Study of anti-inflammatory activity of aqueous and methanolic extracts of dry powder of zingiber officinale (SUNTH) in Wistar rats

Dr. Prathamesh V. Pakale
P.G. Student, Department of Pharmacology, Krishna Institute of Medical Sciences, Karad, India, 415539

Dr. C. C. Khanwelkar
Professor and Head, Department of Pharmacology, Krishna Institute of Medical Sciences, Karad, India, 415539

Dr. S. A. Jadhav
Professor, Department of Pharmacology, Krishna Institute of Medical Sciences, Karad, India, 415539

Abstract---To evaluate the anti-inflammatory activity of aqueous and methanolic extracts of dry powder of plant Zingiber Officinale (SUNTH). 1. To evaluate anti-inflammatory activity of all extracts in two doses and the standard drug in wistar rats by using Carrageenan induced paw edema method. 2. To compare anti-inflammatory activity of both extracts with that of standard drug. The study was conducted after animal ethics committee approval. Animals were divided into six groups. Control group received 0.2ml NS IP while test groups received aspirin (150mg/kg), Aqueous extract of dry powder of plant Zingiber Officinale (SUNTH) (100 and 200mg/kg), Methanolic extract of dry powder of Z. officinale (SUNTH) (100 and 200 mg/kg). Acute model of inflammation consisting of carrageenan induced rat paw edema method was used to investigate anti-inflammatory activity of Ginger. The present study clearly showed significant anti-inflammatory activity of aqueous and methanolic extracts of dry powder of plant Zingiber Officinale (p < 0.05) in acute model of inflammation when compared to control and its activity was comparable to aspirin at all time interval. Aqueous and methanolic extracts of dry powder of plant Zingiber officinale (SUNTH) have significant anti-inflammatory property.

Keywords---ginger, aspirin, anti-inflammatory, carrageenan.
Introduction

Latin word ‘inflammatio’ from which the word inflammation is derived which means ‘to set a fire’. ¹ Cardinal signs of inflammation rubor, tumor, calor and dolor which were first listed by Celsus who was Roman writer from 1st century AD. Rubor means redness tumor suggests swelling, calor means heat and dolor suggests pain. Virchow added fifth clinical sign ‘loss of function’. ² It is body’s one of the defense mechanisms ³. Non-Steroidal Anti-Inflammatory drugs have shown to be anti-inflammatory and nonspecific analgesics action ⁴. But they are having adverse effects like peptic ulcer, nephrotoxicity, hepatic damage. Ginger, Botanical name Zingiber officinale (Family: Zingiberacae) ⁵ has been used as a spice, flavoring agent in food for many years. Underground root or rhizome is used in traditional medicine for antiemetic effect, as a digestive agent⁶, analgesic⁷,⁸, anti inflammatory⁹,¹⁰, hepatoprotective ¹¹, hypouricemic ¹², antidiabetic ¹³, anticancer¹¹ agent. But use of Ginger extract for acute and chronic anti-inflammatory purpose is not established in modern medicine. Different experimental studies have shown its anti-inflammatory effects in animals but few studies report no activity. If anti-inflammatory effect of Ginger extract is proved it will be step forward towards formation of new safe drug which will be useful for patients suffering from pain and inflammation.

Materials and Methods

Animals:

Wistar rats of either sex weighing 150-200G were procured from the Central Animal House, KIMS, Karad. Total 6 groups of animals each having 6 animals were used for experiments. Total 36 wistar rats were used.

Drugs

Authentic SUNTH was obtained from local market. Aqueous and methanolic extracts of SUNTH were prepared by using Soxhlet Apparatus. All dried extracts were dissolved in 0.9 % normal saline for injection intraperitoneally. Following extracts and standard drug were used in two doses as given in following table.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Name of Drug /Extract</th>
<th>Short form used</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>0.9% Normal Saline</td>
<td>NS</td>
<td>0.2ml i.p</td>
</tr>
<tr>
<td>Group II</td>
<td>Aspirin (Standard Control)</td>
<td>ASP</td>
<td>150mg/kg i.p</td>
</tr>
<tr>
<td>Group III</td>
<td>Aqueous extract of dry powder of Z.officinale (SUNTH)</td>
<td>ADZ</td>
<td>100mg/kg i.p</td>
</tr>
<tr>
<td>Group IV</td>
<td>Aqueous extract of dry powder of Z.officinale (SUNTH)</td>
<td>ADZ</td>
<td>200mg/kg i.p</td>
</tr>
<tr>
<td>Group V</td>
<td>Methanolic extract of dry powder of Z.officinale (SUNTH)</td>
<td>MDZ</td>
<td>100mg/kg</td>
</tr>
</tbody>
</table>
Doses were selected as per previous research for anti-inflammatory activity of ginger extract.14 Acute toxicity study was done. No mortality was seen upto 2000mg/kg methanolic extract of zingiber officinale. All experiment were conducted after approval of institutional animal ethics committee. (Certificate No:IAEC/KIMS/2019/09). Experiment was conducted as per CPCSEA guidelines.

Evaluation of anti-inflammatory activity

It was done by carrageenan induced paw edema method. 15

Carrageenan-induced oedema in rat hind paw

This method is based on the plethysmometeric measurement of oedema produced by sub plantar injection of carrageenan into the hind paw of albino rats. Acute inflammation is produced by sub plantar injection of 0.1 ml of freshly prepared 1\% suspension of carrageenan in normal saline in the right hind paw of the rats and paw volume is measured plethysmometrically hourly till the fourth hour after carrageenan injection. Percentage inhibition (protection) against oedema formation is taken as an index of acute anti-inflammatory activity. It is calculated as follows

\[
\text{Percentage Inhibition} = \left(\frac{V_c - V_t}{V_c} \right) \times 100
\]

Where:

\(V_c\) = Volume of paw oedema in control animals
\(V_t\) = Volume of paw oedema in treated animals.

Statistical analysis

Results were expressed as mean ± standard deviation (SD). Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by Dunnett’s t-test for post-hoc analysis. P < 0.05 considered statistically significant. All the statistical methods were carried out using the SPSS software.
Results

<table>
<thead>
<tr>
<th>Time after carrageenan injection</th>
<th>Paw edema volume in ml (Mean ± SD)</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>ASP 150</td>
</tr>
<tr>
<td>1 hr</td>
<td>1.04 ± 0.188</td>
<td>0.41 ± 0.302*</td>
</tr>
<tr>
<td>2 hr</td>
<td>1 ± 0.353</td>
<td>0.33 ± 0.129*</td>
</tr>
<tr>
<td>3 hr</td>
<td>1.08 ± 0.408</td>
<td>0.20 ± 0.188*</td>
</tr>
</tbody>
</table>

Post hoc analysis by Dunnett’s Test: *p < 0.05

ANOVA revealed statistically significant difference in study groups; control, ASP150, ADZ100, ADZ200, MDZ100, MDZ 200. Post hoc analysis by Dunnett’s Test revealed statistically Significant difference between all treatment groups when compared with Control at all time interval (P < 0.05). Bonferroni Multiple Comparison test revealed, no statistically significant difference in anti-inflammatory activity of all extracts compared with Aspirin at 1hr, 2hr, 3hr time interval (P > 0.05).

Graph 1. Effect of ASP150, ADZ100, ADZ200, MDZ100, MDZ200 treatments on carrageenan induced paw edema compared with control
Table 2
Percentage inhibition of paw edema in ADZ100, ADZ200, MDZ100, MDZ200 treatments treated group compared with Aspirin group at different time intervals.

<table>
<thead>
<tr>
<th>Groups</th>
<th>1hr</th>
<th>2hr</th>
<th>3hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP</td>
<td>60 %</td>
<td>67 %</td>
<td>81.48 %</td>
</tr>
<tr>
<td>ADZ 100mg/kg</td>
<td>51.92 %</td>
<td>46 %</td>
<td>53.70 %</td>
</tr>
<tr>
<td>ADZ 200mg/kg</td>
<td>84.61 %</td>
<td>50 %</td>
<td>85.18 %</td>
</tr>
<tr>
<td>MDZ 100mg/kg</td>
<td>84.61 %</td>
<td>80 %</td>
<td>73.1 %</td>
</tr>
<tr>
<td>MDZ 200mg/kg</td>
<td>84.61%</td>
<td>80 %</td>
<td>81.48 %</td>
</tr>
</tbody>
</table>

Graph 2. Percentage inhibition of paw edema in ADZ100, ADZ200, MDZ100, MDZ200 treatments treated group compared with Aspirin group at different time intervals

Discussion

In the present study, anti-inflammatory effects of different doses of methanolic and aqueous extracts of dry powder of plant Zingiber Officinale (SUNTH) were tested in experimental models of inflammation. For anti-inflammatory activity we selected Carrageenan induced paw edema method. There are minimum 115 constituents identified from fresh and dried Ginger. Among them Gingerols are the major ones. They are abundant in fresh Ginger and less in dry Ginger whereas Shogaols are abundant in dry than in fresh Ginger. They are referred to major Gingerol dehydration products. 16

There are different possible mechanisms for anti-inflammatory effect of Ginger. Ginger has capacity to inhibit prostaglandin and leukotriene biosynthesis 17. It is suggested that inhibition of Arachidonate 5 – lipoxygenase also help in anti-inflammatory activity of Ginger. 18 Inhibition of cyclooxygenase 2 (COX 2) and 19
proinflammatory cytokines by Gingerol also claimed to be responsible for anti-inflammatory activity of Ginger.

Aqueous extract of dry powder of zingiber officinale (SUNTH) (ADZ 100 and ADZ 200)

We found that aqueous extract of dry powder (SUNTH) of plant Zingiber Officinale at dose of 100mg/kg and 200mg/kg (ADZ 100 and ADZ 200) showed statistically significant inhibition of paw edema volume (p < 0.05) when compared to control at 1hr, 2hr and 3hr. There was no statistically significant difference in anti-inflammatory activity of aspirin and ADZ 100; aspirin and ADZ 200 at all-time interval (p > 0.05). It indicates anti-inflammatory activity of ADZ 100 and ADZ 200 is comparable to aspirin. Percentage inhibition of paw edema by ADZ 100 was 51.92%, 46% and 53.70% at 1hr, 2hr and 3hr interval respectively whereas ADZ 200 has shown decrease in inflammation by 84.61%, 50%, 85.1% at 1hr, 2hr and 3hr respectively. Though anti-inflammatory activity of ADZ 100 is comparable to aspirin, it is less than aspirin at all time intervals whereas effect of ADZ 200 is more than aspirin at 1 hr and 3hr interval. In general, it was observed that anti-inflammatory activity increased dose dependently from 100mg/kg to 200mg/kg for aqueous extract of dry powder of plant Zingiber Officinale.

Methanolic extract of dry powder zingiber officinale (SUNTH) (MDZ 100 and MDZ 200)

We found that methanolic extract of dry powder (SUNTH) of plant Zingiber Officinale at dose of 100mg/kg and 200mg/kg (MDZ 100 and MDZ 200) showed statistically significant inhibition of paw edema volume (p < 0.05) when compared to control at 1hr, 2hr and 3hr. There was no statistically significant difference in anti-inflammatory activity of aspirin and MDZ 100; aspirin and MDZ 200 at all-time interval (p > 0.05). It indicates anti-inflammatory activity of MDZ 100 and MDZ 200 is comparable to aspirin. Percentage inhibition of paw edema by MDZ 100 was 84.61%, 80% and 73.1% at 1hr, 2hr and 3hr interval respectively whereas MDZ 200 has shown decrease in inflammation by 84.61%, 80%, 81.48% at 1hr, 2hr and 3hr respectively.

This inhibition of paw edema by MDZ 100 and MDZ 200 is more than standard control aspirin. Thus, in conclusion, our results show extracts of Dry powder of plant Zingiber officinale (SUNTH) have anti-inflammatory property. Anti-inflammatory properties are comparable to aspirin. Considering problems of gastric ulceration and hepatotoxicity associated with higher doses of aspirin and other NSAIDs, it will be justifiable to combine ginger extract with aspirin (NSAIDs) for chronic treatments of senile arthritis, low back ache, rheumatoid arthritis etc. Ginger due to its anti-inflammatory activities might potentiate aspirin action, therefore we may be able to reduce dose of aspirin. Ginger due to its digestant and hepatoprotective properties might reduce chances of aspirin induced adverse effects. Thus, combination may prove to have quick onset, long duration, decrease gastric intolerance, side effects of aspirin and may also have additive anti-inflammatory action. Therefore, we propose that further clinical studies should be done to prove benefit of coadministration of ginger extract and NSAIDs in chronic arthritis conditions.
Summary and Conclusions

From the findings of present experimental study, we conclude that Extracts of Zingiber officinale have anti-inflammatory properties. 100mg/kg and 200mg/kg doses of aqueous and methanolic extracts of Dry powder of plant Zingiber officinale (SUNTH) have significant anti-inflammatory activity as compared to control in animal model of acute inflammation which is comparable to anti-inflammatory activity of aspirin. 200mg/kg of aqueous extract of SUNTH has shown maximum anti-inflammatory activity among all the extracts and standard control. ADZ, MDZ have shown dose dependent anti-inflammatory activity. Present study predicts that use of ginger may have beneficial anti-inflammatory effect in various inflammatory conditions. As this study proves anti-inflammatory effect of ginger extracts, it will be a step forward towards formation of new safe drug which will be useful for patients suffering from pain and inflammation considering the adverse effects of conventional anti-inflammatory drugs such as NSAIDs and Corticosteroids.

The limitations of the study

- Only single species i.e. wistar rats were used
- In our setup, we were unable to quantify active principle present in the extracts.
- The efficacy of the extracts as an anti-inflammatory agent can be further evaluated using other related models in different species and also in human studies.

Conflict of interest: None

References

