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Abstract---Direct use of the hand as an input device is a smart 

method for providing natural human-computer interaction (HCI). 

Hand pose estimation is an attractive topic for research in recent 

years. It has been widely used in virtual reality. The domain of 
computer vision-based human hand three-dimensional shape and 

hand pose estimation has fascinated momentous attention recently 

due to its key role in various applications, such as natural human-
computer interactions. Hand pose estimation is difficult due to some 

challenges. First, we need to detect the human hand which is very 

changeable. Second, the high degree of freedom leads to difficulties in 

pose estimation. In this paper, we aim to build a hand pose estimation 
system that can correctly detect a human hand and estimate its pose 

which can be useful in the areas like industrial automation, sign 

language recognition etc. We integrated a hand pose model with a 
game named U3D with 6 different gestures. As the object detection 

methods perform poorly in the palm detection tasks we used 21 hand 

joints and increased accuracy to approximately 95.63%. We used the 
Blender 3D computer graphics software toolset for creating animation, 

visual effects, motion graphics, and interactive unity 3D games. 

 
Keywords---Human-Computer Interactions, Hand pose estimation, 

Hand Pose Model, Blaze palm detection. 

 

 
Introduction  

 

A 3D model integration with human physical input refers to the ability to embed a 
person at different locations into a shared virtual environment. In such 

environments, it is essential to provide users with a credible sense of 3D tele-
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presence and interaction capabilities. This article presents a full real-time 3D-

modeling system that uses hand gestures to control the person/character. The 
system integrates 3D models with human physical input. A 3D-modeling system 

with human physical input generally has three major parts: 

1) Gesture/pose Recognition System 
2) Game development 

3) Integration of Gesture/pose Recognition System and Game 

 

Gesture/pose Recognition 
 

In palm detection, the color of skin, background subtraction, hand image 

extraction, edge detection and histogram analysis are used to achieve the 
goal. Followed by pose estimation by extracting features and classifying them into 

one of the categories. 

 
Game development 

It is an understanding of what is involved in building Virtual Reality games for 

Unity. 
 

Integration of Gesture/pose Recognition System and Game: Integration is all 

about basic body-as-input interaction example where real time results from a 

hand tracking model (web cam stream as input) is mapped to the controls of a 
web-based game. The integration should be fairly accurate. So, light weight hand 

detection model can be used to track player hands and enable real time body-as-

input interactions. 
 

In this work, web camera has been used to capture gestures provided by the user, 

that are recognized and classified as one of the six gestures by our system. 
Accordingly it can be observed that the character in the U3D game performs the 

actions. We have predefined six hand gestures, but in future our work can be 

extended to classify many gestures. Fig. 1 shows Proposed U3D Game using Hand 
Pose Model. In section 2 we review work related to gesture recognition. Section 3 

describes proposed approach towards gesture recognition using hand pose 

estimation followed by results and conclusion in sections 4 and 5 respectively. 
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Fig. 1: Proposed U3D Game using Hand Pose Model 

 

Literature Review 

 
L. Ge et.al. [1], using multi-view CNNs propose a 3D regression method that can 

better exploit depth cues to recover fully 3D information of hand joints without 

model fitting and generated a set of heat-maps of multiple views from the multi-
view CNNs and fused them together to estimate 3D hand joint locations.  

 

Zhang et.al. [2], recommend a network SE-Resblock. Their model has divided into 
two parts: 2D hand joints estimation and depth coordinate estimation. They 

propose a new method that utilizes the information between adjacent joints on 

one finger to get accurate 3D hand pose estimation. Because of the self-occlusion 
of the hand, the depth information of hand joints is difficult to be extracted 

directly. To overcome this problem, they first regress the depth of a part of hand 

joints, then it is exploited as a reference, and concatenated the features and the 
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output of the 2D joints estimation module for the next stage to estimate the 

depth of adjacent joints.  
 

L. Ge et.al. [3], present a 3D CNN-based hand pose estimation method. By 

adopting the projective D-TSDF, they encoded the hand depth image as a 3D 
volumetric representation which is then fed into the 3D CNN and show that the 

3D CNN mapping the 3D volumes to 3D joint locations in a single pass is easy to 

be trained in an end-to-end manner. P. Vicente et.al. [4], present a method for 

pose estimation of a robotic hand, based on a particle filter and GPU framework. 
Lin Huang [5], present a comprehensive survey of state-of-the-art 3D hand shape 

and pose estimation approaches using RGB-D cameras. Related RGB-D cameras, 

hand datasets, and performance analysis are also discussed to provide a holistic 
view of recent achievements.  

 

Chen et.al. [6], designed a model called the spherical part model (SPM) and train 
a deep convolutional neural network using the model to estimate hand pose 

based on prior knowledge of the human hand. Many other researchers have 

worked on different techniques like hand pose trajectory tracking [7, 8], in 
various applications like Automotive Interfaces [9, 11] and sign recognition [10]. 

 

Proposed Work 

 
Proposed work processes input video from the user webcam and each frame is 

send to the Blaze palm detection model, which returns hand bounding box 

around the palm with the coordinates of bottom left corner and top right corner. 
The frame is then cropped, thus containing only the image with palm cropped 

with reference to bounding box. This frame is given as input to Hand Landmark 

detection model to detect 21 3D points on the palm (Fig. 2).  
 

We used Finger Pose Library to estimate the hand gesture input from the user. 

Finger pose library uses the hand landmarks detected by TensorFlow’s hand pose 
model to detect hand gestures like “Thumbs Down”, “Thumbs Up” etc. There are 

mainly 3 Steps for detecting the Gesture. 

 

Fig. 2: Hand Landmark detection model to detect 21 3D points on the palm 

 



 

 

10421 

Analyzing the User’s Gestures 

 

In this step, the direction and curl of each individual finger is estimated. Using 

the coordinates provided by the hand pose model, it basically calculates the angle 
between our joints to predict the curl of each finger and the coordinates also 

provide the direction in which the finger is pointing towards. Figure 3a shows the 

index finger pointing toward the RIGHT and it is half curled. The amount of curl 
can be determined using the coordinates of each joint provided by the landmark 

model. Fig. 3b, 3c, 3d show the images for an example of how the index finger is 

curled, No curl, Half curl, and Full curl fingers respectively.  
 

Setting up Gestures 

 
One needs to represent the gestures that are expected from the user, by setting 

the direction, curl, and confidence for each finger. Table 1 lists the set of 

directions we used in this work. 

 
Comparing the Confidence 

 

‘Confidence’ is a number between 0 and 10 which describes how accurately a 
given combination of finger curl/positions matches a pre-defined gesture. One 

should design gestures so a perfect match will cause a confidence value of 10. Ten 

Finger Pose library is used to classify the computed landmark configuration into a 
discrete set of gestures. The model uses accumulated angles of joints to determine 

the state of the fingers and is then mapped to a set of pre-defined gestures. If the 

confidence value calculated is greater than or equal to 70%, then it is classified 
into one of the pre-defined gestures and this classification is then sent to the 

unity instance for further action in the unity environment. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Figure 3:  a) Index finger pointing toward the RIGHT, b) No curled index finger, c) 

Half curled index finger, d) Full curled index finger 
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Table 1  

Set of the finger directions 
 

 

 
 

 

 

 
 

 

 
 

 

 
Drawing a virtual hand 

 

We draw a virtual hand across the webcam image by creating a canvas across the 
video feed and drawing the Arcs and the Strokes across it. To draw it, we used 

coordinates in the landmarks Array provided by the hand pose Model.Fig. 4 

shows a detailed data flow diagram of our gesture detection system. 

 
Blender 

 

In this work, free and open-source 3D computer graphics software toolset Blender 
has been used for creating animation, visual effects, motion graphics, and 

interactive unity 3D games. There are several steps to create a 3D character in 

Blender. These take us from constructing a basic framework that will be the 
foundation for everything such as Preparing Drawings, Inserting Simple Shapes, 

Using Layers, Texturing Model, Rigging Model for Animation, and Rendering 

characters. 
 

Unity 3D 

 

Users can create games and experiences in both 2D and 3D with Unity, which 
includes a Scripting API and drag-and-drop functionality as well as plugins for 

use with the Unity Editor and games themselves. Unity provides a selection of 

tools that let creation of environmental features such as landforms and 
vegetation. 

 

 
 

 

 
 

 

 
 

 

 

Finger Direction Name 

0 Vertical Up  

1 Vertical Down  

2 Horizontal Left  

3 Horizontal Right  

4 Diagonal Up Right  

5 Diagonal Up Left  

6 Diagonal Down Right 

7 Diagonal Down Left 
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Environment 

 

To make the environment, Unity's drag and drop functionality are used. Various 

objects are dragged, including cliff structures, terrain models, tree models, rocks, 
and man-made structures. All objects and models on the U3D game map have 

rigid collider parameters, which prevent the character from passing through 

them. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Fig. 4: Data Flow Diagram of Gesture Detection system 

 

Character Movement and Animation 
The character was defined to move freely in the built environment. For this 

movement, we predefined 6 controls, which are: 

1. Stop 

2. Crouch / Down 
3. Jump 

4. Rotate Left 

5. Rotate Right 
6. Move forward 

 

To implement all these movements with ease, the character is given various 
animations, which are: 
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1. Idle Breathing 

2. Stationary Character Crouch/ Roll 
3. Stationary Character Jump 

4. Camera Move Left 

5. Camera Move Right 
6. Running Character Crouch/ Roll 

 

These animations are triggered at specific commands, by the use of Animation 

State graph. This graph defines various states of animation, and all the valid 
transitions from one animation to other.  

 

Integration 
 

The Integration of the Gesture Recognition System and the Unity Model is done in 

3 steps: 
1. Convert the Unity Model to HTML. 

2. Send input data generated from Gesture Recognition System to the Unity 

Model. 
3. Call corresponding functions of Unity Model based upon the input. 

 

Step 1: Convert the Unity Model to HTML 

Using WebGL, the unity model is converted into HTML, and the model can then 
be loaded in a browser by opening the html document. Therefore, 3D graphics can 

be displayed in real-time without plug-ins. In addition to OpenGL, WebGL can be 

combined with other HTML elements or composited with any part of the page. 
 

Step 2: Send input data generated from Gesture Recognition System to the Unity 

Model. 
An HTML file is the link between the gesture recognition model and the Unity 

model. Therefore, we can send data input to the html file and the unity model can 

extract data from it. 
 

Step 3: Call corresponding functions of Unity Model based upon the input. To 

send data from React.JS to C# “SendMessage()” can be used. 

 
Results and Discussions 

 

Hand Pose model, which uses the blaze palm detection to classify gestures, is 
more accurate than a conventional object detection model. It is a relatively 

lightweight package consisting of approximately 12MB weights, making it suitable 

for real-time inference. Table 3 presents the results collected for 1000 sample 
frames for each of the six gestures as shown in Fig. 5. Table 4 presents the 

confusion matrix. Authors claim that test data contains images with different 

orientations and occlusions for the specific gestures. In future we will try to 
incorporate illumination variations in the same. Hand Pose model show 

percentage accuracy of about 95.63% in gesture classification using a regular 

cross entropy loss.  
 

Because of the self-occlusion of hand, the joint information of hand joints is 

difficult to be extracted directly. Thus it can be observed from Table 3 that 
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percentage accuracy is less for the gestures Move Down, Move Up, Run. Also it 

has been observed that the overall performance is independent of duration of 

gesture but depends on the speed with which the gesture is performed.  

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Fig. 5: Sample images for various Gestures Stop, Move Down, Move Up, Move left, 

Move Right, Run 
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Table 3 

Results Table 

 

 
 

Table 4 

Confusion Matrix 

 
 

 

 

 
 

 

 
 

 

 
 

Conclusions 

 
Hand gestures as input is a smart method for providing natural human-computer 

interaction. So, Hand pose estimation is found to be a hot topic for research in 

recent years. Through this work, we tried to examine Hand pose estimation by 

applying it to gesture-controlled games and creating an Avatar. 
 

Acknowledgements 

 
We are grateful to all the authors in the reference section, who gave us a way to 

move in that direction. They all had used enormous methods for remote sensing 

image scene classification.  
 

Gesture 
Class 

#Correct 
Gesture 

Recognition out 

of 1000 
samples 

Average 
Confidence 

Value of 

Correctly 
identified 

Gestures 

% Accuracy of 
Gesture 

Recognition 

Stop 981 9.4 98.1 

Up 940 8.8 94.0 

Down 955 8.5 95.5 

Left 973 9.3 97.3 

Right 969 9.3 96.9 

Run 920 8.4 92.0 
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