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Abstract---The study generally aims to find line search technique with 
exact line search without relying on update or invertible Hessian 

matrix at every iteration, and theoretical improvement for if H∈ 𝑅𝑛×𝑛 
be a symmetric matrix then 𝐻 has n mutually orthogonal eigenvectors. 
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Introduction  

 

Line search technique is on the off chance that it looks for the base of a descent 

direction vector, when processed iteratively with a sensible advance size [1 ,20]. 

The solution methods for unconstrained optimization problems can be broadly 
classified into gradient-based and non-gradient based search methods. 

Optimization theory and techniques are new topics in applied mathematics, 

operations research, and computational mathematics with a large range of 

applications in scientific and engineering, business administration, and space 

technology [2, 5, 16]. This topic participates in the optimum solution of problems 
that are determined mathematically [6,22], that is, in light of a practical issue, 

through many schemes and using scientific methods and tools, a better solution 

to the problem can be obtained. In the late 1940’s, optimization became a 

separate topic when George Bernard Dantzig [7,17] introduced the popular 

simplex algorithm for linear programming [15,21] . 

 
Coordinate Descent Method  

 

Consider the problem min𝑥𝑓(𝑥) where 𝑓: 𝑅𝑛 → 𝑅, where 𝑓 ∈ 𝐶1 is the first order 

continuously differential for every coordinate variable 𝑥𝑖, 𝑖 = 1,… , 𝑛 minimize 𝑓(𝑥) 
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with respect to 𝑥𝑖, keeping the other coordinate variable 𝑥𝑗, 𝑗 ≠ 𝑖 constant[8,18 

,19].    Algorithm 2 : Coordinate Descent Method    

   

    1.  Initialize 𝑥𝑜,𝜖; set k:=0  

    2.  while ‖𝑔𝑘‖ > 𝜖   
        (a) for 𝑖 = 1,… , 𝑛  
        (b) 𝑥𝑖

𝑛𝑒𝑤 = 𝑎𝑟𝑔min𝑥𝑖𝑓(𝑥)  

        (c) 𝑥𝑖 = 𝑥𝑖
𝑛𝑒𝑤 end while  

  

output: 𝑥∗ = 𝑥𝑘 a stationary point of 𝑓(𝑥)  globally convergent method if a search 

along any coordinate direction yields a unique minimum point.  

 

Example 2.1 Consider the problem the 𝑚𝑖𝑛𝑥𝑓(𝑥) = 4𝑥1
2 + 𝑥2

2 − 2𝑥1𝑥2, use coordinate 

descent method with exact line search to solve this problem 𝑥𝑜 = (−1,−1)⊤, let 𝑑𝑜 =
(1,0)⊤ and 𝑥1 = 𝑥𝑜 + 𝛼𝑜𝑑𝑜 where 𝛼𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼𝜙(𝛼)  
 

𝜙𝑜(𝛼) = 𝑓(𝑥
0 + 𝛼0𝑑𝑜): 𝛼0(> 0) 

𝜙𝑜(𝛼) = 𝑓 (
𝑥𝑜 + 𝛼0𝑑1

𝑜

𝑥𝑜 + 𝛼0𝑑2
𝑜) = 𝑓 (

−1 + 𝛼0(1)

−1 + 𝛼0(0)
) = 𝑓 (−1 + 𝛼

0

−1
) = 4(𝛼 − 1)2 + 1 − 2(−1)(−1 +

𝛼) = 4(𝛼 − 1)2 + 1 + 2(𝛼 − 1)𝛼𝑜
′(𝛼) = 0 ⇒ 8(𝛼 − 1) + 2 = 0 ⇒ 4(𝛼 − 1) + 1 = 0 ⇒ 𝛼 −

1 =
−1

4
⇒=

3

4
∴ 𝑥1 = (−1,−1) +

3

4
(1,0)⊤ = (−

1

4
, −1)⊤ ⇒ 𝑑1 = (0,1)⊤; 𝑥2 = 𝑥1 + 𝛼1𝑑1𝑥2 =

𝑥1 + 𝛼1𝑑1, 𝛼1 = 𝑎𝑟𝑔min𝛼𝜙1(𝛼)𝜙𝑜(𝑥
2) = 𝑓 (

−1

4

−1 + 𝛼
) = (𝛼 − 1)2 +

𝛼−1

2
+
1

4
𝜙1

′ = 0 ⇒ 𝛼1 =

3

4
𝑥2 = 𝑥1 + 𝛼1𝑑1 = (−

1

4
, −

1

4
) ≠ 𝑥∗ So need some more iteration to reach 𝑥∗, the 

Hessian matrix denote by 

 

𝐻 = (
8 −2
−2 2

)  

 

since matrix not diagonal and 𝑥1 , 𝑥2 are not separable, then could not be attained 

in two steps using coordinate descent method (if 𝑥𝑜 is not on one of the principal 
axes of the elliptical contours)  

 

 
 

Figure  1: coordinate descent method 
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Example 2.2 Consider the problem the 𝑚𝑖𝑛𝑥𝑓(𝑥) = 4𝑥1
2 + 𝑥2

2, use coordinate 

descent method with exact line search to solve this problem 𝑥𝑜 = (−1,−1)⊤, let 𝑑𝑜 =
(1,0)⊤ and 𝑥1 = 𝑥𝑜 + 𝛼𝑜𝑑𝑜 where 𝛼𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼𝜙𝑜(𝛼) = 𝑓(𝑥

𝑂 + 𝛼𝑑𝑜): 𝛼(> 0) 

𝜙𝑜(𝛼) = 𝑓 (
𝑥𝑜 + 𝛼𝑑1

𝑜

𝑥𝑜 + 𝛼𝑑2
𝑜) = 𝑓 (

−1 + 𝛼(1)
−1 + 𝛼(0)

) = 𝑓 (
−1 + 𝛼
−1

) = 𝑓 (
−1 + 𝛼
−1

) = 4(𝛼 − 1)2 +

1 = 4(𝛼 −)2 + 1 ⇒ 𝛼𝑜
′(𝛼) = 0 ⇒ 8(𝛼 − 1) = 0 ⇒ 8(𝛼 − 1) = 0𝛼 − 1 = 0 ∴ 𝑥1 = (1,−1) +

(−1,0)⊤ = (0,1) ⇒ 𝑑1 = (0,1)⊤; 𝑥2 = 𝑥1 + 𝛼1𝑑1𝑥2 = 𝑥1 + 𝛼1𝑑1, 𝛼1 = 𝑎𝑟𝑔min𝛼𝜙1(𝛼)𝑥
2 =

𝑥1 + 𝛼1𝑑1 = (0,0) = 𝑥∗ since matrix diagonal and 𝑥1 , 𝑥2 are separable, then could 

be attained in two steps using coordinate descent method𝐻 = (
8 0
0 2

) 

 

Definition 2.1 Let 𝐻 ∈ 𝑅𝑛×𝑛 be a symmetric matrix, the vectors {𝑑𝑜, … , 𝑑𝑛−1} are said 

to be 𝐻 − 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 if the are linearly independent and 𝑑𝑖
⊤
𝐻𝑑𝑗 = 0, ∀𝑖 ≠ 𝑗[?]  

  

Theorem 2.1 A convex quadratic function can be minimized in at most n-steps, 
provided search along conjugate direction of the Hessian matrix[11].  

  

Proof. consider the problem min𝑥𝑓(𝑥) =
1

2
𝑥⊤𝐻𝑥 + 𝑐⊤𝑥 where 𝐻 is a symmetric 

positive definite matrix (𝐻 is not diagonal matrix), let{𝑑𝑜, … , 𝑑𝑛−1} be a set of 

linearly independent direction and 𝑥𝑜 ∈ 𝑅𝑛 any 𝑥 ∈ 𝑅𝑛 can be represented as 𝑥 =
𝑥𝑜 +∑𝑛−1𝑖=0 𝛼

𝑖𝑑𝑖 then rewrite problem as given {𝑑𝑜, … , 𝑑𝑛−1} and 𝑥𝑜 ∈ 𝑅𝑛, the given 

problem is to minimize 𝜓(𝛼) defined as  

 

1

2
(𝑥𝑜 +∑

𝑛−1

𝑖=0

𝛼𝑖𝑑𝑖)⊤𝐻(𝑥𝑜 +∑

𝑛−1

𝑖=0

𝛼𝑖𝑑𝑖) + 𝑐⊤(𝑥𝑜 +∑

𝑛−1

𝑖=0

𝛼𝑖𝑑𝑖)⊤ 

 

Let us define 𝐷 = (𝑑𝑜|𝑑1| … |𝑑𝑛−1) be a matrix denote by 𝑑𝑜|𝑑1| … |𝑑𝑛−1 and 𝛼 =
(𝛼𝑜, … , 𝛼𝑛−1) 𝜓(𝛼) in this compact notation  
 

1

2
𝛼⊤𝐷⊤𝐻𝐷𝛼 + (𝐻𝑥𝑜 + 𝑐)⊤𝐷𝛼 +

1

2
𝑥𝑜⊤𝐻𝑥𝑜 + 𝑐⊤𝑥𝑜 

 

Let 𝐾 =
1

2
𝑥𝑜⊤𝐻𝑥𝑜 + 𝑐⊤𝑥𝑜 where 𝐾 is constant 𝐻𝑜, 𝑥𝑜 and 𝑐⊤ are constant, then when 

min𝜓(𝛼) can ignore 𝐾 then  
 

min𝜓(𝛼) =
1

2
𝛼⊤𝐷𝐻𝐷𝛼 + (𝐻𝑥𝑜 + 𝑐)⊤𝐷𝛼 

 

the Hessian matrix in this quadratic function.  

 

𝑄 = 𝐷⊤𝐻𝐷 =

(

 
 

𝑑𝑜⊤𝐻𝑑𝑜 𝑑𝑜⊤𝐻𝑑1 ⋯ 𝑑𝑜⊤𝐻𝑑𝑛−1

𝑑1
⊤
𝐻𝑑𝑜 𝑑1

⊤
𝐻𝑑1 ⋯ 𝑑𝑜⊤𝐻𝑑𝑛−1

⋮ ⋮ ⋱ ⋮

𝑑𝑜⊤𝐻𝑑𝑜 𝑑𝑛−1
⊤
𝐻𝑑1 ⋯ 𝑑𝑛−1

⊤
𝐻𝑑𝑛−1

)

 
 

 

 

And the diagonal of 𝑄 = (𝑑𝑜⊤𝐻𝑑𝑜, … , 𝑑𝑛−1
⊤
𝐻𝑑𝑛−1). Decides to make the Hessian 

matrix 𝑄 is diagonal matrix, the way to do that is that to make all this half 
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diagonal entries in this matrix equal to zero, in other words when ever 𝑖 ≠ 𝑗 then 

𝑑𝑖
⊤
𝐻𝑑 = 0,∀𝑖 ≠ 𝑗 

 

𝑄 = 𝐷⊤𝐻𝐷 =

(

 
 

𝑑𝑜⊤𝐻𝑑𝑜 0 ⋯ 0

0 𝑑1
⊤
𝐻𝑑1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑑𝑛−1
⊤
𝐻𝑑𝑛−1

)

 
 

 

 

this matrix it is easy to inveritable  
Therefore  

 

𝑄−1
𝑖𝑗
= {

1

𝑑⊤𝐻𝑑
        if    𝑖 = 𝑗

0        otherwise

 

 

min𝜓(𝛼) =
1

2
𝛼⊤𝐷𝐻𝐷𝛼 + (𝐻𝑥𝑜 + 𝑐)⊤𝐷𝛼 + 𝑐⊤(𝑥𝑜 +∑

𝑖

𝛼𝑖𝑑𝑖) 

 

since 𝑐⊤(𝑥𝑜 + ∑𝑖 𝛼
𝑖𝑑𝑖 constant and 𝜓(𝛼) is separable in terms of 𝛼𝑜, … , 𝛼𝑛−1 because 

this separable in terms it is easy to optimize this objective function individually in 

terms of 𝛼, will optimize the problem with respect to 𝛼 and in the 𝛼 space you can 

think of it is a coordinate descent method, take 𝛼1 at a time and optimize with 

respect 𝛼 
 

𝜕𝜓

𝜕𝛼𝑖
= 0 ⇒ 𝛼𝑖

∗
= −

𝑑𝑖(𝐻𝑥𝑜 + 𝑐)

𝑑𝑖
⊤
𝐻𝑑𝑖

 

Therefore 
 

𝑥∗ = 𝑥𝑜 +∑
𝑛−1

𝑖=0
𝛼𝑖
∗
𝑑𝑖𝑥∗ = 𝑥𝑜 + (∑

𝑛−1

𝑖=0
−
𝑑𝑖(𝐻𝑥𝑜 + 𝑐)

𝑑𝑖
⊤
𝐻𝑑𝑖

)𝑑𝑖 

 

Numerical application 
 

Consider the unconstrained optimization problem.  

 

min
𝑥∈𝑅2

𝑓(𝑥) = [1.5 − 𝑥1(1 − 𝑥2)]
2 + [2.625 − 𝑥1(1 − 𝑥2

3)]2 + [2.25 − 𝑥1(1 − 𝑥2
2)]2 

 

will applying the different technique of line search by using the python 

programming to the same problem and will comparing the beaver of converge to 

the minimal point and explain by study result who is better technique. the date 

using to solve example are. the current point is 𝑥 = [1, −3]and with the stop 

condition𝜖 = 1𝑒 − 6 the fowling output on the python console 
 

The Conjugate Gradient, In this method depend on orthogonal eigenvectors of 

Hessian matrix, the table(see 1) the behaver of converge to minimizer. 
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  𝑘   𝑥1 𝑥2   𝑓(𝑥1, 𝑥2)   ∥ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ∥  
 1   0.157   -2.213   11.263  2200.599 

2   2.253   0.041   0.638   0.616 

3   2.457   0.325   0.180   2.878 

4   2.632   0.412   0.134   1.003 

5   3.084   0.508   0.048   1.791 

6   3.120   0.499   0.040   0.962 

7  3.120   0.497   0.040  0.077 

8   3.101   0.489   0.040   0.036 

9  3.021  0.471  0.038  0.180 

10   3.018   0.472   0.038   0.059 

11   3.018   0.472   0.038   0.006 

Table  1: Conjugate Gradient Method 

    

Conclusion 
 

The goal of the study focused on the following points:   

 

1. In this method we have not need to invertible or update of Hessian at every 

iteration.  

2. Every symmetric matrix have n (H-conjugate vectors).  
3. Object function have n variable, we can proved one of them to minimize 

object function.  

4. In this method we applied the exact line search only.  
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