#### How to Cite:

Dhone, P. G., Gujaram, M., Sabitri, B., Nisha, T., Anjita, S., Amrita, T., & Neeta, R. (2022). RP-HPLC stability indicating method development for the estimation of drug marketed formulation. *International Journal of Health Sciences*, *6*(S3), 5150–5164. https://doi.org/10.53730/ijhs.v6nS3.7047

# **RP-HPLC stability indicating method** development for the estimation of drug marketed formulation

#### Dhone P. G.

Professor & Head, Department of pharmacology, GMC Ambikapur.

#### Marandi Gujaram

Assistant professor, Bhima Bhoi Medical College and Hospital, Balangir

#### Beshra Sabitri

Assistant professor, Bhima Bhoi Medical College and Hospital, Balangir

#### Thakre Nisha

Department of pharmaceutics, Lakshmi Narain College of pharmacy, Bhopal M.P.

#### Singh Anjita

Department of pharmaceutics, NRI College of pharmacy, Bhopal M.P.

#### Thakur Amrita

Department of pharmaceutics, Vishwakarma University, Pune. Maharashtra, India

#### Rai Neeta

Department of pharmaceutics, Vishwakarma University, Pune. Maharashtra, India

Email: neetarai.2012@rediffmail.com

**Abstract**---In this study our idea is to developed RP-HPLC method for analysis and method of development for pure drug and their pharmaceutical formulation and their stability indicating its RP-HPLC method. It is used to validate and analysis for olanzapine drugs. By RP-HPLC method the drug olanzapine passes through various quality test and ensure the identity, strength, quality, purity and potency of the drug substance and drug products.

Keywords---RP-HPLC, Olanzapine, ICH, ANDA, NDA.

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 18 Feb 2022, Manuscript revised: 09 March 2022, Accepted for publication: 27 April 2022 5150

#### Introduction

The main aim of this method is to separate the main active compounds with any other impurities which is synthetic intermediates and degradants. (Sethi P.D et al 1996). The analysis can be divided in two types: -

- a. Qualitative analysis (Dolan J.W et al, 2002): It is used for identification of chemical species which is present in the formulation.
- b. Quantitative analysis: It estimates quantity which is present in a mixture.

These methods are easy to apply, low-cost and does not use polluting reagents and which require relatively in-expensive instruments. The methods were found is simple, rapid accurate and economic. (Dan W, et al 20020) (Sahu Ret al 2006)

### Materials and Methods (Sahu Ret al 2006)

### Material used

The Drug Olanzapine is used .it is a marketed preparation. other chemicals are Methanol, Acetonitrile, Methanol and Water. All reagents are AR grade and HPLC grade.

### Instruments:

HPLC, Double beam UV Visible Spectrometer, FT-IR.

### Methods: (Vilas Chaudhary et al, 2013)

- Marketed Formulation of Olanzapine: Marketed formulation Olenz-5 is used which is manufactured by sun pharma.
- Organoleptic evaluations It refers to taste, appearance, odor etc.
- Identification of Olanzapine
- *FTIR spectrum* IR absorption spectrum of Olanzapine was obtained by KBr pellet method.
- Solubility
  Solubility of Olanzapine was performed in various solvents
- Determination of  $\lambda_{max}$  of Olanzapine
  - $\lambda_{max}$  was determined by using U.V. Spectrophotometer
- Determination of Melting Point of Olanzapine
  - It was determined by using Melting Point apparatus and the M.P. of drug was found to be 195-198  $^{\circ}\mathrm{C}$
  - Analytical Method Development by HPLC

### Mobile Phase Selection (Mahmoud A., et al 2013)

The mobile phase of drug olanzapine was taken in different ratio. it is more suitable for analysis. 1.75 gm dihydrogen potassium phosphate into 1L of purified

5152

water and then add Tri ethanolamine upto 1ml then adjust the pH between 5-6. Then filtered it.

### Selection of wavelength

Accurately weigh the 100 mg of drug and transferred to a 100 ml volumetric flask, then volume was adjusted to the mark with mobile phase. From above solutions 0.1 ml was transferred into 10 ml volumetric flask , volume made up with mark .then observed with maximum absorbance was found at 260.00 nm.

### **Selection of Separation Variable**

The separation of various variables are selected which is constant in whole experiment while performing.

### **System Suitability Parameters**

After complete saturation of three column and replicate and injected separately .it is reported on chromatogram.

### **Preparation of Standard Stock Solution**

Accurately weigh 10 mg of drug and transfer in to 10ml volumetric flask, and then make up the volume with the  $H_2O$ : ACN to formed stock preparation.

#### **Preparation of Working Standard Solution**

From stock solutions take 1ml drug and dilute up to the 10 ml of solution 0.5-2.5 ml solutions and make up the volume with the  $\rm H_2O:~ACN~$ , which formed standards solution of 5-25  $\mu g/$  ml concentration.

### Preparation of Calibration Curves of olanzapine

For preparation of standard solution , solution is injected thrice peak area was calculated and plotted against the concentration in range and then regression value was found by using curve analysis .

#### Analysis of Tablet Formulation (A. Rukmangada et al 2013)

• Assay of formulations

For analysis take 10 mg of drug and transfer in to volumetric flask and dissolve it into the mobile phase. Then shake for 15 minutes and filter it and then volume was made up. Take 1.0 ml of solutions and dilute with 10.0 ml.it is 100 mg/ml .In above solution 1 ml was withdrawn , dilute with 10 ml with mobile phase to form solution containing 10  $\mu$ g/ml of drug

• Linearity (Rubesh kumaret 2011) Linearity of analytical procedure is its ability to obtain test. The calibration curve was plotted for different concentration and it was recorded and calculated. • Accuracy

Four performing the Recovery studies is to validate the accuracy of developed Stability indicating RP-HPLC method.

- Precision: -It is used to evaluate the inter and intraday precision
- Repeatability

Standard solutions of drug were analyzed in different day and by different analyst

Thermal degradation

Weigh accurately 50mg of drug in petri dish and kept in oven for 4 weeks at 50°C. Samples were withdrawn and diluted for 10  $\mu$ g/ml and tested in HPLC .Calculate the percentage of degradation using calibration curve of drug.

• Photolytic degradation

The olanzapine was exposed to sunlight during the daytime (70,000–80,000 lux) for 2 days. Then Samples were withdrawn and diluted at 10  $\mu$ g/ml and tested in HPLC to calculate the percentage degradation using calibration curve of drug.

### Results

### **Organoleptic property**

The drug olanzapine is yellow in colour and solid crystalline in nature

### Structure of Olanzapine



### **Result of FTIR of Olanzapine**



# **Interpretations of FTIR**

Table 1 Interpretations spectra of FTIR of drug

| S.N. | Groups                          | Experiment       | Theoretical      |
|------|---------------------------------|------------------|------------------|
|      |                                 | peak             | peak             |
|      |                                 | cm -1            | cm <sup>-1</sup> |
| 1    | OH - bonds                      | 3564.69          | 3570-3450        |
| 2    | -N=C=N-bonds                    | 2173.15          | 2175-2130        |
| 3    | -C-C- multiple bond             | 1954.17          | 1960             |
| 4    | Anhydride stretching vibrations | 1879.27          | 1890-1750        |
| 5    | Anhydride stretching vibrations | 1761.24          | 1791-1747        |
|      |                                 |                  |                  |
| 6    | -C=N- stretching vibrations     | 1642.20          | 1661-1634        |
| 7    | N-H bending vibrations          | 1514.62, 1542.45 | 1550-1510        |
| 8    | Sulfur                          | 1129.00          | 1200-1050        |

Results of Solubility Study

The solubility of drug is that it is insoluble in water ,  $0.1~\rm N$  sodium hydroxide ,Phosphate buffer  $~\rm pH$  7.4 and soluble in0.1 N hydrochloric acid Methanol  $~\rm and$  Acetonitrile



Determination of  $\square_{max}$  of Drug at the range of 258.0 nm

Selection of  $\Box_{max}$  of drug Olanzapine

### **Results of RP-HPLC Methods Mobile Phase Selection**

| Mobile phase                                                      | Ratio   | Flow rate | Results         |
|-------------------------------------------------------------------|---------|-----------|-----------------|
| $H_20:C_2H_5OH$                                                   | 50:50   | 1ml/min   | No peak Obtain  |
| $C_2H_5OH$ : $H_2O$                                               | 80:20   | 1ml/min   | Peak Broadening |
| Acetonitrile:Water                                                | 50:50   | 1ml/min   | No Peak obtain  |
| 20 mM KH <sub>2</sub> PO <sub>4</sub> : Acetonitrile              | 70:30   | 1.0ml/min | Tailing         |
| 20 mM KH <sub>2</sub> PO <sub>4</sub> (pH adjust with OPA 3.0 ):  | 70:30   | 1.0ml/min | Tailing         |
| Acetonitrile                                                      |         |           |                 |
| $20 \text{ mM KH}_2\text{PO}_4$ add $1 \text{ ml TEA}$ (pH adjust | 70:30   | 1.0ml/min | Tailing         |
| with OPA 4.0 ): Acetonitrile                                      |         |           |                 |
| Buffer:-1.75 gm KH <sub>2</sub> PO <sub>4</sub> in 1000 ml water. | 60 : 40 | 1.0ml/min | Most Suitable   |
| Add 1 ml of TEA adjust the pH – 6 with OPA.                       |         |           |                 |
| Mobile phase – Buffer : Acetonitrile (60:40)                      |         |           |                 |

# **System Suitability Parameters**

| System    | Retention | Area     | Theoretical | t.factor |
|-----------|-----------|----------|-------------|----------|
|           | time      |          | plates      |          |
| Parameter |           | curve    |             |          |
|           |           | 1251.23  |             |          |
| Rep-1     | 2.37 5    |          | 3078        | 1.18     |
| Rep-2     | 2.372     | 1252.45  | 3056        | 1.20     |
| Rep-3     | 2.374     | 1253.65  | 3098        | 1.15     |
|           | 2.374667  | 1250.78  | 3077.333    | 1.176667 |
| Mean      |           |          |             |          |
| S.D.      | 0.000577  | 3.378835 | 21.00794    | 0.025166 |

# Linearity and Calibration Graph



Chromatogram of 5 ppm



| Result-A Table |           |         |         |        |          |           |
|----------------|-----------|---------|---------|--------|----------|-----------|
| Peak No        | Retn.Time | Area    | Height  | Area % | Height % | Width@50% |
| 1              | 3.476     | 1251.23 | 108.474 | 100    | 100      | 0.05      |
| Total          |           | 1251.23 | 108.474 | 100    | 100      |           |



| Result-A Table |           |         |         |        |          |           |
|----------------|-----------|---------|---------|--------|----------|-----------|
| Peak No        | Retn.Time | Area    | Height  | Area % | Height % | Width@50% |
| 1              | 4.784     | 1863.78 | 138.662 | 100    | 100      | 0.05      |
| Total          |           | 1863.78 | 138.662 | 100    | 100      |           |

Chromatogram of 15 ppm



|         |           |          | Result-A T | able   |          |           |
|---------|-----------|----------|------------|--------|----------|-----------|
| Peak No | Retn.Time | Area     | Height     | Area % | Height % | Width@50% |
| 1       | 3.538     | 2483.691 | 187.024    | 100    | 100      | 0.05      |
| Total   |           | 2483.691 | 187.024    | 100    | 100      |           |

Chromatogram of 20 ppm



Chromatogram of 25 ppm

# **Result of Linearity**

| Conc.  | 0   | 5        | 1        | 15       | 2        | 25       |
|--------|-----|----------|----------|----------|----------|----------|
|        |     |          | 0        |          | 0        |          |
| µg/ml  |     |          |          |          |          |          |
| Rep.   | 0   | 0        | 0        | 0        | 0        | 0        |
| 1      | 0   | 608.517  | 1252.23  | 1862.78  | 2481.691 | 2977.817 |
| 2      | 0   | 610.258  | 1251.458 | 1864.589 | 2483.985 | 2981.715 |
| 3      | 0   | 613.547  | 1257.658 | 1897.564 | 2476.985 | 2984.855 |
| Mean   | 00  | 610.774  | 1252.782 | 1871.978 | 2482.22  | 2982.129 |
| S.D.   | 00  | 3.218452 | 3.378835 | 19.58124 | 4.020715 | 3.257899 |
| R.S.D% | 000 | 0.537527 | 0.269707 | 1.043789 | 0.161915 | 0.109247 |



Calibration Curve of Olanzapine

5158

# **Regression Equation**

Y = m х + с Y = А U С AUC + 120.8x +23.73 slope = 120.8 m= с = Conc. in  $\Box g/ml r^{2}=$  0.998 Intercept = 23.73X=

# Assay of tablet Formulations

| Standard      | Drug Olanzapine |
|---------------|-----------------|
| Concentration | 10 (µg/ml)      |
| µg/ml         |                 |
|               | 10.11           |
| Re-1          |                 |
| Re-2          | 10.06           |
| Re-3          | 10.04           |
| %             |                 |
|               | 103             |
| Re-1          |                 |
| Re-2          | 98.504          |
| Re-3          | 100.9           |
| Mean          | 10.076          |
| SD            | 0.746           |
| % RSD         | 0.743           |

# Validation of Developed Method Linearity

| Replicates   | Concentration<br>(□g/ml) | Mean AUC | Response Ratio |  |
|--------------|--------------------------|----------|----------------|--|
|              | 5                        | 612.772  | 123.3547       |  |
| Rep-1        |                          |          |                |  |
| Rep-2        | 10                       | 1252.21  | 124.122        |  |
| Rep-3        | 15                       | 1874.96  | 124.0642       |  |
| Rep-4        | 20                       | 2481.32  | 123.164        |  |
| Rep-5        | 25                       | 2984.132 | 118.2832       |  |
| Mean 122.196 |                          |          |                |  |
| S.D. 1.454   |                          |          |                |  |
|              | R.S.D.                   |          | 2.993          |  |



Response Ratio Curve of Olanzapine

# **Result of Accuracy:** -

| Level of %Recovery | 80         | 100      | 120                        |
|--------------------|------------|----------|----------------------------|
|                    | Olanzapine |          |                            |
|                    |            |          |                            |
| Amt .present       | 10mg       | 10mg     | 10mg                       |
|                    | 10mg       | 10mg     | 10mg                       |
|                    | 10mg       | 10mg     | 10mg                       |
| Amt of Std.        | 8 mg       | 10 mg    | 12.0 mg <sup>Series2</sup> |
| added              | 8 mg       | 10 mg    | 12.0 mg <sub>Series1</sub> |
|                    | 8 mg       | 10 mg    | 12.0 mg                    |
| Amt                | 7.98 mg    | 10.05 mg | 12.94 mg                   |
| recovered          | 8.01 mg    | 9.00 mg  | 11.02 mg                   |
|                    | 8.00 mg    | 8.98 mg  | 12.97 mg                   |
|                    | 99.75      | 100.50   | 99.57                      |
| Recovery           | 100.12     | 100.00   | 100.03                     |

5160

| percentage |        |       |       |
|------------|--------|-------|-------|
|            | 100.00 | 99.80 | 99.55 |

# **Recovery Studies validation**

| Level | Drug<br>olanzapi | Recovery<br>percentage | Standard  | % RSD |
|-------|------------------|------------------------|-----------|-------|
|       | ne               |                        | Deviation |       |
| 80    | Olanzap          | 98.957                 | 0.192     | 0.192 |
| 100   | ine              | 100.100                | 0.361     | 0.360 |
| 120   |                  | 99.750                 | 0.289     | 0.289 |

# **Precision:**

| Repeatability |              |        |               |           |       |
|---------------|--------------|--------|---------------|-----------|-------|
| Drugs         | Label claims | Amount | % Label claim | Standard  | % RSD |
|               |              |        |               | deviation |       |
| Olanzapine    | 10 mg        | 9.86   | 98.40         | 0.253     | 0.124 |

# Intermediate Precision- (Inter-day and Intra-day Precision)

| For Intra-day |               | For     | ·Inter-day |
|---------------|---------------|---------|------------|
| Time (hrs)    | % Label Claim |         |            |
|               |               |         |            |
|               | Olanzapine    |         |            |
|               |               |         |            |
| 1             | 98.20         | I day   | 98.50      |
| 2             | 98.10         | II day  | 98.00      |
| 3             | 99.00         | III day | 97.80      |
| 4             | 99.85         |         |            |
| 5             | 99.70         |         |            |
| 6             | 99.30         |         |            |
| Mean          | 99.93         | Mean    | 96.6       |
| SD            | 0.19436       | SD      | 0.35055    |
| % RSD         | 0.20381       | % RSD   | 0.36436    |
|               | 4             |         |            |

# Results of Analyst to Analyst

| Analyst | Label claim | Amount | %Label claim | Standard<br>deviation | % RSD |
|---------|-------------|--------|--------------|-----------------------|-------|
| 1       | 10          | 9.95   | 99.84        | 0.254                 | 0.229 |

### Robustness

| Compounds  | % RSD | Condition |      |
|------------|-------|-----------|------|
| Temp.      |       | - 5       | + 5  |
| Olanzapine | 0.52  | 0.68      | 0.51 |
| Flow rate  |       | 10        |      |

| Olanzapine                    | 0.42 | 0.46 | 0.87 |
|-------------------------------|------|------|------|
| Mobile phase ratio percentage |      | - 2  | + 2  |
| Olanzapine                    | 0.33 | 0.75 | 0.16 |

## **Forced Degradation Studies**

| conditions             | %D.R  | % Drug retain |
|------------------------|-------|---------------|
| drugs                  | 97.91 | 0             |
| Acid hydrolysis        | 82.36 | 15.50         |
| Alkaline hydrolysis    | 87.25 | 12.23         |
| Oxidative degradation  | 90.53 | 7.47          |
| Thermal degradation    | 94.39 | 2.21          |
| Photolytic degradation | 95.46 | 4.54          |



Chromatogram of 10  $\mu g/ml$  of Olanzapine after Acidic hydrolysis





## **Selection of Separation Variable**

| Variable              | Condition        |
|-----------------------|------------------|
| Columns               |                  |
| Dimensions.           | 240mm x 4.50mm   |
| Particle Size of drug | 5 μm             |
| Bonded Phase          | Octadecyl-silane |
| Phase preparation     |                  |
| Buffer solution       | 50               |
| Acetonitrile          | 30               |
| F.R                   | 1ml/min          |
| Temp                  | R.T              |
| Drug Sample           | 20 🗆 1           |
| Detected wavelength   | 257.0 nm         |
| RT Olanzapine         | 3.576 + 0.5 min  |

#### Conclusions

The RP-HPLC methods was developed for estimation of LEVO validated as per ICH norms. The results of this study were found was more reproducible and rapid simple method to fulfil the objectives of this research

#### References

- 1. Sethi P.D.; HPLC: Quantitative Analysis of Pharmaceutical Formulation; CBS Publishers and Distributors, New Delhi; 1996; 113-202.
- 2. Davidson A.G., Beckett A.H. and Stenlake J.B.; Practical Pharmaceutical Chemistry; 4th edition; CBS Publishers and Distributors, New Delhi; 1989; 276-99.
- Jeffery G.H., Bassett J., Mendham J. and Denrey R.C.; Vogel's Textbook of Quantitative Chemical Analysis; 5th edition; Longman Group UK Ltd, England; 1989; 6-14.
- 4. http,//www.youngincom/application/AN-0608-0115ENpdf.
- 5. Swarbrick, James B. and James. C.; Encyclopedia of pharmaceutical technology; Volume I; Marcel Dekker Inc., New York; 1998; 217 224.
- 6. Sahu R. Nagar P. and Jain D.; Indian J. Pharm. Science; 2006; 68(4); 503-506.
- 7. Jain N., Jain R., Swami H. and Pandey S.; Indian Journal of Pharmacy and Pharmaceutical sciences ;volume1;Issue1;July-Sept 2009;189-191.
- 8. Khan, M.R. and Jain, D.; Indian Journal of Pharmaceutical sciences; 2006;64(6);546-548.
- 9. Meyer Veronica R.; Practical High Performance Liquid Chromatography; 2nd edition, John wiley and sons, London;1993;56-58.
- 10. Braumann T., Weber G. and Grimme L.H.; J.Chromatogr; 1983;48-65.
- 11. Snyder L.R.; Dolan J.W. and Dolan J.W.; J.Chromatogr; 1989; 48-65.
- 12. Aitzemuller K.; Practice of High Performance Liquid Chromatography, springer –Verlag; 1986; 301.
- 13. SGE International Pty. Ltd, TA-0010-H, 2001.
- 14. FDA; Draft Guidance for Industry, Stability Testing of Drug Substances and Drug Products; (FDA, Rockville, MD, June 1998); glossary.

- 15. ICH; Guidance for Industry, Q1A(R2); Stability Testing of New Drug Substances and Products; November; 2003; 1-17.
- 16. European Council (1993) Directive 93/42/EEC of 14 June 1993.
- European Council (1990) Directive 90/385/EEC of 20 June 1990 on active implantable medical devices. Chapter 8 References Lakshmi Narain College of Pharmacy, Bhopal (M.P.) Page 58
- 18. Dan W., Reynolds Kevin L., Facchine June F. and Mullaney; Conducting Forced Degradation Studies; Pharmaceutical Technology;2002.
- 19. FDA; ICH: Guideline on the Validation of Analytical Procedures: Methodology, Availability, Notice; Federal Register 62 (96); 19 May 1997; 27463–27467.
- 20. Conners K.A., G.L. Amidon, and Stella, V.L.; Chemical Stability of Pharmaceuticals; Wiley and Sons; New York; 2d Ed.; 1986; 375-384.
- 21. FDA; ICH: Guideline for the Photostability Testing of New Drug Substances and New Drug Products; ICH Q1B; Federal Register 62 (95); 16 May 1997; 27115–27122.
- 22. FDA; Center for Drug Evaluation and Research; Submitting Documentation for the Stability of Human Drugs and Biologics; Rockville, MD; February 1987; 38.
- 23. FDA; ICH: Guideline on Impurities in New Drug Products; ICH Q3B; Federal Register (Notices); 62 (96); 19 May 1997; 27453–274561.
- 24. FDA; Draft Guidance for Industry, Stability Testing of Drug Substances and Drug Products FDA, Rockville, MD, June 1998; glossary.
- 25. FDA; ICH: Guidance on Q6A Specifications; ICHQ6A; Federal Register (Notices); 65 (251); 29 December 2000; 83041-83063.
- 26. Reynolds, DW; Forced degradation of pharmaceuticals; Am Pharm Rev 2004; 56–61.
- 27. Dolan J.W.; Stability-indicating assays; LCGC N Am; 2002; 20; 346-349.
- 28. Baertschi S.W.; Pharmaceutical stress testing: predicting drug degradation; Taylor & Francis, Boca Raton; 2005.
- 29. Yoshioka S. and Stella V.; Stability of drugs and dosage forms; Plenum Pub Corp; 2000.
- 30. Kanakapura Basavaiah, Anil kumar Urdigere Rangachar, and Kalsang Tharpa; Quantitative Determination of Olanzapine in Pharmaceutical Preparations by HPLC; J. Mex. Chem. Soc.; 2008; 52(2); 120-124.
- 31. A. Pathak and S.J. Rajput; Development of a Stability-Indicating HPLC Method for Simultaneous Determination of Olanzapine and Fluoxetine in Combined Dosage Forms; Journal of Chromatographic Science; Vol. 47; August 2009; 605-611.
- 32. Prameela Rani A. and Bala Sekaran C.; Development of HPLC method for the determination of olanzapine in bulk and dosage forms. International Journal of PharmTech Research Coden( USA); IJPRIF ISSN : 0974-4304; July-Sept 2009; Vol.1, No.3; 654-657.
- 33. Zhang Meng-qi, JIA Jing-ying, LU Chuan, et al; Development and validation of a liquid chromatography-isotope dilution tandem mass spectrometry for determination of olanzapine in human plasma and its application to bioavailability study; Acta Pharmaceutica Sinica 2010; 45 (6); 767-771.
- 34. Basavaiah K., Zenita O., Rajendraprasad N., Kalsang Tharpa and Vinay K.B.; Simple and sensitive spectrophotometric determination of olanzapine in pharmaceuticals using hexacyanoferrate (III) an improved protocol; Journal of Advanced Pharmaceutical Research; 2010, 1(2); 146-156.

- 35. Rubesh kumar S., P. Gayathri, Duganath N., Kiran C.H., Sridhar C. and Jayaveera K.N.; Simultaneous Estimation of Fluoxetine HCl and Olanzapine in Bulk Drug and Pharmaceutical Formulation by Using UV-VisibleSpectroscopy Method; International Journal of Pharmaceutical Sciences and Drug Research; 2011; 3(1); 52-55.
- 36. A. Rukmangada Rao, Delhi Raj N. and Jagadeesh; RP-HPLC method for Quantitative Estimation of Olanzapine in tablet Dosage forms; International Journal of Pharma and Bio Sciences; 2012 July; 3(3); 267 272.
- 37. Mahmoud A. Tantawy, Nagiba Y. Hassan, Nariman A. Elragehy and Mohamed Abdelkawy; Simultaneous determination of Olanzapine and Fluoxetine hydrochloride in capsules by spectrophotometry, TLC-spectrodensitometry and HPLC; Journal of Advanced Research 2013(4), 173–180.
- 38. Vilas Chaudhary and Milind Ubale; Simultaneous High-Performance Liquid Chromatographic Determination of Olanzapine hydrochloride in Pharmaceutical Dosage Form; International Journal of Advances In Pharmacy, Biology and Chemistry; Vol. 2(1); Jan- Mar, 2013; 57-62.