
How to Cite:

Damdoo, R., & Gupta, A. (2022). Gesture controlled interaction using hand pose model. International
Journal of Health Sciences, 6(S1), 10417–10427. https://doi.org/10.53730/ijhs.v6nS1.7493

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 27 March 2022, Manuscript revised: 18 April 2022, Accepted for publication: 9 May 2022

10417

Gesture controlled interaction using hand pose

model

Rina Damdoo

Department of Computer Science & Engineering, Shri Ramdeobaba College of

Engineering & Management, Nagpur, Maharashtra, India
Corresponding author email: damdoor@rknec.edu

Ashutosh Gupta
Department of Computer Science & Engineering, Shri Ramdeobaba College of

Engineering & Management, Nagpur, Maharashtra, India

Email: guptaar_5@rknec.edu

Abstract---Direct use of the hand as an input device is a smart

method for providing natural human-computer interaction (HCI).

Hand pose estimation is an attractive topic for research in recent

years. It has been widely used in virtual reality. The domain of
computer vision-based human hand three-dimensional shape and

hand pose estimation has fascinated momentous attention recently

due to its key role in various applications, such as natural human-
computer interactions. Hand pose estimation is difficult due to some

challenges. First, we need to detect the human hand which is very

changeable. Second, the high degree of freedom leads to difficulties in

pose estimation. In this paper, we aim to build a hand pose estimation
system that can correctly detect a human hand and estimate its pose

which can be useful in the areas like industrial automation, sign

language recognition etc. We integrated a hand pose model with a
game named U3D with 6 different gestures. As the object detection

methods perform poorly in the palm detection tasks we used 21 hand

joints and increased accuracy to approximately 95.63%. We used the
Blender 3D computer graphics software toolset for creating animation,

visual effects, motion graphics, and interactive unity 3D games.

Keywords---Human-Computer Interactions, Hand pose estimation,

Hand Pose Model, Blaze palm detection.

Introduction

A 3D model integration with human physical input refers to the ability to embed a
person at different locations into a shared virtual environment. In such

environments, it is essential to provide users with a credible sense of 3D tele-

https://doi.org/10.53730/ijhs.v6nS1.7493
mailto:damdoor@rknec.edu
mailto:guptaar_5@rknec.edu

 10418

presence and interaction capabilities. This article presents a full real-time 3D-

modeling system that uses hand gestures to control the person/character. The
system integrates 3D models with human physical input. A 3D-modeling system

with human physical input generally has three major parts:

1) Gesture/pose Recognition System
2) Game development

3) Integration of Gesture/pose Recognition System and Game

Gesture/pose Recognition

In palm detection, the color of skin, background subtraction, hand image

extraction, edge detection and histogram analysis are used to achieve the
goal. Followed by pose estimation by extracting features and classifying them into

one of the categories.

Game development

It is an understanding of what is involved in building Virtual Reality games for

Unity.

Integration of Gesture/pose Recognition System and Game: Integration is all

about basic body-as-input interaction example where real time results from a

hand tracking model (web cam stream as input) is mapped to the controls of a
web-based game. The integration should be fairly accurate. So, light weight hand

detection model can be used to track player hands and enable real time body-as-

input interactions.

In this work, web camera has been used to capture gestures provided by the user,

that are recognized and classified as one of the six gestures by our system.
Accordingly it can be observed that the character in the U3D game performs the

actions. We have predefined six hand gestures, but in future our work can be

extended to classify many gestures. Fig. 1 shows Proposed U3D Game using Hand
Pose Model. In section 2 we review work related to gesture recognition. Section 3

describes proposed approach towards gesture recognition using hand pose

estimation followed by results and conclusion in sections 4 and 5 respectively.

10419

Fig. 1: Proposed U3D Game using Hand Pose Model

Literature Review

L. Ge et.al. [1], using multi-view CNNs propose a 3D regression method that can

better exploit depth cues to recover fully 3D information of hand joints without

model fitting and generated a set of heat-maps of multiple views from the multi-
view CNNs and fused them together to estimate 3D hand joint locations.

Zhang et.al. [2], recommend a network SE-Resblock. Their model has divided into
two parts: 2D hand joints estimation and depth coordinate estimation. They

propose a new method that utilizes the information between adjacent joints on

one finger to get accurate 3D hand pose estimation. Because of the self-occlusion
of the hand, the depth information of hand joints is difficult to be extracted

directly. To overcome this problem, they first regress the depth of a part of hand

joints, then it is exploited as a reference, and concatenated the features and the

 10420

output of the 2D joints estimation module for the next stage to estimate the

depth of adjacent joints.

L. Ge et.al. [3], present a 3D CNN-based hand pose estimation method. By

adopting the projective D-TSDF, they encoded the hand depth image as a 3D
volumetric representation which is then fed into the 3D CNN and show that the

3D CNN mapping the 3D volumes to 3D joint locations in a single pass is easy to

be trained in an end-to-end manner. P. Vicente et.al. [4], present a method for

pose estimation of a robotic hand, based on a particle filter and GPU framework.
Lin Huang [5], present a comprehensive survey of state-of-the-art 3D hand shape

and pose estimation approaches using RGB-D cameras. Related RGB-D cameras,

hand datasets, and performance analysis are also discussed to provide a holistic
view of recent achievements.

Chen et.al. [6], designed a model called the spherical part model (SPM) and train
a deep convolutional neural network using the model to estimate hand pose

based on prior knowledge of the human hand. Many other researchers have

worked on different techniques like hand pose trajectory tracking [7, 8], in
various applications like Automotive Interfaces [9, 11] and sign recognition [10].

Proposed Work

Proposed work processes input video from the user webcam and each frame is

send to the Blaze palm detection model, which returns hand bounding box

around the palm with the coordinates of bottom left corner and top right corner.
The frame is then cropped, thus containing only the image with palm cropped

with reference to bounding box. This frame is given as input to Hand Landmark

detection model to detect 21 3D points on the palm (Fig. 2).

We used Finger Pose Library to estimate the hand gesture input from the user.

Finger pose library uses the hand landmarks detected by TensorFlow’s hand pose
model to detect hand gestures like “Thumbs Down”, “Thumbs Up” etc. There are

mainly 3 Steps for detecting the Gesture.

Fig. 2: Hand Landmark detection model to detect 21 3D points on the palm

10421

Analyzing the User’s Gestures

In this step, the direction and curl of each individual finger is estimated. Using

the coordinates provided by the hand pose model, it basically calculates the angle
between our joints to predict the curl of each finger and the coordinates also

provide the direction in which the finger is pointing towards. Figure 3a shows the

index finger pointing toward the RIGHT and it is half curled. The amount of curl
can be determined using the coordinates of each joint provided by the landmark

model. Fig. 3b, 3c, 3d show the images for an example of how the index finger is

curled, No curl, Half curl, and Full curl fingers respectively.

Setting up Gestures

One needs to represent the gestures that are expected from the user, by setting

the direction, curl, and confidence for each finger. Table 1 lists the set of

directions we used in this work.

Comparing the Confidence

‘Confidence’ is a number between 0 and 10 which describes how accurately a
given combination of finger curl/positions matches a pre-defined gesture. One

should design gestures so a perfect match will cause a confidence value of 10. Ten

Finger Pose library is used to classify the computed landmark configuration into a
discrete set of gestures. The model uses accumulated angles of joints to determine

the state of the fingers and is then mapped to a set of pre-defined gestures. If the

confidence value calculated is greater than or equal to 70%, then it is classified
into one of the pre-defined gestures and this classification is then sent to the

unity instance for further action in the unity environment.

Figure 3: a) Index finger pointing toward the RIGHT, b) No curled index finger, c)

Half curled index finger, d) Full curled index finger

 10422

Table 1

Set of the finger directions

Drawing a virtual hand

We draw a virtual hand across the webcam image by creating a canvas across the
video feed and drawing the Arcs and the Strokes across it. To draw it, we used

coordinates in the landmarks Array provided by the hand pose Model.Fig. 4

shows a detailed data flow diagram of our gesture detection system.

Blender

In this work, free and open-source 3D computer graphics software toolset Blender
has been used for creating animation, visual effects, motion graphics, and

interactive unity 3D games. There are several steps to create a 3D character in

Blender. These take us from constructing a basic framework that will be the
foundation for everything such as Preparing Drawings, Inserting Simple Shapes,

Using Layers, Texturing Model, Rigging Model for Animation, and Rendering

characters.

Unity 3D

Users can create games and experiences in both 2D and 3D with Unity, which
includes a Scripting API and drag-and-drop functionality as well as plugins for

use with the Unity Editor and games themselves. Unity provides a selection of

tools that let creation of environmental features such as landforms and
vegetation.

Finger Direction Name

0 Vertical Up

1 Vertical Down

2 Horizontal Left

3 Horizontal Right

4 Diagonal Up Right

5 Diagonal Up Left

6 Diagonal Down Right

7 Diagonal Down Left

10423

Environment

To make the environment, Unity's drag and drop functionality are used. Various

objects are dragged, including cliff structures, terrain models, tree models, rocks,
and man-made structures. All objects and models on the U3D game map have

rigid collider parameters, which prevent the character from passing through

them.

Fig. 4: Data Flow Diagram of Gesture Detection system

Character Movement and Animation
The character was defined to move freely in the built environment. For this

movement, we predefined 6 controls, which are:

1. Stop

2. Crouch / Down
3. Jump

4. Rotate Left

5. Rotate Right
6. Move forward

To implement all these movements with ease, the character is given various
animations, which are:

 10424

1. Idle Breathing

2. Stationary Character Crouch/ Roll
3. Stationary Character Jump

4. Camera Move Left

5. Camera Move Right
6. Running Character Crouch/ Roll

These animations are triggered at specific commands, by the use of Animation

State graph. This graph defines various states of animation, and all the valid
transitions from one animation to other.

Integration

The Integration of the Gesture Recognition System and the Unity Model is done in

3 steps:
1. Convert the Unity Model to HTML.

2. Send input data generated from Gesture Recognition System to the Unity

Model.
3. Call corresponding functions of Unity Model based upon the input.

Step 1: Convert the Unity Model to HTML

Using WebGL, the unity model is converted into HTML, and the model can then
be loaded in a browser by opening the html document. Therefore, 3D graphics can

be displayed in real-time without plug-ins. In addition to OpenGL, WebGL can be

combined with other HTML elements or composited with any part of the page.

Step 2: Send input data generated from Gesture Recognition System to the Unity

Model.
An HTML file is the link between the gesture recognition model and the Unity

model. Therefore, we can send data input to the html file and the unity model can

extract data from it.

Step 3: Call corresponding functions of Unity Model based upon the input. To

send data from React.JS to C# “SendMessage()” can be used.

Results and Discussions

Hand Pose model, which uses the blaze palm detection to classify gestures, is
more accurate than a conventional object detection model. It is a relatively

lightweight package consisting of approximately 12MB weights, making it suitable

for real-time inference. Table 3 presents the results collected for 1000 sample
frames for each of the six gestures as shown in Fig. 5. Table 4 presents the

confusion matrix. Authors claim that test data contains images with different

orientations and occlusions for the specific gestures. In future we will try to
incorporate illumination variations in the same. Hand Pose model show

percentage accuracy of about 95.63% in gesture classification using a regular

cross entropy loss.

Because of the self-occlusion of hand, the joint information of hand joints is

difficult to be extracted directly. Thus it can be observed from Table 3 that

10425

percentage accuracy is less for the gestures Move Down, Move Up, Run. Also it

has been observed that the overall performance is independent of duration of

gesture but depends on the speed with which the gesture is performed.

Fig. 5: Sample images for various Gestures Stop, Move Down, Move Up, Move left,

Move Right, Run

 10426

Table 3

Results Table

Table 4

Confusion Matrix

Conclusions

Hand gestures as input is a smart method for providing natural human-computer

interaction. So, Hand pose estimation is found to be a hot topic for research in

recent years. Through this work, we tried to examine Hand pose estimation by

applying it to gesture-controlled games and creating an Avatar.

Acknowledgements

We are grateful to all the authors in the reference section, who gave us a way to

move in that direction. They all had used enormous methods for remote sensing

image scene classification.

Gesture
Class

#Correct
Gesture

Recognition out

of 1000
samples

Average
Confidence

Value of

Correctly
identified

Gestures

% Accuracy of
Gesture

Recognition

Stop 981 9.4 98.1

Up 940 8.8 94.0

Down 955 8.5 95.5

Left 973 9.3 97.3

Right 969 9.3 96.9

Run 920 8.4 92.0

10427

References

1. L. Ge, H. Liang, J. Yuan and D. Thalmann, "Robust 3D Hand Pose Estimation

From Single Depth Images Using Multi-View CNNs," in IEEE Transactions on
Image Processing, vol. 27, no. 9, pp. 4422-4436, Sept. 2018, doi:

10.1109/TIP.2018.2834824.

2. Zhang, Xiongquan & Huang, Shiliang & Ye, Zhongfu. (2021). Accurate 3D
hand pose estimation network utilizing joints information. Signal Processing:

Image Communication. 90. 116035. 10.1016/j.image.2020.116035.

3. L. Ge, H. Liang, J. Yuan and D. Thalmann, "Real-Time 3D Hand Pose
Estimation with 3D Convolutional Neural Networks," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 41, no. 4, pp. 956-970, 1 April

2019, doi: 10.1109/TPAMI.2018.2827052.
4. P. Vicente, R. Ferreira, L. Jamone and A. Bernardino, "GPU-Enabled Particle

Based Optimization for Robotic-Hand Pose Estimation and Self-Calibration,"

2015 IEEE International Conference on Autonomous Robot Systems and

Competitions, 2015, pp. 3-8, doi: 10.1109/ICARSC.2015.25.
5. Lin Huang, Boshen Zhang, Zhilin Guo, Yang Xiao, Zhiguo Cao, Junsong

Yuan, Survey on depth and RGB image-based 3D hand shape and pose

estimation, Virtual Reality & Intelligent Hardware, Volume 3, Issue 3, 2021,
Pages 207-234, ISSN 2096-5796,

https://doi.org/10.1016/j.vrih.2021.05.002.

6. Chen, Tzu-Yang, Pai-Wen Ting, Min-Yu Wu and Li-Chen Fu. “Learning a deep
network with spherical part model for 3D hand pose

estimation.” ICRA (2017).

7. Yuan-Hsiang Chang, Chen-Ming Chang, "Automatic Hand-Pose Trajectory
Tracking System Using Video Sequences", INTECH, pp. 132- 152, Croatia,

2010

8. Erik B. Sudderth, Michael I. Mandel, William T. Freeman, Alan S. Willsky,

"Visual Hand Tracking Using Nonparametric Belief Propagation", MIT
Laboratory For Information & Decision Systems Technical Report P2603,

Presented at IEEE CVPR Workshop On Generative Model-Based Vision, Pp. 1-

9, 2004
9. Eshed Ohn-Bar, Mohan Manubhai Trivedi, "Hand Gesture Recognition In

Real-Time For Automotive Interfaces," IEEE Transactions on Intelligent

Transportation Systems, VOL. 15, NO. 6, December 2014, pp 2368-2377
10. Ruiduo Yang, Sudeep Sarkar, "Coupled grouping and matching for sign and

gesture recognition", Computer Vision and Image Understanding, Elsevier,

2008
11. Rina Damdoo, “N-Gram based Smart Living Machines (SLM) on IOT

Platform”, International Journal of Innovative Technology and Exploring

Engineering (IJITEE), Volume8, Issue-8S3, pp 293-300

