How to Cite:

Trivedi, G., Gupta, N. K., Kumar, V., Ramanathan, T., Bharadwaj, A., Gupta, S. K., Noviar, R. A., & Kumar, A. (2022). Top 100 most cited papers on medicinal plants research: A bibliometric review. *International Journal of Health Sciences*, *6*(S1), 5475–5491. https://doi.org/10.53730/ijhs.v6nS1.6106

Top 100 most cited papers on medicinal plants research: A bibliometric review

Guptnath Trivedi

Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar-848125 Email: gupt.bhu@gmail.com

Nitesh Kumar Gupta

Gangadhar Meher University Sambalpur, Odisha-768001 Email: nitbhu80@gmail.com

Vinay Kumar

Centurian University of Technology and Management, Odisha, India- 761211 Email: vinay.kumar@cutm.ac.in

Thirugnanasambandam Ramanathan

Associate Professor, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India Email: drtrcasmb@gmail.com

Alok Bharadwaj

Assistant Professor, Department of Biotechnology, GLA University, Mathura (U P.)-281406

Sanjeev Kumar Gupta

Associate Professor of Botany, GOVT DEGREE COLLEGE BASOHLI, J&k UT Email: sanjeevbotany@gmail.com

Rizki Andita Noviar

Nursing Department, National Brain Center Hospital, Indonesia Email: ranoviar@gmail.com

Abhishek Kumar

Faculty of pharmaceutical sciences, Rama University, Kanpur, U.P, India Email: Abhiworld1997@gmail.com

Abstract---Background: The idea of the paper is to identify trends and examine the characteristics of the top 100 cited papers on medicinal plants research. Methods: Web of Science citation database was

Corresponding author: Trivedi, G.; Email: gupt.bhu@gmail.com

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 09 Feb 2022, Manuscript revised: 27 March 2022, Accepted for publication: 18 April 2022

queried to identify the citations of the top 100 most cited papers on medicinal plants research. R and Excel statistical software were employed to extract bibliographic data on various parameters such as number of authors, publication year, journal name, country of origin, research collaboration, trend of research etc. The top 100 cited papers were extracted for further statistical and visual analysed on various grounds. Results: 100 top-cited articles were identified where these papers published in 51 iournals. led by Journal of Ethnopharmacology (36 papers) and other journals. All most cited papers were published during 1993 to 2020. The common areas of study were categorized as radical scavenging activities of medicinal plants, antioxidant behaviour of medicinal plants, antiviral and antibacterial application, use of medicinal plants in diagnosis and treatment of various diseases such diabetes and cancer etc. India and China emerged as leading nations performing medicinal plants research and greater author's collaboration were witnessed in medicinal plants research with an overall collaboration index of 4.39. Conclusion: The top-cited articles published in medicinal plants help recognize the qualitative research can us research. identifications, and trends of research. The analysis provides an insight to the prevalent areas of study being cited within the discipline and interdisciplinary field of practice.

Keywords---Medicinal Plants, Bibliometric, Keyword Co-occurrence, VoSviewer.

Introduction

Medicinal plants and medicines made from plants-derivatives are commonly and widely used in traditional cultures across the globe. They are in widespread use as an alternative to synthetic and chemical drugs [1]. Looking the global importance of the term medicinal plants, a proper definition can be summarized as follows "all higher plants that have been alleged to have medicinal properties, i.e., effect that relates to health or which can be proven to be useful by western standards or which contains constituents that can be used as drugs." [2]. Since ancient times, Medicinal plants have been a vital resource for the global community in terms of healing and creating of many life-saving drugs. Now a days also due to their medicinal importance they are as importance as a primary healthcare mode for approximately 85% of the world's population [19], and as a resource for drug discovery, with around 80% of all synthetic drugs deriving from them [20]. But it is only from the last few hundred years since there is a prolific rise has been recorded in the area of medicinal plants research. Also, due to continuous research and innovation, especially in last two decades, scientific community have witnessed an exponential rise in the publications on medicinal plants research. Therefore, it is very much essential to review most influential publications concerning medicinal plants in terms of citations and related matrix characteristics. For this, 100 most cited papers concerning medicinal plants have been analysed through various authors and journals level metrices using bibliometric means.

Bibliometrics studies comprises set of tools and analysis procedures to map the published and recorded knowledge in a defined field of study [12, 13] and can be used to overview the state-of-the-art status and development trends of a research field, providing ideas and directions for future research [14, 15]. Bibliometric approaches are commonly employed to many areas of research to map their research trend and foci [16-18]. The Web of Science (WoS) Core Collection is the most commonly used platform for bibliometric analyses. To the best of the author's knowledge till date, there has been no comprehensive bibliographic review of studies on medicinal plants using bibliometric utilities have been conducted. Therefore, in this current study we have conducted a bibliometric study to analyse the 100 most cited papers on medicinal plants research using Web of Science citation database as source for retrieving published papers from the year 1989 to 2020. The data provides a comprehensive perspective on the research status of medicinal plants by considering the analysis units such as publication years, total number of citations counts, most relevant authors, most relevant countries/regions, most prolific journal sources, most relevant organizations, and network visualizations such as author's keyword cooccurrences and co-authorship network.

The present study attempts to analyse the top 100 most cited papers on medicinal plants using bibliometric and visualization means. The paper tries to answer following research question:

Q: What is the publication landscape and intellectual structure of top 100 most cited papers on medicinal plants?

In order to answer this main research question, many unitary questions need to answer such as (1) Which were the most prominent countries, authors and affiliations in terms of publications and citations and other metrices? (2) Which were most occurred and linked keywords to analyse the various research fronts? (3) What are the themes and trend of medicinal plants research based on keywords clusters analysis?

Methods

Data Sources and extraction

100 most cited papers on medicinal plants research have been extracted from Web of Science Core collection citation database and the time frame was set from the origin to 2020. The advance search option was selected for querying the search term and under that "Title" as access point has been selected. The keyword TI = ("medicinal plants") has been searched under title only column and all types of documents were selected for displaying the result. Altogether 10505 papers were displayed in search result from which top 100 most cited papers were ranked, selected and downloaded along with their full bibliographic item record [8].

Statistical and visual Analysis

Microsoft Excel and R- Statistical Software [21] was used for descriptive statistical analyses of the publication year, publication types, number of citations, authors, countries/regions, organizations, and journals and their metrices. The VOSviewer

software [22-23] has been used to perform the network analysis on various bibliographic network. While creating co-authorship-based map, author's names have been used as unit of analysis, and they were further linked with each other based on their collaboration with each other.

In this map, a threshold of minimum 2 times occurred keywords have been selected. The software assigns the nodes to form a cluster which are jointly group together and depends upon the resolution parameter [24]. Each cluster is represented by a colour. More important terms had larger circles represents more important keywords, and strongly related keywords were closer to each other. The connecting curved lines between two terms shows the relationship between them and lines thickness represents a stronger link between two keywords [24].

Results

100 most cited papers along with other metrices

A total of 10505 papers were displayed with medicinal plants as a keyword in their titles. Papers were scrutinized and extracted from WoS database and organized in their descending number of citations. Thus, 100 most cited papers from top have been sorted and downloaded for further analysis. Altogether, all these papers are cited 33991 times, ranging between 186 and 1597 citations each, and 14 papers out of them were cited at least 500 times. Table 1 presents the 100 most cited papers along with their core journals.

Rank	TC	TOPY	NTC	Authors	Title	Journals/Sources
Rains	10	1011		numors	Antioxidant activity and phenolic	oburnals/ bources
				Vi to a October	compounds of 112 traditional Chinese	
1	1507	88 70	2 605	rizhong Cai let	anticoncor	Life Sciences
1	1397	00.12	2.003	G Miliouskos	anticancei	Life Sciences
				P R Venskutonis	Screening of radical scavenging activity of	
				and T A van	some medicinal and aromatic plant	
2	1083	60.17	1.766	Beek., 2004	extracts	Food Chemistry
				, ,	Validation of the ITS2 Region as a Novel	2
				Shilin Chen [et	DNA Barcode for Identifying Medicinal	
3	873	72.75	2.148	al.], 2010	Plant Species	PLOS ONE
				J.K.Grover,		
				S.Yadav and	Medicinal plants of India with anti-	Journal of
4	871	43.55	2.102	V.Vats, 2002	diabetic potential	Ethnopharmacology
					Antioxidant activity of some Algerian	
				A. Djeridane [et	medicinal plants extracts containing	
5	862	53.88	2.254	al.], 2006	phenolic compounds	Food Chemistry
	0.1.6	10 76	0.000	J. L. Rios and		Journal of
6	846	49.76	2.089	M.C. Recio, 2005	Medicinal plants and antimicrobial activity	Ethnopharmacology
				Marcy J.		
_	0.00	40.00	0.000	Balunasa and A.		
1	838	49.29	2.069	Douglas	Drug discovery from medicinal plants	Life Sciences

Table 1The 100 most cited papers on Medicinal Plants Research

				Kinghorn, 2005				
0	601	46.07	1.076	Farooq Anwar [et	Moringa oleifera: a food plant with	Phytotherapy		
0	691	40.07	1.970	al.], 2007	Dhytochemical constituents of some	African Journal of		
9	681	40.06	1 681	al 1 2005	Nigerian medicinal plants	Riotechnology		
	001	10.00	1.001	V. Katalinic.[et	Screening of 70 medicinal plant extracts	Diotectiniology		
10	645	40.31	1.687	al.], 2006	for antioxidant capacity and total phenols	Food Chemistry		
					Antioxidant activity and free radical			
					scavenging capacity between Korean			
				Chang W Choi [et	medicinal plants and flavonoids by assay-			
11	530	26.50	1.279	al. , 2002	guided comparison	Plant Science		
				Iqbal Anmad and	Antimicrobial and phytochemical studies	Journal of		
12	518	24 67	1 683	2001	multi-drug resistant human nathogens	Ethnonharmacology		
14	510	24.07	1.005	2001	Structure-radical scavenging activity	Dumopharmacology		
				Yi-Zhong Cai [et	relationships of phenolic compounds from			
13	516	32.25	1.35	al.], 2006	traditional Chinese medicinal plants	Life Sciences		
						Proceedings of the		
					Synergy in a medicinal plant:	National Academy of		
					Antimicrobial action of berberine	Sciences of the		
1.4	= 1.0	00.00	1 700	Frank R. Stermitz	potentiated by 5'-methoxyhydnocarpin, a	United States of		
14	513	23.32	1.730	et al. , 2000	multidrug pump innibitor	America Nutrition and		
				W V Huang V Z	Natural phenolic compounds from	Cancer-an		
				Cai and Y.Zhang	medicinal herbs and dietary plants:	International		
15	488	40.67	1.201	2010	potential use for cancer prevention	Journal		
				Michael Heinrich	Medicinal plants in Mexico: healers'	Social Science &		
16	475	19.79	1.591	[et al.], 1998	consensus and cultural importance	Medicine		
				Leonardo Gobbo-				
				Neto and Norberto	Medicinal plants: factors of influence on			
17	471	31.40	1.347	P. Lopes, 2007	the content of secondary metabolites	Quimica Nova		
				Iqbal Ahmad,				
				and Foiz	Screening of some Indian medicinal plants	Journal of		
18	463	19.29	1.551	Mohammad, 1998	for their antimicrobial properties	Ethnopharmacology		
10		19149	1.001	Bushra Sultana.				
				Farooq Anwar and	Effect of extraction solvent/technique on			
				Muhammad	the antioxidant activity of selected			
19	461	35.46	1.69	Ashraf, 2009	medicinal plant extracts	Molecules		
				F. Pourmorad,				
				S.J. Hosseinimehr	Andia ident and it is also also differentia			
				and N. Shahabimaid	contents of some selected Iranian	African Journal of		
20	437	27.31	1.143	2006	medicinal plants	Biotechnology		
				Siddharthan	Systematic evaluation of natural phenolic			
				Surveswaran [et	antioxidants from 133 Indian medicinal			
21	365	24.33	1.044	al.], 2007	plants	Food Chemistry		
					A review of modern sample-preparation	Analytical and		
	0.5.5	10.07	0.0-1	Carmen W. Huie,	techniques for the extraction and analysis	Bioanalytical		
22	361	18.05	0.871	2002 Manta Oni di	of medicinal plants	Chemistry		
				Marta Cristina	Anti Condido optivity of Progilion	Journal of		
23	358	21.06	0.884	all 2005	medicinal plants	Fthnonharmacology		
40	556	41.00	0.004	a.j, 2003	Medicinal plants of the caatinga (semi-	Dumopharmacology		
				Ulysses Paulinode	arid) vegetation of NE Brazil: A			
				Albuquerque [et	quantitative approach	Journal of		
24	348	23.20	0.995	al.], 2007		Ethnopharmacology		
				M. C. Sabu and	Anti-diabetic activity of medicinal plants			
				Ramadasan	and its relationship with their antioxidant	their antioxidant Journal of		
25	344	17.20	0.83	Kuttan, 2002	property	Ethnopharmacology		
26	343	24.50	1.361	Maria de Fátima	Survey of medicinal plants used in the	Revista Brasileira de		

				Agra [et al.], 2008	region Northeast of Brazil	Farmacognosia Brazilian Journal of Pharmacognosy
					Correlation between chemical composition	
					and antibacterial activity of essential oils	
~ -				K Cimanga [et al.],	of some aromatic medicinal plants growing	Journal of
27	343	17.15	0.828	2002	in the Democratic Republic of Congo	Ethnopharmacology
				A Nostro [et al.]	evaluation of medicinal plant antimicrobial	Letters in Applied
28	342	15.55	1.157	2000	activity	Microbiology
				K.M. Solimana		
				and R.I. Badeaa,	Effect of oil extracted from some medicinal	Food and Chemical
29	341	17.05	0.823	2002	plants on different mycotoxigenic fungi	Toxicology
					Phenolic compounds, antioxidant activity	
					key enzymes relevant for hyperglycemia	
				Lena Galvez	and hypertension of commonly used	
				Ranilla [et al.],	medicinal plants, herbs and spices in	Bioresource
30	339	17.84	1.345	2010	Latin America	Technology
				Nahaad Ahmad Ist	Ponid aunthoriz of ailver percential-	Colloids and
31	332	27.67	0.817	all 2010	using dried medicinal plant of basil	Biointerfaces
01	002	21.01	0.017	u.j, 2010	Antioxidant properties in vitro and total	Diomiteritaceo
				Hua-Bin Li.[et al.],	phenolic contents in methanol extracts	LWT - Food Science
32	329	27.42	0.81	2008	from medicinal plants	and Technology
				01:01	A systematic survey of antioxidant activity	
22	205	01 70	1.01	Chi-Chun Wong	of 30 Chinese medicinal plants using the	Food Chamiatry
	303	41.79	1.41	[et al.], 2000	Ethnopharmacological survey of medicinal	Food Chemistry
					plants used for the treatment of diabetes	
					mellitus, hypertension and cardiac	
				M.Eddouks [et	diseases in the south-east region of	Journal of
34	300	18.75	0.785	al.], 2002	Morocco (Tafilalet)	Ethnopharmacology
				Likhitwitayawuid	Bisbenzylisoquinolme Alkaloids from	Journal of Natural
35	300	15.00	0.724	[et al.], 1993	Stephania erecta	Products
				Alan C. Hamilton,	Medicinal plants, conservation and	Biodiversity and
36	300	13.64	1.015	2004	livelihoods	Conservation
				Ob all a la Masthan	Medicinal plants used by traditional	Journal of
37	294	10 14	1	let al 1 2006	Nadu India	Ethnobiology and Ethnomedicine
57	474	10.14	1	Aiit Kar. B.K.		Dumoniculenc
				Choudhary and		
				N.G.	Comparative evaluation of hypoglycaemic	
20	000	16.00	0.476	Bandyopadhyay,	activity of some Indian medicinal plants in	Journal of
38	292	16.22	0.476	2003 Muhammad Tahir	alloxan diabetic rats Structural basis of SARS-CoV-2 3CI pro	Lournal of
				ul Qamar let al.l.	and anti-COVID-19 drug discovery from	Pharmaceutical
39	281	17.56	0.735	2020	medicinal plants	Analysis
				C. Leigh		
				Broadhurst,		
				Marilyn M. Polansky and	Insulin-like biological activity of culinary	Journal of
				Richard A.	and medicinal plant aqueous extracts in	Agricultural and
40	281	14.79	1.115	Anderson, 2000	vitro	Food Chemistry
				D. Srinivasan [et	Antimicrobial activity of certain Indian	Journal of
41	279	139.50	1	al.], 2001	medicinal plants used in folkloric medicine	Ethnopharmacology
				Cailean Clarkson	In vitro antiplasmodial activity of	Journal of
42	279	12.68	0.944	[et al.]. 2004	in South Africa	Ethnopharmacology
43	278	13.24	0.903	Peter M Bork [et	Sesquiterpene lactone containing Mexican	FEBS Letters

				al.], 1997	Indian medicinal plants and pure	
				-	sesquiterpene lactones as potent	
					inhibitors of transcription factor NF-κB	
				Jung, Mankil [et		Current Medicinal
44	275	15.28	0.448	al.], 2006	Antidiabetic agents from medicinal plants	Chemistry
				Toni Rabe and		
				Johannes van	Antibacterial activity of South African	Journal of
45	274	10.96	1.006	Staden, 1997	plants used for medicinal purposes	Ethnopharmacology
					The in vitro screening for	
					acetylcholinesterase inhibition and	
				A. Ferreira [et al.],	antioxidant activity of medicinal plants	Journal of
46	272	17.00	0.711	2006	from Portugal	Ethnopharmacology
				L. Tona [et al.],	Antiamoebic and phytochemical screening	Journal of
47	271	10.84	0.994	1998	of some Congolese medicinal plants	Ethnopharmacology
					Phytochemical screening and antioxidant	
					activities of some selected medicinal	Tropical Journal of
				G.A. Ayoola [et	plants used for malaria therapy in	Pharmaceutical
48	269	16.81	0.704	al.], 2008	Southwestern Nigeria	Research
				Suheyla Karatas		
				Dugenci, Nazlı		
				Arda and Akın	Some medicinal plants as	Journal of
49	263	10.96	0.881	Candan, 2003	immunostimulant for fish	Ethnopharmacology
					Natural antioxidants in foods and	International
				Dong-Ping Xu [et	medicinal plants: Extraction, assessment	Journal of Molecular
50	262	18.71	1.04	al.], 2017	and resources	Sciences
				Sukran Kultur,	Medicinal plants used in Kırklareli	Journal of
51	260	13.68	1.032	2007	province (Turkey)	Ethnopharmacology
				D. Ivanova [et al.],	Polyphenols and antioxidant capacity of	Journal of
52	259	51.80	1	2005	Bulgarian medicinal plants	Ethnopharmacology
				Andrea Lubbe and		
				Robert Verpoorte,	Cultivation of medicinal and aromatic	Industrial Crops and
53	259	17.27	0.741	2011	plants for specialty industrial materials	Products
				Tian-yang Wang,		Asian Journal of
				Qing Li and Kai-	Bioactive flavonoids in medicinal plants:	Pharmaceutical
54	259	15.24	0.64	shun Bi, 2018	Structure, activity and biological fate	Sciences
					Isolation, diversity, and antimicrobial	
					activity of rare actinobacteria from	Applied and
				Sheng Qin [et al.],	medicinal plants of tropical rain forests in	Environmental
55	248	22.55	1.105	2009	Xishuangbanna, China	Microbiology
				Peter H. Canter,		
				Howard Thomas	Bringing medicinal plants into cultivation:	
				and Edzard Ernst,	opportunities and challenges for	Trends in
56	248	9.19	1.039	2005	biotechnology	Biotechnology
					Haemostatic actions of the folkloric	Journal of
	a : -			H Goker [et al.],	medicinal plant extract Ankaferd Blood	International
57	245	61.25	1	2008	Stopper®	Medical Research
					Ethnobotanical survey of medicinal plants	
					used for the treatment of diabetes, cardiac	T 1 C
50		10 77	0.007	H. Jouad [et al.],	and renal diseases in the North centre	Journal of
58	244	18.77	0.895	2001	region of Morocco (Fez-Boulemane)	Ethnopharmacology
= -	. · · ·		0 505	T. Essawi and	Screening of some Palestinian medicinal	Journal of
59	241	14.18	0.595	M.Srour, 2000	plants for antibacterial activity	Ethnopharmacology
				Pulok K.		
				Mukherjee [et al.],	Leads from Indian medicinal plants with	Journal of
60	238	17.00	0.944	2006	hypoglycemic potentials	Ethnopharmacology
					Traditional medicinal plant extracts and	
					natural products with activity against oral	Evidence-Based
	000	11.00	0 770	Enzo A. Palombo,	bacteria: potential application in the	Complementary and
61	238	11.33	0.773	2011	prevention and treatment of oral diseases	Alternative Medicine
62	238	8.81	0.997	Si Eun Lee [et al.],	Screening of medicinal plant extracts for	Life Sciences

				2003	antioxidant activity	
					Screening of hundred Rwandese medicinal	
				A.J.Vlietinck [et	plants for antimicrobial and antiviral	Journal of
63	237	10 77	0.802	all 1995	properties	Ethnonharmacology
00	201	10.77	0.002	Dudula	properties	Duniopharmacology
				Duduku Kajalan sisla		
				Krishnaiah,		
				Rosalam Sarbatly		
				and Rajesh		Food and
				Nithyanandam,	A review of the antioxidant potential of	Bioproducts
64	236	14.75	0.617	2011	medicinal plant species	Processing
-				Clevton Marcos de		
				M Sousa [et al.]	Total phenolics and antioxidant activity of	
65	022	01.19	1 0 2 9	2007	five modicinal plants	Ouimiga Nova
03	233	21.10	1.036	2007	nve medicinar plants	Quinica Nova
				Tilanun		
				Teklehaymanot	Ethnobotanical study of medicinal plants	Journal of
				and Mirutse	used by people in Zegie Peninsula,	Ethnobiology and
66	230	12.11	0.913	Giday, 2007	Northwestern Ethiopia	Ethnomedicine
					Antioxidant activity in medicinal plants	
				Letitia M. McCune	associated with the symptoms of diabetes	
				and Timothy	mellitus used by the Indigenous Peoples of	Journal of
67	230	8 52	0.964	Johns 2002	the North American boreal forest	Ethnonharmacology
01	200	0.02	0.501	001113, 2002	Antimiorphial and autotoxia activity of 19	Etimopharmacology
					Antimicropial and cytotoxic activity of 18	
					prenylated llavonoids isolated from	
					medicinal plants: Morus alba L., Morus	
					mongolica Schneider, Broussnetia	
				H.Y.Sohn [et al.],	papyrifera (L.) Vent, Sophora flavescens	
68	229	20.82	1.02	2004	Ait and Echinosophora koreensis Nakai	Phytomedicine
					Systematics and health effects of	
				Takuo Okuda	chemically distinct tannins in medicinal	
69	225	15.00	0 644	2005	nlants	Phytochemistry
	220	10.00	0.011	Bushra Sultana	Flavonals (kaempeferal guercetin	1 hy toenennou y
				and Faroog	muricotin) contents of selected fruits	
70	005	15.00	0.644		myricetini contents of selected fruits,	D 1 Cl 1 1
70	225	15.00	0.644	Anwar, 2008	vegetables and medicinal plants	Food Chemistry
				Anna K.Jager,		
				Anne Hutchings		
				and Johannes van	Screening of Zulu medicinal plants for	Journal of
71	225	11.25	0.543	Staden, 1996	prostaglandin-synthesis inhibitors	Ethnopharmacology
				K. Das, R. K. S.		
				Tiwari and and	Techniques for evaluation of medicinal	
				D.K. Shrivastava,	plant products as antimicrobial agents:	Journal of Medicinal
72	222	12.33	0.362	2010	Current methods and future trends	Plants Research
					Ethnopharmacological approaches to	
				B.Kumar [et al.].	wound healing—Exploring medicinal	Journal of
73	221	13.00	0.546	2007	plants of India	Ethnopharmacology
					The use of medicinal plants as	
				Ngo Van Hoj	immunostimulants in equeculture: A	
74	016	15 40	0.057		minunostinuants in aquaculture. A	A
74	210	15.43	0.857	2015	review	Aquaculture
				M.R.Gonzalez-	Medicinal plants in the Mediterranean	
				Tejero. [et al.],	area: Synthesis of the results of the project	Journal of
75	215	8.27	1	2008	Rubia	Ethnopharmacology
			_		Assessing African medicinal plants for	
				C. W. Fennell [et	efficacy and safety: pharmacological	Journal of
76	213	17.75	0.524	al.], 2004	screening and toxicology	Ethnopharmacology
-	-			Mohammed S. Ali-	<u> </u>	· · · · · · · · · · · · · · · · · · ·
				Shtaveh Zohara	Ethnobotanical survey in the Palestinian	
				Vaniv and Iomal	area: a classification of the healing	Journal of
77	010	1/ 00	0 600	Mahaina 2000	notential of medicinal plants	Ethnopharmassiam-
	413	14.20	0.009	Manajna, 2000	potential of medicinal plants	Eunopharmacology
				Luiz Rodrigo,		
				Saldanha	Knowledge and use of medicinal plants by	
				Gazzaneo,	local specialists in a region of Atlantic	Journal of
				Reinaldo Farias	Forest in the state of Pernambuco (North	Ethnobiology and
78	212	30.29	1	Paiva de Lucena	eastern Brazil)	Ethnomedicine

_							
					and Ulysses		
					Paulino de		
					Albuquerque,2005		
					Indrani Mitra	Exploring quantitative structure-activity	
					Achintya Saha	relationship studies of antiovidant	
					and Kunal Pow	nhanalia compounds obtained from	Moloculor
	70	010	15.00	0 0 2 2		the ditional Chinese medicinal plants	Simulation
	79	210	15.00	0.833	2010	traditional Chinese medicinal plants	Simulation
						Screening of antioxidant activity of three	
						Indian medicinal plants, traditionally used	
					B.Auddy [et al.],	for the management of neurodegenerative	Journal of
	80	210	11.67	0.342	2003	diseases	Ethnopharmacology
					Mahmud Tareq		· · · · · ·
					Hassan Khan let	Extracts and molecules from medicinal	
	81	209	9 50	0 707	all 2005	plants against hernes simpley viruses	Antiviral Research
	01	205	2.50	0.707	al.], 2005	Movent modeling for predicting the	minima Research
						maxent modeling for predicting the	
						potential distribution of medicinal plant,	
					Xue Qing Yang let	Justicia adhatoda L. in Lesser Himalayan	Ecological
	82	206	12.12	0.509	al.], 2013	foothills	Engineering
						Animal self-medication and ethno-	
					Michael A.	medicine: exploration and exploitation of	Proceedings of the
	83	203	16.92	0.5	Huffman 2003	the medicinal properties of plants	Nutrition Society
	00	200	10.54	0.0	Piergiorgio Pietto	the medicinal properties of plants	ituariion society
					Decle Simonetti		Journal of
					and Pierluigi	Antioxidant Activity of Selected Medicinal	Agricultural and
	84	203	10.68	0.806	Mauri, 1998	Plants	Food Chemistry
					Joao B. Calixto,	Twenty-five years of research on medicinal	Journal of
	85	202	11.88	0.499	2005	plants in Latin America: A personal view	Ethnopharmacology
						Anti-nociceptive and anti-inflammatory	
					A.H. Atta and A.	effects of some Jordanian medicinal plant	Journal of
	86	100	22.11	1	Alkofahi 1008	evtracts	Fthnopharmacology
	00	177	44.11	1	N A Awadh Ali lat	Carponing of Vomoni modicinal plants for	Lournal of
	07	100	10.47	0.70		settible starial and estatesia activities	Etheren hormonale
	87	199	10.47	0.79	al.], 2001	antibacterial and cytotoxic activities	Ethnopharmacology
					V. Prashanth	Search for antibacterial and antifungal	
					Kumar [et al.],	agents from selected Indian medicinal	Journal of
	88	199	8.29	0.667	2006	plants	Ethnopharmacology
						In vitro models for antioxidant activity	
						evaluation and some medicinal plants	African Journal of
					S. Chanda and R	possessing antioxidant properties. An	Microbiology
	80	108	11.65	0 4 8 9	Dave 2009	overview	Research
	0)	170	11.05	0.405	Allison I Adonizio	Anti quorum consing activity of modicinal	Journal of
	00	100	0.05	0.000	Allison L. Adomizio	Anti-quorum sensing activity of medicinal	Filmen harman alam
	90	198	8.25	0.663	[et al.], 2006	plants in southern Florida	Ethnopharmacology
					Werner Fabry,		
					Paul O. Okemo		
					and Rainer	Antibacterial activity of East African	Journal of
	91	197	9.38	0.64	Ansorg, 1998	medicinal plants	Ethnopharmacology
					Kamonnate	Medicinal plant knowledge and its erosion	· 3
1					Srithi [et al]	among the Mien (Yao) in northern	Journal of
	02	105	10.10	0.51	2000	Theiland	Ethnonhormooology
	94	195	12.19	0.51	2009	Diadimensity of an doubertic formai accession d	Etimopharmacology
						Biodiversity of endophytic lungi associated	
1					w.Y. Huang [et	with 29 traditional Chinese medicinal	
L	93	194	14.92	0.711	al. ,2008	plants	Fungal Diversity
1					Tania Maria de		Memorias Do
1					Almeida Alves [et	Biological Screening of Brazilian Medicinal	Instituto Oswaldo
1	94	193	12.06	0.505	al.], 2000	Plants	Cruz
F	-					Antioxidant and Anti-inflammatory	
1						Activities of Selected Medicinal Dianta	Journal of
1					Lin 7hone [st s1]	Containing Dhanalia and Elementid	
1	05	100	0.04	0.647	LIII ZHANG [et al.],	Containing Prienone and Flavonoid	Agricultural and
	95	193	8.04	0.647	2011	Compounds	Food Chemistry
1						Neanderthal medics? Evidence for food,	
1					Karen Hardy [et	cooking, and medicinal plants entrapped	
1							

97	190	13.57	0.754	S. A. A. Jassim and M.A. Naji, 2003	Novel antiviral agents: a medicinal plant perspective	Journal of Applied Microbiology
				Donald P. Briskin,	Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology	
98	189	8.59	0.639	2000	to Human Health	Plant Physiology
					Medicinal plants in Europe containing	
99	188	17.09	0.837	E. Roeder, 1995	pyrrolizidine alkaloids	Pharmazie
				T.M. Kutchan,	Alkaloid Biosynthesis[mdash]The Basis for	
100	186	18.60	1	1995	Metabolic Engineering of Medicinal Plants.	Plant Cell

The most cited paper was the "Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer" authored by Cai Yz; et.al. (2004) published in 'Life Sciences' Journal. The paper was cited 1597 times. Majority of the papers were published during the 2000-2010. The oldest paper," Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from stephania-erecta" was published in 1993 in Journal of Natural Products and has been cited 300 times. The newest paper is related to corona virus by MT ul Qamar et al. (2020) cited 281 times.

Most relevant sources and their diversity

The top 100 cited papers were covered by 51 journal sources. Journal of Ethnopharmacology (36) an interdisciplinary journal devoted to indigenous drugs, came out as the most productive journal covering alone 36% papers from the top 100 list. The other top 4 sources were Food Chemistry, Life Sciences, Journal of Agricultural and Food Chemistry and Journal of Ethnobiology and Ethnomedicine with six, four, three and three papers respectively. Top 7 journals covered 56% of the 100 most cited papers. The rest 46 journals published one paper each making nature of medicinal plant research landscape diverse and interdisciplinary. It is interesting to note that the diversity of papers published on medicinal plants research also comprises the field of Basic Sciences such as, Chemistry and Microbiology(Analytical and Bioanalytical Chemistry, 1 paper & Applied and Environmental Microbiology, 1 paper), the field of Food Sciences and Agriculture (Journal of Agricultural and Food Chemistry, 3 papers), the field of medicine and pharmacology (Antiviral research, 1 paper & Asian Journal of Pharmaceutical sciences, 1 paper) and also the field of Ecological Engineering & Conserving the Biodiversity (Ecological Engineering, 01 paper & Biodiversity and Conservation, 01 paper).

Most Productive Countries and Affiliations

The two biggest Asian countries India and China emerged as the most productive countries (based on corresponding author's country) publishing majority of the top cited papers on medicinal plants. The two nations have jointly topped the list with first and second in terms of the greatest number of highly cited papers with 14 and 13 papers respectively, however, China came out as the most cited country with 6022 citations followed by India (4572 citations), Brazil (08 papers, 2338 citations) and United States (07 papers, 2680 citations).

A total of 148 affiliations were identified, where the universities were the most participative. Among them, the top ten most productive affiliations/institutions

with the highest number of papers were The University of Hong Kong has the leadership (12 papers), followed by the University of Agriculture, Pakistan (5 papers), University of Illinois, USA (4 papers) Aligarh Muslim University, India (3 papers), The National Research Centre, Egypt (03 papers), University of Freiburg, Germany (03 papers), University of Kinshasa, Congo (03 papers), Western Sydney University, Australia (03 papers) and Andong National University, South Korea (02), and Jadavpur University, India (02 papers).

Most Productive authors and author's productivity

There was total 402 authors appearances were recorded with 4.02 average authors per paper while 4.37 co-authors per papers ranging from 1 to 17. A total of 11 Single authored papers were recorded while number of multi-authored papers were 391 (97.26%) which speaks the sound collaboration in medicinal plants research with an overall collaboration index of 4.39. Figure. 1 shows the tree-map of 50 most frequently used author's keywords in medicinal plants research papers. The keyword medicinal plants occurred 34 times, consequently, antioxidant activity 11 times, Flavonoids and antibacterial activity occurred 8 and 7 times respectively. The frequency of the keyword indicates the hot research topics within the field [5], [6], [7].

Table 2 presented with the top 10 most productive authors who contributed in 100 most cited papers. China's dominance can easily be observed as 6 out of top 10 authors were from China. Yizhong Z. Cai from, Department of Botany, The University of Hong Kong came out as the most contributed author in 100 most cited papers with 3156 Total Citations (TC) across his 5 Total Publications (TP), followed by Harold Corke from Shanghai Jiao Tong University, China with 2668 total citations across his 4 papers with publication start years 2004. Since, their first publication year a greater number of papers were written by these authors but the study only covers those papers which falls in the category of 100 most cited papers.

S.No.	Keywords	Occurrences	Links	Total Link Strength	Cluster
			~ -	Sucligiti	
1	medicinal plants	34	27	53	2
2	antioxidant	11	15	27	3
	activity				
3	flavonoids	08	16	27	6
4	antibacterial	07	04	06	1
	activity				
5	antioxidants	6	10	14	1
6	antimicrobial	6	5	10	2
	activity				
7	diabetes	6	8	11	4
8	ddph	5	15	20	3
9	indian medicinal	5	10	13	1
	plants				
10	ethnobotany	5	4	7	5

Table 2Top 10 most productive authors

Tree-Map of Author's Keywords

Figure. 1 shows the tree-map of 50 most frequently used author's keywords in medicinal plants research papers. The keyword medicinal plants occurred 34 times, consequently, antioxidant activity 11 times, Flavonoids and antibacterial activity occurred 8 and 7 times respectively. The frequency of the keyword indicates the hot research topics within the field.

Figure 1. Tree-map of 50 most occurred author's keywords in medicinal plant research

Keyword Co-occurrence of Author's Keywords and Visualization

A keyword co-occurrence network-based mapping is a technique of examining occurrences and links between the keywords in order to get an insight about the knowledge structure of a scientific domain [25]. Figure 2. is a keyword cooccurrence analysis map of 47 most occurred author's keywords in medicinal plants research papers. In order to map the link strengths and total occurrences of each keyword, a cluster-based analysis has been performed. For this, full counting method has been adopted and in order to cover more keywords in the mapping, a threshold of minimum 2 times occurred keywords have been selected. Out of all 304 author's keywords 47 met the threshold and further co-occurrence map has been drawn using these 47 keywords only. All together these 47 keywords were distributed in 8 clusters with their respective number of occurrences, links and link strengths. The keywords with the most total link strength were selected. More important keywords had bigger node size while the most connected keywords were placed very near to each other. Cluster one contained 10 keywords, cluster two and three with 8 keywords, cluster four with 6 keywords, cluster five with 5 keywords, cluster six with 5 keywords, cluster seven with 4 keywords and cluster eight contained only 1 keyword. The map

drawn in figure 2 is an overlay network co-occurrence analysis in which bigger nodes represents the most occurred terms, and thickness of the curved lines represent their links with another keyword and strength of total links in their respective clusters. Table 2 is provided with top ten most occurred author's keywords along with their link and total link strength. The overlay analysis demonstrates occurrences of terms over the years. The keywords with blue nodes depicting trend of research during early 2002 and onwards while keywords with yellow nodes were from recent years topics. Research on oxidative stress, antioxidant behaviour of medicinal plants were such recent research topics around 2008 and onwards.

Table 3						
Top 10 most occurred author's keywords along with their links and link strength						

						Pub.	
Author	Affiliation	TP	TC	h_index	g_index	Fractionalized	PY_start
	The University of Hong Kong,						
CAI YZ	Hong Kong	5	3156	5	5	1.23	2004
	Shanghai Jiao Tong University,						
CORKE H	China	4	2668	4	4	0.90	2004
	The University of Hong Kong,						
SUN M	Hong Kong	4	2668	4	4	0.90	2004
	University of Agriculture,						
ANWAR F	Pakistan	3	1368	3	3	1.08	2007
	The University of Hong Kong,						
LI HB	Hong Kong	3	864	3	3	0.63	2006
VLIETINCK AJ	University of Antwerp, Belgium	3	836	3	3	0.45	1995
AHMAD I	Aligarh Muslim University, India	2	981	2	2	0.83	1998
	University of Agriculture,						
ASHRAF M	Pakistan	2	1152	2	2	0.58	2007
	The University of Hong Kong,						
CHEN F	Hong Kong	2	605	2	2	0.50	2006
	The University of Hong Kong,						
CHENG KW	Hong Kong	2	605	2	2	0.50	2006

Figure 2. Keyword Co-occurrence map of author's keywords in medicinal plant research

Thematic mapping in medicinal plants research

A thematic map is presented In Figure 3, based on the keywords clustering. This thematic map is a method based on the observations proposed by Cobo et al. [26]. The map can be used to find out and analyse the themes, evolution and trend of a research domain. The map is designed in to four quadrants in which topical themes were defined and placed. The first quadrant (1) contains themes known as motor themes. On a X-Y graph these motor themes possess greater centrality and density and hence, considered essential and evolved quadrant in a research domain. The main themes from quadrant 1 were Traditional medicine, Fidelity level, Flavonoids, Antibacterial activities. These themes-based papers were already reported in 100 most cited list in table 1.

The second quadrant is known as the Niche quadrant characterized by high density but low centrality, means themes have more internal links in here than external links. The theme Natural products was identified in this quadrant on which papers such as *"Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases"* has been recorded where application of natural products have been discussed for prevention and treatment of several oral diseases.

The third quadrant is called as the emerging or declining themes characterized with low density and low centrality and no theme was identified under this quadrant. At the last, the 4th quadrant consists of basic themes having low density but higher centrality. Themes under this quadrant are very important and concerns basic themes transversal to different area and themes of the research domain. Themes such as anti-inflammatory, self-medication, antioxidants and medicinal plants were basic but core themes on which several numbers of highly cited papers were published and categorized under this study.

(Centrality)

Figure 3. Thematic Map of Author's Keywords distributed in four quadrant

Conclusion

In this study we performed a bibliometric analysis on the 100 most cited papers citing medicinal plants based on various bibliometric and citation metrices. The study revealed that majority of these highly cited papers were performed in two Asian countries India and China and most of them were published in diversified domains such as journal of Ethnopharmacology [3], Life Sciences [4], Journals related to Food Chemistry, Medicine and Agricultural Sciences. The highly cited papers on medicinal plants covered multiple research aspect such as, antioxidants attributes of medicinal plants, identifying medicinal plant species using DNA barcoding, identifying medicinal plants having antimicrobial and antiviral attributes, Potential use of medicinal plants in treating various diseases including cancer *etc.* Although topics such as metabolic engineering of medicinal plants, use in dental calculus are of great importance in recent years, they tend to get less citations.

Analysis of these top cited papers can act as a guide for researchers and frame their policy with respect to exploring new trends in medicinal plant research, funding allocations and to assess the areas of further research. This study can also be very helpful for journal editors to better understand the relevance of research in medicinal plant and its international scientific scenario.

References

- 1. Van Wyk BE, Wink M. Medicinal plants of the world. CABI; 2018 Oct 31.
- 2. Farnsworth NR, Soejarto DD. Global importance of medicinal plants. The conservation of medicinal plants. 1991 Jul 26; 26:25-51.
- 3. Rios JL, Recio MC. Medicinal plants and antimicrobial activity. Journal of ethnopharmacology. 2005 Aug 22;100(1-2):80-4.
- 4. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life sciences. 2004 Mar 12;74(17):2157-84.
- Lefaivre KA, Shadgan B, O'Brien PJ. 100 most cited articles in orthopaedic surgery. Clinical Orthopaedics and Related Research[®]. 2011 May;469(5):1487-97.
- 6. Feijoo JF, Limeres J, Fernández-Varela M, Ramos I, Diz P. The 100 most cited articles in dentistry. Clinical oral investigations. 2014 Apr;18(3):699-706.
- 7. Brinjikji W, Klunder A, Kallmes DF. The 100 most-cited articles in the imaging literature. Radiology. 2013 Oct;269(1):272-6.
- 8. Web of knowledge. [(accessed 2021, July 30)]; ISI web of knowledge [homepage] Available: <u>http://isiwebofknowledge.com</u>.
- 9. Cheek J, Garnham B, Quan J. What's in a number? Issues in providing evidence of impact and quality of research (ers). Qualitative health research. 2006 Mar;16(3):423-35.
- Stern RS, Arndt KA. Top-cited dermatology authors publishing in 5 highimpact general medical journals. Archives of dermatology. 2000 Mar 1;136(3):357-61.
- 11. Guimarães JA, Carlini CR. Most cited papers in Toxicon. Toxicon. 2004 Sep 15;44(4):345-59.
- 12. Lu K, Yu S, Sun D, Xing H, An J, Kong C, Yu M, Zhu Y. Scientometric analysis of SIRT6 studies. Medical science monitor: international medical journal of experimental and clinical research. 2018; 24:8357.
- Roldan-Valadez E, Salazar-Ruiz SY, Ibarra-Contreras R, Rios C. Current concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. Irish Journal of Medical Science (1971-). 2019 Aug;188(3):939-51.
- 14. Wang CY, Li BH, Ma LL, Zhao MJ, Deng T, Jin YH, Ren XQ. The top-100 highly cited original articles on drug therapy for ventilator-associated pneumonia. Frontiers in pharmacology. 2019 Feb 12; 10:108.
- 15. Zhong Q, Li BH, Zhu QQ, Zhang ZM, Zou ZH, Jin YH. The top 100 highly cited original articles on immunotherapy for childhood leukemia. Frontiers in pharmacology. 2019 Sep 24; 10:1100.
- 16. Cuccurullo C, Aria M, Sarto F. Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains. Scientometrics. 2016 Aug;108(2):595-611.
- 17. Liu S, Oakland T. The emergence and evolution of school psychology literature: A scientometric analysis from 1907 through 2014. School psychology quarterly. 2016 Mar;31(1):104.
- 18. Lu K, Yu S, Yu M, Sun D, Huang Z, Xing H, Bi J, Li Z, Li Z, Liu X, Kong C. Bibliometric analysis of tumor immunotherapy studies. Medical science

monitor: international medical journal of experimental and clinical research. 2018; 24:3405.

- 19. Pešić M, Stanković S. Development of natural product drugs in a sustainable manner.
- 20. Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Natural product reports. 2014;31(1):35-60.
- 21. Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics. 2017 Nov 1;11(4):959-75.
- 22. Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics. 2010 Aug 1;84(2):523-38.
- 23. Van Eck NJ, Waltman L. VOSviewer manual. Leiden: Universiteit Leiden. 2013 Dec 5;1(1):1-53.
- 24. van Eck NJ, Waltman L. VOSviewer manual <u>https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.6.pdf</u>. Accessed on August 12, 2021.
- 25. Radhakrishnan S, Erbis S, Isaacs JA, Kamarthi S. Novel keyword cooccurrence network-based methods to foster systematic reviews of scientific literature. PloS one. 2017 Mar 22;12(3): e0172778.
- 26. Shafin AA. Machine learning approach to forecast average weather temperature of Bangladesh. Global Journal of Computer Science and Technology. 2019 Jul 17.