How to Cite:

How the re-gained characteristics of self-healing concrete with crystallised admixture and GGBSA are affected by the curing conditions

A. Ravitheja
Assistant Professor in SVR engineering college, Pandya, Andhra Pradesh, India
Email: ravithejahp@gmail.com

J. Vara Prasad
Assistant Professor in SVR engineering college, Pandya, Andhra Pradesh, India
Email: jvaraprasad@yahoo.com

Y. Venkatarami Reddy
Professor in Jawaharlal Nehru Technological University, Anantapur, India
Email: ramuroyal24@gmail.com

Abstract---Fiber reinforced concrete will be subjected to low water-to-cement ratios and extensive fracture exposure as part of a research to examine the capabilities of various add-ons to improve self-healing. An examination of pozzolanic materials' self-healing abilities in light of their mechanical performance is proposed in this work. It was determined that different exposure times ranging from 7 to 42 days might initiate self-healing in the material by applying a through-crack compressive force, wet-dry cycles, water contraction, water immersion, and air exposure. GGBS admixture with 30% demonstrated outstanding compressive strength in all four conditions, according to the results of the investigation.

Keywords---self-healing, crystalline admixtures, GGBS, compressive strength, SEM-EDS.

Introduction

In the last thirty years, the concept of sustainability has acquired great importance, since the problem of excessive use of resources has led to the formation of a suitable collective conscience to enhance natural resources in every
aspect of modern society, integrating it into economic, social and institutional dimension. Over time, attempts have been made to apply this concept in every production process, be it industrial or manufacturing, changing its organization and management [1]. This change has involved all types of companies, from the classic ones, whose main goal is to produce and sell a certain product in large quantities, to those more parts whose products require long manufacturing periods and a useful life exceeding fifty years. This second category includes all the companies that work in the construction field [2]. This in fact, the new approach has had a very strong impact since the revolution in the management of construction process involved all aspects, from design to management and waste disposal on site. When it comes to concrete structures the parameter main to be satisfied is that of durability, in other words the ability to last for the whole expected life period guaranteeing the service for which the structure itself was designed, reducing ordinary maintenance to a minimum and eliminating extraordinary maintenance [3].

A reinforced concrete structure’s longevity is largely determined by the cracking of its component parts. In fact, this allows the penetration of water or other aggressive agents that can compromise the state of the steel reinforcement present in yours internal. We have thus approached the concept of self-healing, in other words self-healing, of concrete. The use of the term “healing” serves precisely to highlight the comparison with the medicine; the idea is precisely to find a mix-design methodology that allows think of concrete as a material capable of repairing minor damage as well recover the properties compromised by such damage[4-7]. The crack problem, as mentioned above, implies the possible entry of water or simple humidity inside the structural element. This phenomenon, as well as being responsible for some unwanted chemical reactions, it favors the flow of other substances aggressive on structures and determines their penetration inside the pores of the concrete [8]. The deterioration processes to which the structural elements presenting a excessive cracking are different. First of all, the corrosion of the armor, since the products of these chemical reactions lead to an initial increase in volume with consequent expansion, formation of splitting cracks and expulsion of the covers; in addition, there is a reduction in section of the steel with consequent reduction of the bearing capacity[9-10]. Recently, several methodologies have been proposed for the design of concrete in able to self-repair, starting from the simple study of particular mixtures capable of inducing a autogenous healing process, up to the complete engineering of that process using specific bacteria or additives capable of activating only when the crack is opened. Such studies will be explained below in order to make the choices made in this thesis work clearer.

Materials and Methods

Specimens of high-strength concrete (M70) specimens were cast, cured and self-healing specimens were tested in this part. For the self-healing investigation, five distinct combinations were used in this research. Cement, fine aggregates, coarse aggregates, water, steel fibres, and a super plasticizer are included in the control mixture ingredients in this proposal (Table 1). To meet the requirements of IS: 12269-1987[11] and have a specific gravity of 3.12, we used ZUARI brand cement, which is ordinary Portland cement (OPC). Physical parameters of cement were
determined by a series of tests. The results showed a 32 percent normal consistency and a 53 N/mm² compression strength. Using River Tungabhadra sand, which was abundantly accessible in the region, fine aggregate was manufactured. For natural fine aggregate, the following tests are conducted as per IS 383-1987[12]. According to BIS, the sand is Zone-II. Specific gravity and sieve analysis of fine aggregate are two tests that use fine aggregates. Fine aggregates are sieved according to IS: 2386(PART I)-1963[13] to conduct sieve analysis, which measures the size distribution of the particles. The specific gravity and fineness modulus of the fine aggregate are both 2.57 and 3.22, respectively. The investigation utilised natural coarse material from a local quarry. The study validated the usage of 12.5mm aggregate, as required by IS: 2386-1963. (I, II, III). Based on computer models, the maximum typical size of granular coarse aggregate is 12.5mm, with a specific gravity of 2.70. Concrete may be made using potable water that is readily accessible in the area. Materials utilised in this study have been listed in table 2, along with their chemical compositions. Then, the specimens were cured for 28 and 42 days in four distinct circumstances. Wet/dry cycles, water immersion, water contact, and wet/dry cycles have all been used in the testing up to a crack opening value of 0.25 mm for the specimens (Immersion in tap water and air exposure for 3 days each.).

Table 1
High strength concrete mixing ratios

<table>
<thead>
<tr>
<th>Mixes</th>
<th>GGBS</th>
<th>Cement (Kg/m³)</th>
<th>Fine aggregate (kg/m³)</th>
<th>Coarse aggregate (kg/m³)</th>
<th>GGBS (kg/m³)</th>
<th>Water (lit/m³)</th>
<th>Superplastizer (lit/m³)</th>
<th>Crystalline admixture (kg/m³)</th>
<th>Steel fibers (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>0</td>
<td>489</td>
<td>844</td>
<td>1065</td>
<td>0</td>
<td>142</td>
<td>4.89</td>
<td>0</td>
<td>9.78</td>
</tr>
<tr>
<td>CA</td>
<td>0</td>
<td>489</td>
<td>844</td>
<td>1065</td>
<td>0</td>
<td>142</td>
<td>4.89</td>
<td>5.379</td>
<td>9.78</td>
</tr>
<tr>
<td>G₂₀CA</td>
<td>20</td>
<td>391.2</td>
<td>844</td>
<td>1065</td>
<td>97.8</td>
<td>142</td>
<td>4.89</td>
<td>5.379</td>
<td>9.78</td>
</tr>
<tr>
<td>G₃₀CA</td>
<td>30</td>
<td>342.1</td>
<td>844</td>
<td>1065</td>
<td>146.9</td>
<td>142</td>
<td>4.89</td>
<td>5.379</td>
<td>9.78</td>
</tr>
<tr>
<td>G₄₀CA</td>
<td>40</td>
<td>293.4</td>
<td>844</td>
<td>1065</td>
<td>195.6</td>
<td>142</td>
<td>4.89</td>
<td>5.379</td>
<td>9.78</td>
</tr>
</tbody>
</table>

Table 2
Cementitious materials’ physical and chemical properties

<table>
<thead>
<tr>
<th>Chemical compositions</th>
<th>GGBS</th>
<th>Crystalline admixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂, %</td>
<td>35</td>
<td>16.81</td>
</tr>
<tr>
<td>Al₂O₃, %</td>
<td>12</td>
<td>1.93</td>
</tr>
<tr>
<td>Fe₂O₃, %</td>
<td>1</td>
<td>1.98</td>
</tr>
<tr>
<td>CaO, %</td>
<td>40</td>
<td>34.58</td>
</tr>
<tr>
<td>SO₃, %</td>
<td>9</td>
<td>1.16</td>
</tr>
<tr>
<td>Na₂O, %</td>
<td>0.3</td>
<td>15.22</td>
</tr>
<tr>
<td>K₂O, %</td>
<td>0.4</td>
<td>0.16</td>
</tr>
<tr>
<td>Loss on ignition, %</td>
<td>1</td>
<td>26.3</td>
</tr>
</tbody>
</table>
Regained strength analysis

As self-healing qualities are predicted to improve, stiffness and cracking loads should rise in response to initial loading and subsequent reloading. For the purposes of calculating the increase in self-healing strength, equation (1) presented below was used to compute self-healing efficiency (R).

\[R = \frac{\text{strength after healing}}{\text{original strength}} \times 100 \] (1)

Results and discussion of the experiment

Measurement of compression force

The potential of various replacements to develop self-healing ability of material was tested in connection to the fallout of the selected specimens, as were variations in exposure duration to WI, WD, WC, and AE through-crack compressive stress. All four settings seem to be the best for the compressive strength of crystalline-admixed concrete at 42 days. GGBS with 30 percent crystalline admixture exhibited superior results than all tested specimens, although GGBS with 30 percent GGBS had outstanding compressive strength in all four settings. RM, CA, g20ca, g30ca, and g40ca specimens regained their compressive strength in % as the number of days increased. The compression strength of the crystalline admixture with 30% ggbs was clearly shown in the figure. Figure 1 compares the restored compression strength of several materials, including RM, CA, G20CA, G30CA, and G40CA, to that of reference concrete after structural fractures have healed under various exposures. According to this graph, all four exposures of the crystalline admixture with 30% ggbs demonstrate increasing recovery compressive strength with time. Full recovery was achieved by using g30ca with 42 days of water immersion exposure and wet-dry cycles.
Fig 1. For four distinct curing conditions, the percentage of compressive strength recovery based on the number of curing days”

SEM-EDS analysis

You can easily tell whether your cement has C–S–H and Calcite content because of the calcium ions, cement hydration by-products, and unhydrated cement particles. For concrete that contains crystallised admixture, air exposure results in non-negligible self-healing to the tune of 70%. Only the self-healing condition in water immersions is effective among the four exposers (Figure 2). The SEM micrographs in Figure 2 show a reduction in calcium hydroxide crystals (Ca(OH2)) and an increase in amorphous C-S-H gels, calcium carbonate, and ettringite in concrete. This increases the concrete's sturdiness and longevity. On days 28 and 42, the healing rates of various GGBS and crystalline mixtures are examined in Figure 3.
“Fig 2. SEM of Control concrete (A), Crystalline admixture (B), Crystalline admixture with 30% GGBS (C)”
Conclusions

Cement’s hydration and self-healing properties may be attributed to every chemical in the material, according to the findings of this research. With the right mix proportions, we can create numerous cements to fit a wide range of building needs and environmental conditions. Crystalline admixture with 30 percent GGBS demonstrated good compressive strength in all four settings, according to the findings of the examination of compressive strength. Self-healing concrete was found to be composed of C-S-H gel, CaCO3, and ettringite based on SEM findings for self-healing fractures and a comparison of virgin and crystalline additive concrete characteristics. To improve concrete self-healing, the use of 30 percent GGBS in the crystalline additive might be beneficial, since it was shown to be successful in all four exposures. As a result, the research comes to an end. Self-healing capacities of concrete enhanced with pozzolanic chemicals are affected by time, the width of fractures, and through-crack pressures.

References

12. IS 383 (1970): Specification for Coarse and Fine Aggregates From Natural Sources For Concrete, IS 2386-1: Methods of Test for Aggregates for Concrete