Eccentric domination path decomposition polynomial of path and cycle

Jinisha Kalaiarasan K S
Research Scholar(Fulltime), Reg No:18213112092026, PG and Research Department of Mathematics Scott Christian College (Autonomous), Nagercoil-629003, Affiliated to Manonmaniam Sundaranar University, Abishekappati, Tirunelveli-627012, Tamilnadu, India.
Email: jinishakalaiarasan@gmail.com

DR. K. Lal Gipson
Assistant Professor, PG and Research Department of Mathematics, Scott Christian college(Autonomous), Nagercoil-629003, Affiliated to Manonmaniam Sundaranar University, Abishekappati, Tirunelveli-627012 Tamilnadu, India.
Email: lalgipson@yahoo.com

Abstract—A Decomposition($G_1,G_2, ..., G_n$) of G is said to be Eccentric Domination Path Decomposition (EDPD) if i) G admits EDD ii) Each G_i is a path$(1 \leq i \leq n)$ iii) $q(G_1) = 1$ and $q(G_2) = 2$ or 3 iv) $q(G_i) = 3i - 5$ or $3i - 4$ or $3i - 3$, $i = 3, 4, ..., n$. In this paper we establish Eccentric Domination Path Decomposition polynomial of a G. In a particular, we investigate Eccentric domination Path Decomposition of Path and Cycle.

Keywords---Domination, Decomposition, Eccentric Domination Decomposition, Eccentric Domination Path Decomposition.

Introduction

In the article, all the terminologies from the graph theory are used in the case of Frank Haray. A simple Undirected graph without loops or Multiple edges are Considered here. As usual p, q denote the number of vertices and edges of a graph G respectively. A path on p vertices is denoted by P_p.

Definition 1.1
A closed walk in which no vertices, except the end vertices, are repeated is called the cycle and the number of edges in a cycle is called its length.
Definition 1.2
A set $D \subseteq V(G)$ of vertices in a graph G is a dominating set if every vertex v in $V - D$ is adjacent to a vertex in D. The Minimum Cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$.

Definition 1.3
A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V - D$, there exists at least one eccentric point of v in D.
If D is an eccentric dominating set, then every superset $D' \supseteq D$ is also an eccentric dominating set. A subset $D'' \subseteq D$ is not necessarily an eccentric dominating set.

Definition 1.4
The eccentric domination number $\gamma_{ed}(G)$ of a graph G equals the minimum Cardinality of an eccentric dominating set, That is, $\gamma_{ed}(G) = \min |D|$ where, the minimum is taken over D in D, Where D is the set of all Minimal eccentric dominating sets of G.

Definition 1.5
Let $G = (V,E)$ be a simple connected graph with P vertices and q edges. If $G_1, G_2, ..., G_n$ are connected edge disjoint subgraphs of G with $E(G_1) \cup E(G_2) ... \cup E(G_n)$ then $(G_1, G_2, ..., G_n)$ is said to be a Decomposition of G.

Definition 1.6
A decomposition $(G_1, G_2, ..., G_n)$ of G is said to be Eccentric Domination Decomposition if

1. $E(G) = E(G_1) \cup E(G_2) ... \cup E(G_n)$
2. Each G_i is connected
3. $\gamma_{ed}(G_i) = i$, $i = 1, 2, ..., n$.

Definition 1.7
A Decomposition$(G_1, G_2, ..., G_n)$ of G is said to be Eccentric Domination Path Decomposition (EDPD) if

1. G admits EDD.
2. Each G_i is a path($1 \leq i \leq n$)
3. $q(G_1) = 1$ and $q(G_2) = 2$ or 3
4. $q(G_i) = 3i - 5$ or $3i - 4$ or $3i - 3$, $i = 3, 4, ..., n$.

Eccentric Domination Path Decomposition Polynomial

Definition 2.1
Let G be a graph which admits, EDPD$(G_1, G_2, ..., G_n)$ and let $M(G, q(G_k))$ be a family of subgraphs,(That is, Path) with size $q(G_k)$ and $m(G, q(G_k)) = |M(G, q(G_k))|$. Then the Eccentric Domination path Decomposition (EDPD) polynomial of a graph G is defined as
$$M(G, x) = \sum_{k=1}^{n} m(G, q(G_k)) x^{q(G_k)}.$$
Eccentric Domination Path Decomposition Polynomial Of Path

Theorem 3.1

If $p, p = \frac{3j^2-j+6}{2}, j \in N$ admits EDPD $(P_2, P_3, P_5, ..., P_{3m+2})$, then $M(P_p, x) = (p-1)x + (p-1)x^2 + \sum_{k=1}^{c} (p - (3k + 1))x^{3k+1}$.

Proof:

Let $\{u_1, u_2, ..., u_p\}$ be the vertices of P_p. Assume that $G_1 = P_2, G_2 = P_3, G_3 = P_5, ..., G_{m+2} = P_{3m+2}$. Then $M(P_p, x) = \sum_{k=1}^{m+2} m(P_p, q(G_k))x^{q(G_k)}$.

Let $F_1, F_2, ..., F_p$ be the subgraphs of G and each F_s starts with v_s, where $s = 1, 2, ..., p$.

If we consider the size of each F_s as 1, then $E(F_1) = \{v_1v_2\}, E(F_2) = \{v_2v_3\} ... E(F_p) = \{v_{p-1}v_p\}$. Therefore, $|M(P_p, q(G_1))| = p - 1$. That is, $m(P_p, q(G_1)) = p - 1$.

If we consider the size of each F_s as 2, then $E(F_1) = \{v_1v_2, v_2v_3\}, E(F_2) = \{v_2v_3, v_3v_4\} ... E(F_p) = \{v_{p-2}v_{p-1}, v_{p-1}v_p\}$. Therefore, $|M(P_p, q(G_2))| = p - 2$. That is, $m(P_p, q(G_2)) = p - 2$.

If we consider the size of each F_s as 4, then $E(F_1) = \{v_1v_2, v_2v_3, v_3v_4, v_4v_5\}, E(F_2) = \{v_2v_3, v_3v_4, v_4v_5, v_5v_6\} ... E(F_p) = \{v_{p-4}v_{p-3}, v_{p-3}v_{p-2}, v_{p-2}v_{p-1}, v_{p-1}v_p\}$. Therefore, $|M(P_p, q(G_3))| = p - 4$. That is, $m(P_p, q(G_3)) = p - 4$.

Continuing in this way, if we consider the size of each F_s as $3n + 1$, then $E(F_1) = \{v_1v_2, v_2v_3, v_3v_4, ..., v_{3n+1}v_{3n+2}\}, E(F_2) = \{v_2v_3, v_3v_4, ..., v_{3n+2}v_{3n+3}\} ... E(F_p) = \{v_{p-1}v_p\}$. Therefore, $|M(P_p, q(G_{m+2}))| = p - (3t + 1)$. That is, $m(P_p, q(G_{3})) = p - (3t + 1)$.

Thus $M(P_p, x) = (p - 1)x + (p - 2)x^2 + (p - 4)x^4 + ... + (p - 3t + 1)x^{3t+1}$. $M(P_p, x) = (p - 1)x + (p - 2)x^2 + \sum_{k=1}^{c} (p - (3k + 1))x^{3k+1}$.

Example:

The path P_8 and its EDPD polynomial $M(P_8, x) = 7x + 6x^2 + 4x^4$.

$(p - 4)x^4$, with $m(P_8, q(G_1)) = 7, m(P_8, q(G_2)) = 6, m(P_8, q(G_3)) = 4$.

Table:

The number of subgraphs in $P_p, p = \frac{3j^2-j+6}{2}, j \in N$ with size $q(G_t), t = 1, 2, ..., n$ and $n = 1, 2, ..., 8$ whenever P_p admits EDPD $(P_2, P_3, P_5, ..., P_{3m+2})$ is described in the following table.
<table>
<thead>
<tr>
<th>(n)</th>
<th>(q(G_1))</th>
<th>(q(G_2))</th>
<th>(q(G_3))</th>
<th>(q(G_4))</th>
<th>(q(G_5))</th>
<th>(q(G_6))</th>
<th>(q(G_7))</th>
<th>(q(G_8))</th>
<th>(q(G_9))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>18</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>36</td>
<td>34</td>
<td>31</td>
<td>28</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>52</td>
<td>50</td>
<td>47</td>
<td>44</td>
<td>41</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>70</td>
<td>68</td>
<td>65</td>
<td>63</td>
<td>60</td>
<td>57</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>93</td>
<td>92</td>
<td>90</td>
<td>87</td>
<td>84</td>
<td>81</td>
<td>78</td>
<td>75</td>
<td>73</td>
</tr>
</tbody>
</table>

Eccentric Domination Path Decomposition Polynomial Of Cycle

Theorem 4.1

If \(C_p, p = \frac{3j^2-j+4}{2}, j \in N \) admits EDPD \((P_2, P_3, P_5, \ldots, P_{3m+2})\), then \(M(C_p, x) = px + px^2 + \sum_{k=1}^{m} px^{3k+1} \).

Proof:

Let \(\{v_1, v_2, \ldots, v_p\} \) be the vertices of \(C_p \). Assume that \(G_1 = P_2, G_2 = P_3, G_3 = P_5, \ldots, G_{m+2} = P_{3m+2} \).

Then \(M(C_p, x) = \sum_{k=1}^{m+2} m(C_p, q(G_k)) x^{q(G_k)} \).

Let \(F_1, F_2, \ldots, F_p \) be the subgraphs of \(G \) and each \(F_s \) starts with \(v_s \), where \(s = 1, 2, \ldots, p \).

If we consider the size of each \(F_s \) as 1, then \(E(F_1) = \{v_1v_2\}, E(F_2) = \{v_2v_3\}, \ldots, E(F_p) = \{v_pv_1\} \). Therefore, \(|M(C_p, q(G_1))| = p \). That is, \(m(C_p, q(G_1)) = p \).

If we consider the size of each \(F_s \) as 2, then \(E(F_1) = \{v_1v_2, v_2v_3\}, \ldots, E(F_p) = \{v_pv_1, v_1v_2\} \). Therefore, \(|M(C_p, q(G_2))| = p \). That is, \(m(C_p, q(G_2)) = p \).

If we consider the size of each \(F_s \) as 3, then \(E(F_1) = \{v_1v_2v_3, v_2v_3v_4, \ldots, v_{3t+1}v_{3t+2}\} \), \(E(F_2) = \{v_2v_3v_4, v_2v_4v_5, \ldots, v_{3t+2}v_{3t+3}\} \).

Continuing in this way, if we consider the size of each \(F_s \) as \(3n+1 \), then \(E(F_1) = \{v_1v_2v_3, v_2v_3v_4, \ldots, v_{3t+1}v_{3t+2}\} \), \(E(F_2) = \{v_2v_3v_4, v_2v_4v_5, \ldots, v_{3t+2}v_{3t+3}\} \).

Thus \(M(C_p, x) = px + px^2 + px^4 + \ldots + px^{3t+1} \).

Example:

The Cycle \(C_{14} \) and its EDPD polynomial \(M(C_{14}, x) = 14x + 14x^2 + 14x^4 + 14x^7 \), with \(m(C_{14}, q(G_1)) = 14 \), \(m(C_{14}, q(G_2)) = 14 \), \(m(C_{14}, q(G_2)) = 14 \), \(m(C_{14}, q(G_3)) = 14 \).
The number of subgraphs in $C_p, p = \frac{3j^2-j+4}{2}, j \in N$ with size $q(G_t)$, $t = 1, 2 \ldots n$ and $n = 1, 2 \ldots 8$ whenever C_p admits EDPD($P_2, P_3, P_5, \ldots, P_{3m+2}$) is described in the following table.

<table>
<thead>
<tr>
<th>n</th>
<th>$q(G_1)$</th>
<th>$q(G_2)$</th>
<th>$q(G_3)$</th>
<th>$q(G_4)$</th>
<th>$q(G_5)$</th>
<th>$q(G_6)$</th>
<th>$q(G_7)$</th>
<th>$q(G_8)$</th>
<th>$q(G_9)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
</tr>
</tbody>
</table>

References