𝑦 ln(𝑥)) = ln(𝑥) ;              (By using (𝐵𝐴)−1) 
⇒ 𝑦 = 1 

 

1. 𝐵𝐴((𝑥 sin(ln(𝑥)))𝑦′ + (cos(ln(𝑥)))𝑦) =
1−𝜆

𝜆
𝐵𝐴(sin (ln(𝑥)))𝑦) 

Proof: By finding 𝐵𝐴((𝑥 sin(ln(𝑥)))𝑦′) will get the result or proof. 

 

Example (14): to solve the DE (𝑥 sin(ln(𝑥)))𝑦′ + (cos (ln(𝑥)))𝑦 = 1, by using the 

identity (2). 
1−𝜆

𝜆
𝐵𝐴(sin(ln(𝑥)))𝑦) =

𝜆2

1−𝜆
  

⇒ 𝐵𝐴(sin (ln(𝑥)))𝑦) =
𝜆3

(1−𝜆)2  

⇒ (sin(ln(𝑥)))𝑦 = ln(𝑥)                 (By using (𝐵𝐴)−1)    
⇒  𝑦 = (csc (ln(𝑥))) ln(𝑥) 
 

2. 𝐵𝐴((𝑥 cos(ln(𝑥)))𝑦′ − (sin(ln(𝑥)))𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴((cos (ln(𝑥)))𝑦) 

To prove it get the first term 𝐵𝐴((𝑥 cos(ln(𝑥)))𝑦′) then will get the proof. 

3. 𝐵𝐴((𝑥 (sin (ln(𝑥)) + cos(ln(𝑥)))𝑦′ + (cos(ln(𝑥)) − sin (ln(𝑥)))𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴((sin(ln(𝑥)) + cos(ln(𝑥)))𝑦)  

The idea of proof same as (2) and (3). 

4. 𝐵𝐴((𝑥 (sin(ln(𝑥)) − cos(ln(𝑥)))𝑦′ + (cos(ln(𝑥)) + sin(ln(𝑥)))𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴((sin(ln(𝑥)) + cos(ln(𝑥)))𝑦) 

The idea of proof same as (2) and (3). 

5. 𝐵𝐴((𝑥 𝑠𝑖𝑛ℎ (𝑙𝑛(𝑥))) + (𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥)))𝑦) =
1−𝜆

𝜆
𝐵𝐴((𝑠𝑖𝑛ℎ (𝑙𝑛(𝑥)))𝑦) 

6. 𝐵𝐴((𝑥 𝑐𝑜𝑠ℎ(𝑙𝑛(𝑥)))𝑦′ + (𝑠𝑖𝑛ℎ(𝑙𝑛(𝑥)))𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴((𝑐𝑜𝑠ℎ(𝑙𝑛(𝑥)))𝑦) 

7. 𝐵𝐴((𝑥 (𝑠𝑖𝑛ℎ (𝑙𝑛(𝑥)) − 𝑐𝑜𝑠ℎ(𝑙𝑛(𝑥)))𝑦′ + (𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥)) − 𝑠𝑖𝑛ℎ(𝑙𝑛(𝑥)))𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴((𝑠𝑖𝑛ℎ(𝑙𝑛(𝑥)) − 𝑐𝑜𝑠ℎ(𝑙𝑛(𝑥)))𝑦) 

8. 𝐵𝐴((𝑥 (𝑠𝑖𝑛ℎ (𝑙𝑛(𝑥)) + 𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥)))𝑦′ + (𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥)) + 𝑠𝑖𝑛ℎ(𝑙𝑛(𝑥)))𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴((𝑠𝑖𝑛ℎ(𝑙𝑛(𝑥)) + 𝑐𝑜𝑠ℎ (𝑙𝑛(𝑥)))𝑦) 

9.  𝐵𝐴(𝑥(𝑙𝑛(𝑥))2𝑦′ + 2(𝑙𝑛(𝑥))) =
1−𝜆

𝜆
𝐵𝐴((𝑙𝑛(𝑥))2𝑦) 

10.  𝐵𝐴(𝑥(𝑙𝑛(𝑥))3𝑦′ + 3(𝑙𝑛(𝑥))2𝑦) =
1−𝜆

𝜆
𝐵𝐴((𝑙𝑛(𝑥))3𝑦) 

11.  𝐵𝐴(𝑥(𝑙𝑛(𝑥))𝑛𝑦′ + 𝑛(𝑙𝑛(𝑥))𝑛−1𝑦) =
1−𝜆

𝜆
𝐵𝐴((𝑙𝑛(𝑥))𝑛𝑦) ,   ∀ 𝑛 𝜖 𝑍+ 

 

From above identities, we can get the following results: 

 

i. From (6) 𝐵𝐴((𝑥2 − 1)𝑦′ + (𝑥 + 𝑥−1)𝑦) =
1−𝜆

𝜆
𝐵𝐴 (

𝑥2−1

𝑥
𝑦) 

ii. From (7) 𝐵𝐴((𝑥2 + 1)𝑦′ + (𝑥 − 𝑥−1)𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴 (

𝑥2+1

𝑥
𝑦) 

iii. From (8) 𝐵𝐴 (−𝑦′ +
1

𝑥
𝑦) = −𝜆𝑦(1) +

1−𝜆

𝜆
𝐵𝐴 (−

𝑦

𝑥
) 
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iv. From (9) 𝐵𝐴(𝑥2𝑦′ + 𝑥𝑦) = −𝜆𝑦(1) +
1−𝜆

𝜆
𝐵𝐴(𝑥𝑦) 

 
Examples (15): 

1. To solve the DE (𝑥2 − 1)𝑦′ + (𝑥 + 𝑥−1)𝑦 = 1 
By taking BA to both sides of the DE and using first result (i) will get 
1−𝜆

𝜆
𝐵𝐴 (

𝑥2−1

𝑥
𝑦) =

𝜆2

1−𝜆
  

⇒ 𝐵𝐴 (
𝑥2−1

𝑥
𝑦) =

𝜆3

(1−𝜆)2 ⇒ 
𝑥2−1

𝑥
𝑦 = ln 𝑥 ; by taking (𝐵𝐴)−1 

⇒ 𝑦 =
𝑥 ln 𝑥

𝑥2−1
 ; 𝑥 ≠ ∓1 

 

2. To solve (𝑥2 + 1)𝑦′ + (𝑥 − 𝑥−1)𝑦 = ln 𝑥; 𝑦(1) = 0 
By taking BA to both sides of DE and by using result (ii) we get 

𝑦 =
1

2
𝑥(ln 𝑥)2

𝑥2+1
  

3. To solve 𝑥2𝑦′ + 𝑥𝑦 = 1;  𝑦(1) = 0 
From result (iv) and by taking BA to both sides, we get 
1−𝜆

𝜆
𝐵𝐴(𝑥𝑦) =

𝜆2

1−𝜆
⇒ 𝐵𝐴(𝑥𝑦) =

𝜆3

(1−𝜆)2  

By taking (𝐵𝐴)−1 ⇒ 𝑥𝑦 = ln 𝑥 ⇒ 𝑦 = 𝑥−1 ln 𝑥 
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