Prevalence of juxta-apical radiolucency and its association to inferior alveolar nerve injury during removal of impacted mandibular third molars

Swetha Bhat
Department of Oral and Maxillofacial Surgery, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 77.
Email: swethavb95@gmail.com

Senthilnathan Periasamy
Department, Department of Oral and Maxillofacial Surgery, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 77
Email: senthilnathan@saveetha.com

Abstract---This study aimed to investigate the prevalence of juxta-apical radiolucency (JAR) - a well-defined area of radiolucency that is apical or lateral to the roots of the lower third molar, and assessing its association to injury of the inferior alveolar nerve (IAN) during surgical removal of lower third molars. We evaluated 1250 panoramic radiographs and 1960 third molars for the presence of JAR. The patients were assessed based on the presence or absence of JAR. These were further classified according to the impacted third molar's angulation in relation to the adjacent second molar. The radiographic relationship of the mandibular canal and third molar was also noted. JAR was identified in 88 patients (4.4%). Out of the 88, 28 (31.8%) were males and 60 (68.1%) were females, which was statistically significant (P<0.02). There also was an association with teeth that were mesioangularly impacted which was not statistically significant. Radiographic signs of proximity to the mandibular canal were present in 48 (54.5%) of JAR cases. One (1.13%) of them reported with inferior alveolar nerve injury after the surgical procedure postoperatively. JAR was prevalent in 4.4% patients. It was more prevalent in females and is more commonly found in association to mesioangularly impacted lower third molars. These findings may help evaluate and guide recommendations for surgical treatment of patients at high risk of injury to the inferior alveolar nerve during removal of 3rd molars.
Keywords—third molars, impaction, juxta apical radiolucency, inferior alveolar radiolucency, nerve injury, paresthesia.

Introduction

Surgical extraction of impacted mandibular third molars is a common procedure in dental practice [1]. It is usually a fairly simple procedure but has various complications. Proper planning in third molar surgery is one of the keys to preventing tran- and post P surgical complications such as dry socket, pain, infection, and, especially, nerve damage [2–4]. Preoperative assessment of mandibular third molars should consider morphology, angulation, and relationship to adjacent structures (mandibular canal and cortical plates) [5–9]. Injury to the inferior alveolar nerve (IAN) is a rare, undesirable complication of surgical removal of lower third molars. It generally manifests as a neurosensory disturbance of the regions supplied by the third branch of the trigeminal nerve, and can have debilitating effects [10]. The overall risk ranges from 1% to 5%, and most injuries result in temporary hypoaesthesia of the lip and chin [11,12]. Several risk factors are associated with injury to the nerve during third molar surgery, the most important predictor of which may be the anatomical relation between the lower third molar and the inferior alveolar canal (IAC) [10,13].

Panoramic radiography is the standard imaging technique used for the preoperative evaluation of 3rd molars. Darkening of the roots, interruption of the white line of the IAC, and diversion of the canal, have previously been identified on panoramic radiography as being associated with an increased risk of injury to the IAN after removal of 3rd molars [14–16]. However, in 2005 a new one, “juxta apical area” (JAA) or “juxta-apical radiolucency” (JAR), was introduced [2]. On plain radiography it is presented as a well-defined area of radiolucency that is apical or lateral to the roots of the lower third molar, which often overlap the canal and interrupt its white line. The JAR appears as a hypodense area adjacent (juxta = meaning near, nearby, or close) to the apices and roots of mandibular third molars and has been considered a variation of the normal aspect of the trabecular bone in this region [17].

Despite JAR being a radiographic sign suggestive of the risk of injury to the IAN during third molar surgery, the literature on JAR is scarce. Previously our team has a rich experience in working on various research projects across multiple disciplines [18–32] Now the growing trend in this area motivated us to pursue this project. Therefore, the purpose of this study is to investigate the prevalence of juxta-apical radiolucency (JAR), and assessing its association to injury of the inferior alveolar nerve (IAN) during surgical removal of lower third molars

Materials and Methods

Study set up

This Prospective clinical study consisted of evaluation of 1250 panoramic radiographs and 1960 third molars for the presence of JAR in patients who reported to the department of oral and maxillofacial surgery, Saveetha Dental
College and Hospital, Chennai from June 2019 to March 2021 for the surgical removal of impacted mandibular third molar.

- **Preoperative**
 The patients were classified into two groups based on the presence or absence of JAR. Subsequently, 2 groups with the same number of teeth and patients were arranged: the JAR group, composed of all cases of JAR in the sample, and the control group, composed of randomly selected cases without JAR. These teeth were evaluated according to the following parameters:
 - Angulation: Third molar angulation was evaluated according to the Winter classification (vertical, horizontal, mesioangular, or distoangular).
 - Depth of impaction: The depth of impaction of the third molars in relation to bone was classified as unerupted, partially erupted, or erupted.
 The radiographic relationship of the mandibular canal and third molar was also noted.
 Clinical variables were age, gender, smoking habit, history of pericoronitis

- **Postoperative**
 - The primary outcome variable was permanent neurosensory disturbance that was reported within or 6 months after the operation. In all cases, patients were reviewed, sutures were non-resorbable, and analgesics with antibiotics were prescribed routinely after operation.

Selection criteria

Inclusion criteria:

- Patients requiring surgical removal of impacted mandibular third molars for either prophylactic reasons or therapeutic reasons
- Patients with either partial or complete bony impaction of mandibular third molars, irrespective of the angulation.
- Enrolment in the study was limited to patients of both genders under 40 years of age.

Exclusion criteria:

- The presence of a carious lesion
- Large restorations
- Endodontic treatment
- Other pathologies, including cysts or tumors of the third molars.

Study parameters

- Age of the patient
- Gender of the patient
- Presence or absence of JAR
- Angulation and depth of the impacted tooth
- Radiographic relationship of the mandibular canal and third molar
- Permanent neurosensory disturbance - Inferior alveolar nerve injury
Data collection

The data related to the stay parameters were obtained from among the patients who reported to the Department of Oral and Maxillofacial Surgery, Saveetha Dental College, Chennai from June 2019 to March 2021. An approval for the designed study was obtained from the Institutional Ethical Committee of Saveetha University. An informed verbal and written consent was obtained after explaining the nature of the procedure and the potential complications involved.

Data analysis

The IBM SPSS (version 23.0) software was used to tabulate and analyse the collected data. Non parametric data was analysed using descriptive statistics measuring frequency and percentage.

Results

Demographic distribution

Out of the total 1250 panoramic radiographs and 1960 third molars evaluated, JAR was identified in 88 patients (4.4%). Out of the 88, 28 (31.8%) were males and 60 (68.1%) were females. It was significantly associated with female patients [Figure 1] and was prevalent in the second and third decades of life with a mean age of 24±3.2 years.

JAR

JAR was identified in 88 patients (4.4%) out of the 1250 panoramic radiographs and 1960 third molars we evaluated.

Angulation (winters classification)

Out of the total 88 patients with JAR, 58 (65.9%) were mesioangular, 18 (20.4%) were vertical, 9 (10.2%) were Horizontal and 3 (3.4%) disto angularly impacted. This showed that the presence of JAR was more prevalent in mesioangularly impacted molar which was statistically significant (P<0.05)

Depth of impaction

Out of the total 88 patients with JAR 19 (21.6%) were unerupted, 59 (67.04%) were erupted and 10 (11.37%) were erupted.

Neurosensory disturbance of inferior alveolar nerve

Out of the total 88 patients, 48 (54.5%) present proximity to inferior alveolar nerve radiographically. Whereas 40 (45.5%) showed no nerve proximity of the impacted molar to the nerve. One (1.14%) patient with JAR reported back with paresthesia after the surgical procedure postoperatively.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>JAR group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>28 (31.8%)</td>
<td>42 (47.7%)</td>
</tr>
<tr>
<td>Female</td>
<td>60 (68.1%)</td>
<td>46 (52.3%)</td>
</tr>
<tr>
<td>Angulation (Winters classification)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>18 (20.4%)</td>
<td>22 (25%)</td>
</tr>
<tr>
<td>Mesioangular</td>
<td>58 (65.9%)</td>
<td>40 (45.45%)</td>
</tr>
<tr>
<td>Horizontal</td>
<td>9 (10.2%)</td>
<td>20 (22.7%)</td>
</tr>
<tr>
<td>Distoangular</td>
<td>3 (3.4%)</td>
<td>6 (6.8%)</td>
</tr>
<tr>
<td>Depth of impaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unerupted</td>
<td>19 (21.6%)</td>
<td>16 (18.2%)</td>
</tr>
<tr>
<td>Partially erupted</td>
<td>59 (67.04%)</td>
<td>65 (73.8%)</td>
</tr>
<tr>
<td>Erupted</td>
<td>10 (11.37%)</td>
<td>7 (7.9%)</td>
</tr>
<tr>
<td>Radiographic proximity to IAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>48 (54.5%)</td>
<td>26 (29.5%)</td>
</tr>
<tr>
<td>Absent</td>
<td>40 (45.5%)</td>
<td>62 (70.5%)</td>
</tr>
<tr>
<td>Neurosensory disturbance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>1 (1.14%)</td>
<td>0</td>
</tr>
<tr>
<td>Absent</td>
<td>87</td>
<td>88</td>
</tr>
</tbody>
</table>

Figure 1. The above bar graph represents the association of gender to the prevalence of JAR. X axis represents the presence of absence of JAR, Y axis represents the frequency of patients. From this graph we can infer that 60 (68.1%) were females in comparison to 28 (31.8%) males. This difference was statistically significant (P=0.02)
Figure 2. The above bar graph represents the association of angulation of the impacted lower molar to the prevalence of JAR. X axis represents the presence of absence of JAR, Y axis represents the frequency of patients. From this graph we can infer that 58 (65.9%) were mesioangularly impacted. This difference was statistically significant (P=0.03)

Discussion

Panoramic radiographic imaging is currently the most frequently employed technique to evaluate the risk of nerve injury following extraction of an impacted mandibular third molar [1]. In this context, the panoramic radiograph stands out as a valuable imaging choice because it shows tooth morphology, tooth angulation, and radiographic signs of proximity to the mandibular canal, all of which are delivered with low radiation doses and at low cost [8,33]. Preoperative identification of potential risk factors for IAN exposure or injury is essential for safe surgical treatment of the mandibular third molars [4]. The risk of inferior alveolar nerve injury is evaluated based on radiographic evidence of an intimate anatomic relationship and proximity present between the third molar and the inferior alveolar nerve canal.

The juxta-apical radiolucency (JAR) has been described only recently compared to other important signs in dental radiology [1,2,17]. It was first described by Renton et al [2], who conducted a controlled clinical trial and found a significant association between the presence of JAR and the occurrence of nerve injuries
during third molar surgery. In this study, we found JAR to be present in 88 patients (4.4%) out of the 1250 panoramic radiographs and 1960 third molars we evaluated. Out of the 88, 32 (36.4%) were males and 56 (63.6%) were females. There also was an association with teeth that were mesioangularly impacted. Radiographic signs of proximity to the mandibular canal were present in 48 (54.5%) of JAR cases. One (1.13%) of them reported with inferior alveolar nerve injury after the surgical procedure postoperatively.

In 2014, Kapila et al [1] published two research papers on the relation between JAR, the canal, and third molars roots, on DPT and cone-beam computed tomography (CT). JAR was commonly located buccally or superiorly to the canal, and the authors noticed that it was accompanied by a thinning of the cortical plates. They postulated that thinning could be responsible for postoperative paraesthesia after the extraction of third molars, and introduced the concept of disease associated with JAR. Nascimento et al [34] studied 252 patients with a prevalence of 14.7% presenting with JAR. In another paper by Yalcin et al [35], investigated the incidence of juxta-apical radiolucency (JAR) and its relations with surrounding structures using cone-beam computed tomography (CT). o investigate the incidence of juxta-apical radiolucency (JAR) and its relations with surrounding structures using cone-beam computed tomography (CT). Our study supports the idea that JAR is not an independent risk factor for permanent injury to the IAN, and it cannot be the only aspect to guide the treatment plan. We think that further investigations and more literature is needed to elucidate its origins and its role during the removal of third molars. Our institution is passionate about high quality evidence based research and has excelled in various fields ([22,36–45]. Limitation of this study was that we assessed patients only qualitatively and not quantitatively, as no sensory tests were done. Also, because of the low prevalence of JAR (4.4%) in our population and the low incidence of any injury to the nerve (1.13%), a large number of patients and controls would be needed to generalise the results to the population.

Conclusion

Based on our results, JAR is not an infrequent finding and is more commonly associated with third molars in female patients with the presence of JAR. It is also associated with mesioangular impacted third molars which are partially erupted teeth. These results can be useful in assisting professionals in treatment planning and making the correct diagnosis. Future studies need to be performed to correlate the presence of JAR and its imaging characteristics with a higher incidence of postoperative complication.

Acknowledgement

The authors would like to acknowledge the help and support rendered by the department of oral and maxillofacial surgery and information technology of Saveetha Dental College and Hospitals for their constant assistance with the research.
Conflict of interest

The authors declare no conflicts of interest

References

10. Selvi F, Dodson TB, Nattestad A, Robertson K, Tolstunov L. Factors that are associated with injury to the inferior alveolar nerve in high-risk patients after

45. Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and