
How to Cite: 

Aljawad, R. A., & Al-Jilawi, A. S. (2022). Solving multiobjective functions of dynamics optimization 

based on constraint and unconstraint non-linear programming. International Journal of Health 
Sciences, 6(S1), 5236–5248. https://doi.org/10.53730/ijhs.v6nS1.6041  

 

 

 

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022. 

Manuscript submitted: 27 Feb 2022, Manuscript revised: 18 March 2022, Accepted for publication: 09 April 2022 

5236 

Solving multiobjective functions of dynamics 

optimization based on constraint and 
unconstraint non-linear programming 
 
 

Rabab Abdulsattar Aljawad  

Ministry of Education, General Directorate of Education in Karbala 
Email: ababaljwad@gmail.com  

 

Dr. Ahmed Sabah Al-Jilawi  
College of Education for Pure Sciences, Department of Mathematics, University of 

Babylon, Iraq. 

Email: ahmed.aljelawy@uobabylon.edu.iq 
 

 

Abstract---To better understand the connection between nonlinear 
optimization problems and differential equations, this study uses the 

mathematical models with one or more objective functions that are 

constrained by restrictions and therefore take the form of differential 

equations called dynamical optimization systems, which mean a 
decision-making method that uses differential and algebraic equation 

mathematical models to design-wise policies based on forecasts of 

future events. This paper focuses on solving mathematical models 
systems using the Python programming language. 
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Introduction  

 

With differential and algebraic equation mathematical models, decision-makers 

may develop intelligent policies based on forecasts of future outcomes using a 
technique called "dynamic optimization." This form of analysis may use a wide 

variety of tools and methodologies.  

 
Numerous real-world optimization problems have dynamic search spaces due to 

the objective function, the number of variables, and the presence of constraints 

[1]. Optimizing problems that change over time and must be handled online using 
an optimization approach are called dynamic optimization problems (DOPs) [2]. It 

is not enough for algorithms to discover excellent solutions when solving DOPs; 

they must also be capable of adapting to changing conditions to swiftly find a new 
key when the prior one is no longer good enough [3]. Therefore, an appropriate 
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benchmark generator is critical for thoroughly evaluating the efficacy of 

algorithms created for DOPs. Thus, the following vital qualities should be 

included in a DOP benchmark generator [1], [2]: 

 

 Simple to execute and evaluate; Information on the location of the global 

optimum should be made available to scientists doing research and fitness 

value, as well as the features of the landscape's components, such as their 
evolving interaction structure, form, and intensity of change, among other 

things. It is recommended that this information be not used in the 

construction or tuning of algorithms and that the problem be treated as 

algorithms are hidden in a black box; It enables algorithmic researchers to 
explore and evaluate the behavior and performance of algorithms in a 

controlled environment. Also, a good benchmark should be easy to use [15]. 

 Flexibility: The benchmark generator should have a great deal of 
adjustability regarding the number of components, component form, size, 

change frequency, and degree of change. Additionally, each feature's setting 

should be self-contained. This independence enables researchers to 
examine the influence of each attribute on algorithm behavior. Additionally, 

the ability to generate examples of challenges of increasing complexity is 

essential for a solid benchmark. Numerous real-world situations are 

complicated and intricate [1], [2], and [4]. 

 Variety: The benchmark generator should generate problems instances with 

a range of characteristics, including modularity (completely separable, 

totally non-separable, and partly separable components), heterogeneity, 
balanced to very high unbalanced sub-functions, dimensionality ranges 

from low to high (largescale), and varying degrees of irregularity. 

 

Numerous DOP benchmarks for various DOP domains have been suggested in the 
literature [2], [5], including combinatorial [6], [7], continuous [4], [8], multi-

objective [9]- [11], and restricted DOPs [12] - [14]. This article discusses dynamic 

continuous unconstrained, and restricted optimization problems, including 
single- and multiobjective. The most extensively widely used and renowned 

benchmark generators in this subject are based on the notion of a landscape 

made up of multiple components. The width, height, and location of these 
components change over time in most published DOP benchmarks [5]. 

 

Optimization 
 

Optimization has evolved into a flexible technique with industry and information 

technology applications to the social sciences. Methods for addressing 

optimization issues are many, and they constitute a vast pool of problem-solving 
technology. There are many different approaches that it is impossible to fully use 

[28], [29]. They are specified in several technical languages and implemented in 

various software programs. Many are never implemented. It is difficult to 
determine which one is best for a specific situation, and there are far too few 

opportunities to mix strategies with complementary qualities. The ideal situation 

would be to combine various techniques under one roof so that they and their 
combinations could all be used to address an issue. As it turns out, many of them 

have a similar problem-solving style on some level [16], [25], and [26]  
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Differential Equations 

 
Differential equations may be used to model practically any system that is 

changing. They permeate all fields of study, including science and engineering, 

economics, sociology, biology, business, and healthcare services. Various 
mathematicians have studied the nature of these equations for hundreds of years, 

and there are numerous well-developed solution methodologies. However, the 

systems represented by differential equations are so sophisticated, or the 

scenarios described by them are so huge that a solution to the equations using 
just analytical methods is impracticable. In these complex systems, computer 

simulations and numerical techniques are beneficial. Before the advent of 

programmable computers, numerical approximation methods for solving 
differential equations were developed. Throughout World War II, in rooms filled 

with workers (typically women), mechanical calculators were often used to solve 

systems of differential equations numerically for military calculations. Before the 
advent of programmable computers, analog computers were often used to 

investigate mechanical, thermal, or chemical systems. As the speed and 

affordability of programmable computers have grown, it is possible to solve more 
complex differential equations on a typical personal computer using simple 

programs built for this purpose. Today, the computer on your desk can tackle 

issues that were previously unreachable to even the best supercomputers just five 

or ten years ago [17], [31].   
 

Nonlinear programming 

 
Problems involving nonlinear programming (NLP) have a nonlinear objective 

function or constraints [18]. No efficient approaches exist for tackling the 

nonlinear programming issue in its entirety. When it comes to solving problems 
with ten variables and hundreds of variables, even the most straightforward 

situations can be challenging. As a result, numerous techniques to solve the 

general nonlinear programming issue have been developed, which entails some 
degree of compromise [19].  

 

Dynamic Optimization  

 
Numerous optimization issues encountered in the real world are dynamic [20]. 

Additional jobs must should be included the timetable, the fundamental 

constituent composition may vary, and new orders may be received, contributing 
to the vehicle routing complexity. Due to the unpredictability inherent in dynamic 

issues, fixing them is often more difficult than solving their static counterparts. 

Additionally, solutions to dynamic issues must be discovered in real time as new 
information is received. Even the optimization objective shifts from finding the 

best solution to a static issue to monitoring the dynamic problem's shifting 

optimum in real time. 
 

Dynamics Optimization Modeling:  

 
The following is a representation of the dynamic optimization model: 

                                             𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒         𝐽(𝑥, 𝑦, 𝑝) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑓 ( 
𝑑𝑥

𝑑𝑡
, 𝑥 , 𝑦 ,   𝑝)   = 0 

                                                                0 ≤  𝑔 ( 
𝑑𝑥

𝑑𝑡
,   𝑥 , 𝑦 , 𝑝 ) 

 

We note that 𝐽(𝑥, 𝑦, 𝑝) is the objective function of a dynamic optimization system;  

where 𝑝 input values, 𝑦 output values, and 𝑥 are the system. 
 

 
Figure (1): describe the input, output, and system 

 

𝑓 , 𝑔 are constraints of a dynamic optimization system where these constraints are 

either equality (𝑓) or inequality (𝑔), and the constraints contain differential 

equations (
𝑑𝑥

𝑑𝑡
)  

 

Dynamic optimization benchmarking 

 
The development of benchmark problems is a key subject in the field of dynamic 

optimization, fitness landscapes that are varied and dynamic may be represented 

using this method. The literature has a large number for dynamic optimization in 

the form of test issues. Grefenstette [23] characterizes his dynamic environment 
as an assembly of components. The Natural Sciences and Engineering Research 

Council of Canada provided funding for this work. Each part is made of a single 

time-varying Gaussian peak in n dimensions. Three time-varying characteristics 
define each height: center, amplitude, and breadth. Brake [22] proposes a 

"Moving Peaks Function" in a similar paper. The author devises for the first time, 

a multimodal function with adjustable peak height, breadth, and center was 
introduced. In addition, he thoroughly analyzes the literature on standards for 

dynamic landscapes. Bear in mind, although the majority of these concerns 

involve real space, they are not all applicable to all combinatorial problems. 
 

Basic concept of dynamic optimization 

 

Python is a programming language used to aid with dynamic simulation, 
estimation, and control solutions. Numerous tools for modeling and optimizing 

dynamic systems are available. Additionally, there are other things to consider 

while picking the best instrument for a specific activity. For example, many 
factors should be considered when choosing an optimization tool for dynamic 

scalings, such as size (scaling with number equations and degrees of freedom), 

speed (use in real-time estimation or control), adaptability, extensibility, and 
support (commercial vs. open-source community) (ability to embed on a system or 

communicate with a particular platform). 

 
*GEKKO combines machine learning and optimization strategies to solve complex 

mixed-integer and differential algebraic problems. It is used with solvers for large-
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scale linear, quadratic, nonlinear, and mixed-integer programming (LP, QP, NLP, 

MILP, MINLP). All types of operation are available, including parametric 
regression, data reconciliation, real-time optimization, dynamic simulation, and 

nonlinear predictive control. GEKKO is a Python object-oriented library for 

executing AP Monitor on a local machine [26]. 
 

Algorithms of Dynamic Systems  

 

Any computer procedure that receives an input value or set of values and outputs 
an output value or set of values is a formula. Thus, an algorithm is a sequence of 

computations that alter the data state. Additionally, an algorithm may be seen as 

a tool to solve a well-defined computing issue. The issue statement provides a 
comprehensive overview of the intended input/output relationship. The algorithm 

defines the computational technique for creating the suitable input/output 

connection. For instance, we may need to ascend a series of integers. This is a 
common occurrence in reality and gives an excellent opportunity to introduce a 

variety of conventional design methodologies and analytical tools [21] and [30].  

 

 
Figure (2): Dynamic Optimization Algorithm 

 

Optimal control benchmarking 

 
Case 1: This is a standard chemical dynamic optimization problem with an 

analytical solution, a mathematical system with no constraints. The state has an 
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analytical and global optimum solution due to two state variables. As an example, 

consider the following mathematical model: 

 

min
𝑢(𝑡)

𝑥2(𝑡𝑓)  

subject to   
𝑑𝑥1

𝑑𝑡
= 𝑢 

𝑑𝑥2

𝑑𝑡
= 𝑥1

2 + 𝑢2 

𝑥(0) = [2 0]𝑇 
𝑡𝑓 = 1 

To solve this dynamic optimization system, we use GEKKO python code to find 

the optimal solution by minimizing the final state of the nonlinear system with an 

unconstraint dynamic such that the value of 𝑢 = −0.5.  
 

 
Figure (3): Dynamic optimization created the control and state profiles 

 

Case 2: It's a typical chemical dynamic optimization issue with an analytical 

solution, a dynamic mathematical system. Including four state variables results 
in an analytical and global optimal solution for the state. For example, have a 

look at this mathematical formula: 

 

min
𝑢(𝑡)

𝑥4(𝑡𝑓)  

subject to 
𝑑𝑥1

𝑑𝑡
= 𝑥2 

𝑑𝑥2

𝑑𝑡
= −𝑥3𝑢 + 16𝑡 − 8 

𝑑𝑥3

𝑑𝑡
= 𝑢 

𝑑𝑥4

𝑑𝑡
= 𝑥1

2 + 𝑥2
2 + 0.005(𝑥2 + 16𝑡 − 8 − 0.1𝑥3𝑢

2)2 

𝑥(0) = [0 −1 −√5 1]𝑇 
−3 ≤ 𝑢 ≤ 11 
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𝑡𝑓 = 1 

 

𝑥1(𝑡) to 𝑥4(𝑡) are state vectors, while 𝑢(𝑡) is the control vector. 
For solving nonlinear systems that have the constraint to minimize the final state, 

we use code GEKKO of Python and get:  

 

 
Figure (4): The control and state profiles were developed using dynamic 

optimization 

 

Multiobjective Functions 
 

We will look at optimization problems with a single objective function in this part, 

both with and without constraints. Cost reduction, efficiency optimization, and 
weight reduction are examples of conventional single-variable goal functions. Two 

or more objective functions must be optimized concurrently in multiobjective 

optimization situations. For example, the criteria may have cost reduction and 
efficiency maximization throughout the product's manufacturing process. The 

formal formulation of a multiobjective optimization problem is [24], [25], and [26] 

 

                    Minimize Or Maximize  𝑓𝑘(х)         𝑘 = 1,2,… ,𝐾 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:         𝑔𝑖(х) ≤ 0   𝑖 = 1, 2, … ,𝑚 < 𝑛 
                                                            ℎ𝑗(х) = 0       𝑗 = 1, 2,… , 𝑟 < 𝑛 

                                                                         х𝑙 ≤ х ≤ х𝑢 
 

х is a vector that contains the n design variables defined by 
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х =  

[
 
 
 
 
 
х1

х2

.

.

.
х𝑛]

 
 
 
 
 

 

 
A solution to a multiobjective issue generates a set of Pareto optimum locations in 

the objective function space. Figure (5) illustrates a typical Pareto optimum front 

for a problem with multiple objectives and two objective functions (efficiency 

maximization and cost reduction). The x-axis of this picture includes the first goal 
(f1) function, "efficiency," and the second objective (f2) function, "cost," lies on the 

y-axis. The principle of dominance is used to produce the Pareto optimum front. 

Each answer is compared in this idea to see if it dominates another solution. For 

example, suppose the following requirements are met. A solution х 1 is considered 

to be superior to another х 2. 
 

 х 1 is not worse than х 2 in all objectives.  

 х 1 is superior to х 2 in a minimum of one goal. 

 
Consider points A and C in terms of dominance. As expected, point C is superior 

to point A in both objective functions. However, at least one of the points on the 

Pareto optimum front is dominated by point C. Non-dominated solutions are the 
spots along the Pareto optimum front. For example, the Pareto optimum front is 

convex in Figure (5). This front, in contrast, may be concave, somewhat convex 

(concave), or discontinuous. Alternatively, the Pareto front's form is determined by 

the trade-off between the goal functions [24]. 

 
Figure (5): Pareto optimal front 

  

Solving multiple objective function of dynamic optimization  
 

Numerous optimization issues include conflicting goals. These conflicting aims 

are a component of the trade-off that characterizes the best solution. 
Occasionally, these opposing aims have distinct priorities, with one being 

accomplished before the other is considered. This is particularly true in model 

predictive control and other forms of dynamic optimization. With an ordered 
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hierarchy, there are competing aims. If extra degrees of freedom are available, the 

highest-level goals are met first, followed by lower-level objectives. The L1-norm 
objective is a natural approach to ranking goals explicitly and optimizing many 

priorities concurrently using a single optimization problem. For example, consider 

the limits or purposes associated with safety, the environment, and economics. 
Which are the most critical and why? 

Case 3:  Create a probable optimum trajectory for the following multiobjective 

optimization problem. 

 
Figure (6): Describe the safety, environmental and economic constraints 

 
Discussion of the Results 

 

Each of the instances discussed in this study may demonstrate the final results 
after they have been numerically solved using Python scripts, particularly the 

library GEKKO. They can explain the final results of each case with a simple 

demonstration. 
 

Case1: With a two-variable solution to the dynamic issue, we'll also minimize by 

altering the value of 𝑢, which we'll do by changing 𝑥1and 𝑥2. 𝑥1 is equal to 2, and 

𝑥2 is equal to 0; therefore, we're going to compute the value until 𝑥1 is equal to 2, 

and we'll do the same thing for 𝑥2 until it is equal to 0, as you can see from our 
input or variables used to manipulate the X conditions, note Figure (3). Then we 

get:  
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Number of Iterations: 3 

Table (1) 

Final Results when Solve Case 1 

 

 (scaled) (unscaled) 

Objective  

 
 Dual infeasibility 

 

Constraint violation 
 

Complementarity 

 
 Overall NLP error    

3.0347753804326336e+00     

     
8.8817841970012523e-16     

 

8.8817841970012523e-16     
 

0.0000000000000000e+00     

   
8.8817841970012523e-16     

3.0347753804326336e+00     

     
8.8817841970012523e-16     

 

8.8817841970012523e-16     
     

0.0000000000000000e+00     

   
8.8817841970012523e-16     

 
The final value of the objective function is    3.03477538043263. 

 

Case 2:  
With the four-variable solution to the dynamic issue, we'll also minimize by 

altering the value of 𝑢, which we'll do by changing 𝑥1, 𝑥2, 𝑥3  and 𝑥4. 𝑥1 is equal to 

2, 𝑥2= -1, 𝑥3= √3   and 𝑥4 is equal to 1; therefore, we're going to compute the value 
of x's, as you can see from our input or variables being used to manipulate the X 

conditions, see figure (4). 

 
Number of Iterations: 19 

Table (2): 

Final Results when Solve Case 2 
 

 (scaled) (unscaled) 

Objective  
 

 Dual infeasibility 

 

Constraint violation 
 

Complementarity  

 
 Overall NLP error    

2.5121002922896420e+00     
     

6.2326704832482986e-07     

 

4.4408920985006262e-15     
 

1.4447122070015801e-10     

   
6.2326704832482986e-07        

2.5121002922896420e+00     
     

6.2326704832482986e-07     

 

4.4408920985006262e-15     
     

1.4447122070015801e-10     

   
6.2326704832482986e-07        

 
The final value of the objective function is 2.51210029228964. 

 

Case 3: Figure (6) shows how to solve a multiobjective optimization problem in 
model predictive control or dynamic optimization. In many cases, we might have 

high-priority items like safety constraints. For example, priority two might be 

something like an environmental constraint or regulation, and priority three 
might be to make the process as profitable as possible. 

When using python code to solve case 3, we get:  
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Number of Iterations: 28 

Table (2) 
Final Results when Solve Case 3 

  

 (scaled) (unscaled) 

Objective 

 

 Dual infeasibility 

 
Constraint violation 

 

Complementarity   
 

 Overall NLP error    

1.2277417296878346e+04     

     

7.1054273576010019e-13     

 
9.4368957093138306e-16     

 

1.1738233691638086e-11     
   

1.1738233691638086e-11     

    

3.6832251890635038e+04 

     

2.1316282072803006e-12 

 
9.4368957093138306e-16 

     

3.5214701074914258e-11 
   

 3.5214701074914258e-11 

 

 

The final value of the objective function is 36832.2518906350.    
 

Conclusion 

 
This paper presented a technique for tackling single- and multiobjective, 

continuous, restricted, and unconstrained dynamic optimization problems. Please 

remember that many real-world problems may be optimized and solved using 
Python to arrive at the ideal answer. 
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