Wiener index of Lehmer three mean graphs

M. J. Abisha
Department of Mathematics, St Jude’s College, Thoothoor-629176, Tamil Nadu, India | Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India
Email: abisharejeesh@gmail.com

K. Rubin Mary
Assistant professor, Department of Mathematics, St Jude’s College, Thoothoor-629176, Tamil Nadu, India | Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India
Email: rubinjude@yahoo.com

Abstract---The Wiener index W(G) of G is equal to the sum of distances between all pairs of vertices of G. The Wiener index W, denoted w (Wiener 1947) and also known as the path number or Wiener number, is a graph index defined by \(W(G) = \sum_{(x,y) \in V(G)} d_G(x,y) \). In this paper we investigate Wiener index for caterpillar, twig and arrow graph.

Keywords---Wiener index, Lehmer three mean graphs.

Introduction

The Wiener topological index \((W) \), introduced around 1947 by Harry Wiener, is the representation of data through a network of vertices (nodes) and edges (connections) which construct shapes to interpret patterns and relationship properties." In graph theory, we define a simple connected graph, \(G \), with vertices, \(V \) and edges, \(E \) as \(G = (V, E) \). For \(x, y \in V \), the length of the shortest edge from \(u \) to \(v \) is represented as the distance, \(d(x,y) \). The Wiener Index, \(W(G) \), is the sum with respect to \((x,y) \) of the subsets of \(G \).

Definition 1.1

Let \(G \) be a \((r,s)\) graph. A function \(h \) is called Lehmer three mean labeling of graph \(G \), if it is possible to label the vertices \(v \in V \) with distinct labels \(h(x) \) from \(1,2,3,\ldots,s+1 \) in such a way that when each edge \(e = xy \) is labeled with \(h(e) = \)
\[\frac{h(x)^3 + h(y)^3}{h(x)^2 + h(y)^2} \text{ (or) } \frac{h(x)^3 + h(y)^3}{h(x)^2 + h(y)^2} \] then the edge labels are distinct. In this case “\(h \)” is called Lehmer-3 mean labeling of \(G \).

Definition 1.2

Let \(G \) be a Lehmer three Mean graph. The Wiener Index \(W(G) \) of \(G \) is defined by

\[W(G) = \sum_{(u,v) \in E(G)} d_G(u,v) \]

Definition 1.3

The average distance \(\mu(G) \) between the vertices of \(G \) by:

\[\mu(G) = \frac{W(G)}{|V(G)|} \]

Main Results

Theorem 2.1

Twig \(Tw(m) \) be a Lehmer three mean graph, then Wiener index of \(Tw(m) \) is

\[W(G) = (3m-5) \times 1 + 6 (m-2) \times 2 + \sum_{k=3}^{m-1} \sum_{j=3}^{m-1} 9(m-k)j \]

Average distance is

\[\mu(G) = \frac{W(G)}{|V(G)|} \]

Proof:

Let Twig \(Tw(m) \) be a Lehmer three mean graph.

Then \(W(G) = \sum_{(u,v) \in E(G)} d_G(u,v) \)

\[= \{ \{d(v_1, v_2) + d(v_1, u_1) + d(v_1, w_1) + d(v_1, v_3) + \ldots + d(v_1, v_m) + d(v_1, u_{m-2}) + d(v_1, w_{m-2}) \} + \{d(u_2, w_1) + d(u_1, v_3) + d(u_1, u_2) + \ldots + d(u_1, u_{m-2}) + d(u_1, w_{m-2}) + d(u_1, v_m) \} + \ldots + \{d(v_{m-1}, u_{m-2}) + d(v_{m-1}, w_{m-2}) + d(v_{m-1}, v_m) \} + d(u_{m-2}, v_m) \} \]

\[= (3m-5) \times 1 + 6 (m-2) \times 2 + \sum_{k=3}^{m-1} \sum_{j=3}^{m-1} 9(m-k)j \]

Average distance is

\[\mu(G) = \frac{W(G)}{|V(G)|} \]

\[= \frac{(3m-5) \times 1 + 6 (m-2) \times 2 + \sum_{k=3}^{m-1} \sum_{j=3}^{m-1} 9(m-k)j}{2} \]

Example 2.2

Wiener Index of Twig graph \(Tw(4) \) is given below

\[W(G) = \sum_{(u,v) \in E(G)} d_G(u,v) \]
\[W(G) = (1 + 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4) + (1 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3) \\
+ (2 + 2 + 3 + 3 + 3 + 4 + 4 + 4) + (2 + 3 + 3 + 3 + 4 + 4 + 4) \\
+ (1 + 1 + 1 + 2 + 2 + 2) + (2 + 2 + 3 + 3 + 3) + (2 + 3 + 3 + 3) \\
+ (1 + 1 + 1) + (2 + 2) + 2 \\
= (10 \times 1) + (18 \times 2) + (18 \times 3) + (9 \times 4) \\
\mu(G) = \frac{136}{11C_2} = \frac{136}{55} \approx 2.5 \]

Theorem 2.3

Let Arrow graph \(A^2(m) \) be a Lehmer three mean graph, then Wiener index of \(A^2(m) \) is \(W(G) = 3m \times 1 + \sum_{k=1}^{m-1} \sum_{j=2}^{m} 4(m - k)j \). Average distance is \(\mu(G) = \frac{W(G)}{|V(G)|} \)

Proof:

Let Arrow graph \(A^2(m) \) be a Lehmer three mean graph. Then \(W(G) = \sum_{(u,v) \in E(G)} d_G(u,v) \)

\[
W(G) = 3m \times 1 + \sum_{k=1}^{m-1} \sum_{j=2}^{m} 4(m - k)j \\
= 3m \times 1 + \frac{m(m-1)}{2} \sum_{j=2}^{m} 4(m-j) \\
= 3m \times 1 + \frac{m(m-1)}{2} \sum_{j=2}^{m} 4m - 4j \\
= 3m \times 1 + \frac{m(m-1)}{2} \left[(4m \times m) - (4 \times \sum_{j=2}^{m} j) \right] \\
= 3m \times 1 + \frac{m(m-1)}{2} \left[4m^2 - 4 \times \frac{m(m+1)}{2} \right] \\
= 3m \times 1 + \frac{m(m-1)}{2} \left[4m^2 - 2m(m+1) \right] \\
= 3m \times 1 + \frac{m(m-1)}{2} \left[2m(m-1) \right] \\
= 3m \times 1 + \frac{m(m-1)}{2} \frac{m(m-1)}{2} \\
= \frac{3m \times 1 + \sum_{k=1}^{m-1} \sum_{j=2}^{m} 4(m - k)j}{|V(G)|} \\
\]

Example 2.4

Wiener Index of Arrow graph \(A^2(4) \) is shown below

\[W(G) = \sum_{(u,v) \in E(G)} d_G(u,v) \]

\[
W(G) = (1 + 1 + 2 + 2 + 3 + 3 + 4 + 4) + (1 + 1 + 2 + 2 + 3 + 3 + 4) \\
+ (2 + 1 + 3 + 2 + 4 + 3) + (1 + 1 + 2 + 2 + 3) + (2 + 1 + 3 + 2) \\
+ (1 + 1 + 2) + (2 + 1) + 1 \\
= (12 \times 1) + (12 \times 2) + (8 \times 3) + (4 \times 4) \\
\mu(G) = \frac{76}{9C_2} = \frac{136}{36} \approx 3.7 \\
\]

Theorem 2.3

Let Caterpillar graph be a Lehmer three mean graph, then Wiener index of \(A^2(m) \) is \(W(G) = (3m - 1) \times 1 + 2(3m - 3) \times 2 + \sum_{k=2}^{m-1} \sum_{j=3}^{m} 3(3m - (3k - 1))j + 4(m+1) \)

Proof:

Let Caterpillar graph be a Lehmer three mean graph.
Then \(W(G) = \sum_{(u,v)\in V(G)} d_G(u,v) \)
\[
= \left[(d(u_1,v_1) + d(u_1,w_1) + d(u_1,u_2) + \ldots + d(u_1,u_m) + d(u_1,v_m) + d(u_1,w_m)] + \\
(d(v_1,w_1) + d(v_1,u_2) + d(v_1,v_2) + \ldots + d(v_1,u_m) + d(v_1,v_m) + d(v_1,w_m) + \ldots + \\
+d(u_m,v_m) + d(u_m,v_m)) + d(v_m,w_m) \right] \\
= (3m - 1) \times 1 + 2(3m - 3) \times 2 + \sum_{k=2}^{m-1} \sum_{j=3}^{m} 3(3m - (3k - 1))j + 4(m + 1) \\
W(G) = (3m - 1) \times 1 + 2(3m - 3) \times 2 + \sum_{k=2}^{m-1} \sum_{j=3}^{m} 3(3m - (3k - 1))j + 4(m + 1)
\]

Example 2.4

Wiener Index of Caterpillar graph is shown below

\[
W(G) = \sum_{(u,v)\in V(G)} d_G(u,v) \\
W(G) = (1 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 5 + 5 + 5 + 6 + 6 + 6 + 7 + 7) \\
+ (2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 5 + 5 + 5 + 5 + 6 + 6 + 6 + 7 + 7) \\
+ (1 + 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5) \\
+ (2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 5 + 5 + 6 + 6) \\
+ (2 + 3 + 3 + 3 + 4 + 4 + 5 + 5 + 6 + 5) \\
+ (1 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5) \\
+ (2 + 2 + 3 + 3 + 3 + 4 + 4 + 5 + 5 + 5 + 5 + 6 + 5 + 6 + 6 + 7 + 7)
\]
\[
= (17 \times 1) + (30 \times 2) + (39 \times 3) + (30 \times 4) + (21 \times 5) + (12 \times 6) + (4 \times 7)
\]
\[
= 519
\]

Average distance is \(\mu(G) = \frac{W(G)}{|V(G)|} \)
\[
\mu(G) = \frac{519}{182} \approx 3.39
\]

References