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Abstract---Although there is no treatment for ADs (Alzheimer's 

Diseases), accurate and early diagnosis is critical for both patients 
and caregivers, and it will become much more vital if disease-

modifying medicines are available to prevent, cure, or even halt the 

illness's course. One of the most active study topics in the medical 

industry in recent years has been the categorization of ADS using 

deep learning algorithms. However, most existing approaches are 
unable to utilise all spatial information, and so lose inter-slice 

correlation. To avoid this issues in recent works introduces CAEs 

(convolution auto encoders) based unsupervised learning for 

classifying ADs from NCs (normal controls), and supervised transfer 

learning is applied to solve classifications of Ads into pMCIs 

(progressive mild cognitive impairments) and  sMCIs (stable mild 
cognitive impairments). A gradient-based visualisation technique that 

approximates the geographical effect of CNNs (Convolution Neural 

Networks) decisions were used to determine the most relevant 

biomarkers connected to ADs and pCMIs. Despite the fact that DLTs 

(deep learning techniques) perform well, finding optimal performing 
network structures for certain applications is not easy since it is 

frequently unclear how network structure affects network accuracies. 
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This can be solved through hyper parameter tuning of DLTs. To 

mitigate the above mentioned problems in this work first introduced a 

pre-processing step using median filtering to remove the unwanted 

noises in images. Subsequently, Canny edge detection operators are 
used to carry out edge detections. These techniques in image 

processing locate boundaries of image objects in analysis. To achieve a 

large border separation, the system looks for variations and 

discontinuities in the brightness of neighbouring pixels. The picture is 

also sent into Deep Clustering using CAEs for classification of ADs 

and NCs. Experimental results exhibit proposed model’s effectiveness 
in terms of precisions, recalls, accuracies and f-measures.  

 

Keywords---Alzheimer's disease, median filtering, supervised transfer 

learning. 

 
 

Introduction  

   

Ads are gradual and degenerative brain illnesses that affect millions of individuals 

throughout the world. According to the World Health Organization's 2019 report, 

counts of people affected with ADs in America is a predicted 5.8 million, with the 
possibility of this number rising to 13.8 million by mid-century. Atrophy or 

shrinking of the brain, which happens owing to the slow degradation of nerve 

cells, is one of the key alterations in the brain linked with ADs. This shift is 

considered to have started 13 years before cognitive symptoms like memory loss 

and other behavioural abnormalities appeared. Because of its outstanding spatial 
resolution, enhanced accessibility, high contrast, and lack of radiation in the 

scanning procedure, MRI (Magnetic resonance imaging), a non-invasive approach 

is used to examine brain atrophy changes and has been frequently employed in 

studies on ADs [1]. 

 

Despite extensive investigation, there is no definitive diagnosis in modern clinical 
practise due to identical and overlapping symptoms. Only after the patient's death 

can the presence of ADs be definitively established by a post mortem study of 

brain tissues making it imperative to detect ADs early for patients and much 

more crucial when medicines to arrest the disease's development become 

available. Many hand-crafted machine learning algorithms have accurately 
identified ADs early where their categorizations, these approaches extract user-

defined discriminating characteristics from brain imaging data [2,3]. 

 

According to the study, machine learning-based approaches can predict ADs 

significantly more accurately than radiologists. However, without domain 

knowledge, defining traits that completely differentiate each class is always 
challenging. DLTs have recently become popular for categorizations of ADs where 

they extract hidden features from measurements of ROIs (Regions of interest) of 

various brain imaging data. However, approaches based on ROIs are unable to 

take use of all geographical data. Although these approaches lower the size of the 

characteristics greatly, they may miss certain minor aberrant alterations. Deep 
CNNs can help solve this issue [4,5]. 
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Recent research uses CAEs-based unsupervised learning to distinguish ADs from 

NCs, and supervised transfer learning to distinguish pCMIs from sMCIs. 

Visualized gradients approximated CNN’s geographical effects for decisions on 

ADs and pMCIs related biomarkers. Despite the fact that DLTs perform well in 

finding the optimal performing network structures for certain applications which 
is not easy since it is frequently unclear how network structure affects network 

accuracies which can be solved by hyper parameter tuning of DLTs. 

 

 To mitigate the above mentioned problems in this work first introduced a pre-

processing step using median filtering to remove the unwanted noise in the 

image. And then edge detection is proposed using canny edge detection operator. 
Edge detections locate and detect boundaries of image objects during analysis. 

Systems examine variations and discontinuities in pixel brightnesses for 

significant boundary separations. Further the image is fed into the Deep 

Clustering with CAEs  for classifying ADs  and  NCs . 

 
Literature Review 

   

Zhang et al [2017] [6] proposed feature extractions based on landmarks for 

detecting ADs from longitudinal structural MRI images as they do not need non-

linear registrations or tissue segmentations while being robust to differences in 

longitudinal scans.  The study distinctively found 1) discriminative landmarks 
automatically from brain images in training and localised landmark detections on 

test images, without using nonlinear registrations or tissue segmentations; 2) 

high-level statistics of spatial and contextual longitudinal features were extracted 

based on detected landmarks, thus characterizing spatio-structural properties; 

and 3) absorptions. Linear SVMs (support vector machines) differentiate people 
with Ads or minor cognitive deficits from healthy controls using spatial and 

longitudinal data. Classification accuracies of 88.30% for Ads or mild 

impairments and 79.02%  for healthy individuals in experimental findings on the 

ADNI (Alzheimer's Disease Neuroimaging Initiative) database indicate the 

proposed method's improved performance and efficiency. 

 
To learn the different characteristics from MR brain pictures, Li,et al [2017][7] 

proposed a classification technique based on a mixture of multimodel 3DCNNs. 

The MR picture is first hierarchically transformed into more compact high-level 

features using a deep 3DCNNs. Second, characteristics from MRI brain images 

are extracted using multiscale 3DCAEs (3D CAEs). For picture classification in 
ADs diagnosis, the characteristics gained by these models are integrated with the 

top fully linked layers. Without segmenting brain tissues and regions, the 

suggested technique may automatically learn general characteristics from imaging 

data for categorization. T1-weighted MRI brain scans of 428 people, comprising 

199 AD patients and 229 NCs from the ADNI database, were used to test the 

study’s technique. The suggested technique obtains an accuracy of 88.31 percent 
for ADs classification and an AUC of 92.73 percent for AUCs (area under the ROC 

curves), indicating good classification capabilities. 

 

CNNs were used to identify ADs and moderate impairments by Billones et al 

[2016] [8]. On the ADNI dataset, the study updated the 16-layered VGGNet for 3-
way classification of ADs and mild impairments from healthy people. The study 
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achieved 91.85% accuracy and out beating other classifiers in bechmarks. 

Wang,et al [2018][9] proposed using CNNs for multi-modal analyses of MRIs that 

could also be used to analyse single type MRI data. First, from multimodal MRI 

data, the human brain network connectivity matrix was generated and utilised as 
the input data for CNNs. Then, to analyse the network matrix and categorise ADs, 

aMCIs (amnestic mild cognitive impairments) patients, and NCs, a unique CNNs 

framework was presented. The benefit of this technique is that it uses a CNN’s 

convolution kernel to mix multimodal MRI data and produce a greater 

classification accuracy. When utilising multimodal MRI data as inputs, ADs, 

aMCIs, and NCs were classified with an accuracy of 92.06% for multimodal MRIs. 
Unique DLTs were used by Feng et al [2019] [10]. Our architecture takes 

advantage of the benefits of 3DCNNs and FSBi-LSTMs (fully stacked bidirectional 

long short-term memory). The study’s 3DCNNs extracted in-depth feature 

representations from MRIs and PETs images. Their use of FSBi-LSTMs on hidden 

spatial information from deep feature maps enhanced final performances. Finally, 
we use the ADNI dataset to test our technique. For distinguishing ADs from NCs, 

pMCIs from NCs, and sCMIs from NCs, our technique obtains average accuracies 

of 94.82 percent, 86.36 percent, and 65.35 percent, respectively, and surpasses 

the related algorithms. 

 

Hosseini-Asl, et al. [2016] [11] suggested deep 3DCNNs for predicting ADs as they 
have the capability to learn generic features and capture biomarkers for ADs in 

multiple datasets. The 3DCNNs are based on 3DCAEs that previously learn shape 

differences in anatomical structures of the brain from MRIs. The study fine-tuned 

fully linked higher layers of 3DCNNs for categorizing ADs. Experiments on the 

CADDementia MRI dataset without any pre-processing revealed that 3DCNNs 
beats various traditional classifiers in terms of accuracy. The ADNI dataset was 

used to validate the 3D ability of CNNs to generalise and adapt learned features to 

various domains. 

 

Manzak,et al [2019][12] intended to develop a rapid and accurate automated 

classification method for determining ADs using the least amount of patient data 
possible. MRIs are commonly used to diagnose ADs. Different solutions are 

required when the expense of the technology and the dangers of the operations 

were evaluated for detections of ADs with portable devices. Using DNNs (Deep 

Neural Networks), the study offered a quick and effective technique for detecting 

ADs. RFs (Random Forests) deleted some characteristics in order to lower the 
algorithm's complexity. The success of RFs in eliminating features and DNNs in 

detecting ADs was addressed. 

 

Proposed methodology   

  

This section discuss the proposed ADs classification in detail. Proposed model 
consist of four phases. First one is pre-processing using median filtering based 

noise removal, second one is edge detection using canny edge detection operator, 

third one is Deep Clustering with CAEs based ADs   and NCs. Overall architecture 

of the proposed model is shown in figure: 1.                    
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Figure: 1.Overall architecture of the proposed model  

 

Input 

 

Use the ADNI dataset in this project, which is freely available on the internet 
(http://adni.loni.usc.edu/). The ADNI intends to find more sensitive and accurate 

methods for detecting ADs early on, as well as biomarkers to track the 

progression of the disease. In this study, 694 structural MRI images were utilised, 

with ADs (n = 198), NCs (n = 230), pMCIs (n = 166), and sCMIs (n = 101) being the 

initial classifications. The 166 pMCIs individuals were initially diagnosed with 

MCI, but after a 36-month follow-up, they were found to have converted to ADs. 
The participants were aged 55 to 90, and the MMSE scores for each group were 

20–26 (ADs), 24–30 (MCI), and 24–30 (NCs ). CDRs (clinical dementia ratings) 

were 0 for NCs participants, 0.5 for moderate impairment subjects with an 

obligatory memory box score of at least 0.5, and 0.5 or 1 for ADs individuals. 

Because sMCIs are a single modality, most of the available sMCIs scans in the 
ADNI database were included, with the exception of scans of unexplained MCI (n 

= 130), in which the participants were missing a diagnosis 36 months after 

baseline. 

 

Pre-processing using median filtering 

 
The filter is non-linear. It performs much better than the mean filter. The median 

value of all pixels replaces the centre pixel, resulting in reduced blurring. It is 

utilised to minimise impulsive speckle noise because of its nature [13,14,15]. It 

has the advantage of preserving the edges. 

 
1. Draw a 3 3 (or 55, or whatever) area around the pixel (i, j). 

2. Sort the pixels in the region's intensity values in ascending order. 

3. Change the pixel value to the midway value (i, j). 

 

Edge detection using canny edge detection operator  

 
The borders of brain pictures must be identified before objects can be identified. 

Canny operators improve single threshold approaches by selecting higher and 

lower limits for thresholds based on histogram gradients of images. All edge 
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detection techniques have the same goal that of finding edges without any prior 

knowledge. The five main stages of canny edge detections are smoothing, filtering, 

finding gradient magnitudes and directions, suppressing non-maxima, dual 

thresholds, and tracing the edges using hysteresis [16,17,18]. 
 

Various Gaussian kernels can smooth the picture. After smoothing, the Canny 

edge detections locate edges with higher variations in grey level intensities where 

image gradients find these locations. Sobel operators determine gradients of pixels 

where initial estimations consider directions x and y of the gradients using the 

kernels below: 

𝐾(𝐺𝑥) = (
−1 0 1
−2 0 2
−1 0 1

)                               (1) 

𝐾(𝐺𝑦) = (
1 2 1
0 0 0

−1 −2 −1
)                          (2) 

 
Then the gradient magnitude is calculated as the Euclidean distance: 

 

|𝐺| = √𝐺𝑥
2 + 𝐺𝑦

2                                             (3) 

 

Because the margins are sometimes expanded, they cannot be correctly defined. 

The edge direction must be determined in order to solve this issue using: 

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 
|𝐺𝑥|

𝐺𝑦
                                           (4) 

 

The fuzzy edges are sharpened as a result of this. All other points are rejected 

while local maxima are kept. The following technique is followed for each pixel: 
 

 Using the 8 closest neighbours, gradient directions are rounded off nearing 

45o. 

 Comparing current pixel edge strengths in both positive and negative 

directions of gradients along with comparisons of pixels in the north and 

south when pixel directions are north, i.e. 90. 
 Highest values for edges of current pixels are maintained while other values 

are suppressed.  

 

The intensity of the retained pixels is used to identify them. Many of these pixels 

are points of genuine edges, but others are formed by noise or colour fluctuation. 
For identifying and deleting erroneous edge pixels, dual thresholds namely 

greatest and lowest are used by Canny edge detections as stronger pixels have 

larger values than upper thresholds while weaker pixels have values lesser than 

lower thresholds. Weak edges connected to strong edges are not discarded. Strong 

edges are considered important and directly included in final outputs. 

 
Classifying ADs using DCCAEs (Deep Clustering and CAEs) 

 

CAEs in general have layers which correspond to encoders fW(.) and decoders gU(.). 

They seek codes for input samples by minimizing MSEs (mean squared errors) 

between inputs and outputs in over all samples, i.e. 
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𝑚𝑖𝑛
𝑤, 𝑢

1

𝑛
 ∑ ‖𝑔𝑢(𝑓𝑊(𝑥𝑖)) −  𝑥𝑖‖

𝑛
𝑖=1  2

2    (5) 

 

Where x and h are vectors, and is a sigmoid activation function similar to ReLU. 

For the purpose of clarity, the prejudice has been removed. Following training, the 

embedded code h serve as new representations of input samples. SAEs (Stacked 
Auto Encoders) are formed by feeding h into another auto encoder. CAEs are used 

to utilise the spatial structure of pictures. 

 

 𝑓𝑤(𝑥) = 𝜎(𝑥 ∗ 𝑤) ≡ ℎ         (6) 
 𝑔𝑢(ℎ)  ≡ 𝜎(ℎ ∗ 𝑈)                   (7) 

 

Where x and h are matrices or tensors, and “*" is convolution operator. The 
SCAEs (Stacked CAEs) can be constructed in a similar way as SAEs. 

 

 The proposed CAEs do not require time-consuming layer-by-layer pre-training. 

To extract hierarchical features, various convolution layers are placed on the 

input pictures first. Then, in the last convolution layer, flatten all units to 

produce a vector, followed by an embedded layer, which is a completely linked 
layer with just 10 units. As a result, the original 2D picture is converted into a 

10-dimensional feature space. For unsupervised training, fully linked layers and 

many convolution transpose layers are employed to send embedded information 

back to original images. The encoder parameters h =𝐹𝑤(𝑥)  and decoder x’ = 
𝐺𝜔′  (ℎ) are updated by minimizing the reconstruction error: 

 

 𝐿𝑟 =
1

𝑛
∑ ‖𝐺𝜔′(𝐹𝜔(𝑥𝑖)) − 𝑥𝑖‖

𝑛
𝑖=1 2

2
 (8) 

  

Where n is the number of images in dataset,𝑥𝑖 𝜖𝑅2 is the ith image.  

 

Key aspect of the proposed CAEs is their aggressive constraints on dimensions of 

embedded layers. If embedded layers are large enough, networks can repeat 
inputs to outputs, resulting in learning of irrelevant properties. Keeping the 

dimension of latent code h lesser than the input data x are an easy way of 

preventing identity mappings. The auto encoder is forced to capture the most 

important aspects of the data when learning such incomplete representations. As 

a result, the size of embedded spaces were limited to counts of dataset clusters as 

it enables the network to be trained till end without the need for regularisation 
techniques like Dropouts or Batch Normalizations. The clustering challenge has 

shown that the trained compact representations are successful. Another 

difference is that in the encoder, we use a convolution layer with stride instead of 

a convolution layer followed by a pooling layer, and in the decoder, we use a 

convolution transpose layer with stride. Because stride convolution (transpose) 
layers allow the network to learn spacial sub sampling (upsampling) from data, 

the network's transformation capability increases. Because we are not aiming for 

cutting-edge clustering performance, we do not use fancy layers or methods like 

as Batch Normalization, Leaky Re- Lu activation, or layer-wise pretraining. In 

image clustering tasks, we only show that CAEs outperform fully linked SAEs. 
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DCEC (Deep Convolution Embedded Clustering) 

 

When compared to fully linked SAE, CAEs are more powerful networks for dealing 

with pictures. As a result, DEC (Deep Embedded Clustering) is enhanced by using 
CAEs instead of SAEs. Then we propose that employing solely clustering oriented 

loss in DEC may corrupt the embedded feature space. To do this, the auto 

encoder reconstruction loss is introduced to the goal and optimised 

simultaneously with the clustering loss. The auto encoders will retain the local 

structure of the data generation distribution, preventing feature space corruption. 

DCEC (Deep Convolution Embedded Clustering) is the name of the resultant 
algorithm. The structure of DCEC is described first, followed by a detailed 

description of the clustering loss and local structure preservation mechanisms. 

Finally, the optimization method is shown. 

 

Structure of DCEC 
 

DCEC structures are made of CAEs along with clustering layers linked to 

embedded layers. Clustering layers convert embedded points zi of input images xi 

into soft labels. The clustering loss Lc is defined as Kullback-Leibler divergence 

(KL divergence) between distributions of soft labels and predefined target 

distributions. Clustering losses cause embedded features to form clusters, and 
CAEs are employed to prevent this and learn embedded features. The DCEC's goal 

is to 

 

  L =𝐿𝑟 + 𝛾𝐿𝐶     (9) 
  

where Lr stands for reconstruction losses, Lc represents clustering losses, and 𝛾 > 
0 represents coefficients that control distortion degrees of embedded spaces. 

When 𝛾 = 1 and Lr ≡ 0, (5) reduces to the objective of DEC.  

 

Clustering Layer and Clustering Loss  
 

The clustering layer and loss are directly borrowed from DEC.Briefly review their 

definitions for completeness of DCEC structure. The clustering layer maintains 

cluster centers  {𝜇𝑗}
1

𝑘
as trainable weights and maps each embedded point zi into 

soft label qi by Student's t-distribution.   

 

       𝑞𝑖𝑗 =
(1+‖𝑧𝑖−𝜇𝑗‖

2
 )

∑   𝑗(1+‖𝑧𝑖−𝜇𝑗‖
2

)
 
 −1

−1

            (10) 

 

where qij is the jth entry of qi, representing the probability of zi belonging to cluster 

j. The clustering loss is defined as  

 

𝐿𝑐 = 𝐾𝐿(𝑃 ∥ 𝑄) = ∑   
𝐼 ∑ 𝑃

𝑖𝑗 log 

𝑝𝑖𝑗

𝑞𝑖𝑗

 
𝐽    (11) 

 
Where  P is  the  target  distribution, defined   as 
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  𝑝𝑖𝑗 =
𝑞𝑖𝑗

2 / ∑ 𝑞𝑖𝑗
 
𝑖

∑   
𝑗 (𝑞𝑖𝑗

2 / ∑   
𝑖  

𝑞𝑖𝑗
 
)
           (12) 

 

Reconstruction Loss for Local Structure Preservation 

 

DEC discards the decoder and fine-tunes the encoder using clustering losses Lc. 

Considering how this fine-tuning could distort the embedded space, the 

representativeness of embedded features are reduced  and hence damage 
clustering performances.  

 

 
Figure: 2.The structure of deep DCEC   

 

As a result, the decoders are bye passed and clustering losses are added to the 

embedded layer. Autoencoders can preserve the local structure of the data 

producing distribution. Softly changing embedded space s- with clustering loss Lc 

will not result in corruption in this situation. Hence, coeffcient  𝛾 is better when < 
1, which will be empirically fixed in the range 0:1 for all experiments. 

 

Optimization 
   

To generate a meaningful target distribution, first pretrain the parameters of CAE 

by setting = 0. The cluster centres are initialised using k-means on embedded 

characteristics of all photos after prêt-raining.  Then set  𝛾 = 0:1 and update 
CAE's weights, cluster centers and target distribution P as follows.  
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Update weights and cluster centers of CAEs 

 

As  
𝜗𝐿𝑐

𝜗𝑧𝑖
 and  

𝜗𝐿𝑐

𝜗𝜇𝑗
are Using back propagation and mini-batch SGD, the weights and 

centres may be updated Reorganize the target distribution. The intended audience 
P is the ground truth soft label, although it is also influenced by the expected soft 

label. To avoid instability, P should not be changed using merely a batch of data 

at each iteration. In reality, we update the target distribution every T iterations 

utilising all embedded points. The update rules may be found in sections (6) and 

(8). If the change in label assignments between two consecutive updates for target 

distribution is less than a threshold 𝛿, the training procedure ends.  

 

Results and Discussion   

 
This section analyses the results of the experiments carried out on the proposed 

model. The implementation of this model is carried out with the help of MATLAB. 

In comparison of the already variable CAE algorithm and the proposed DCEC   

are done in terms of precision, recall, accuracy, F-measure and error rate.   

 
Table: 1. Performance   comparison   results 

 

Metrics   Methods 

CAE DCEC 

Precision (%) 90.5 93 

Recall: (%) 84 92 

Accuracy (%) 90.5 93.5 

F1score (%) 84 90 
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              a) b) c) 

Figure: 3.a) Input image b) Pre-processed image c) Edge detection images 
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Figure: 4. Accuracy results vs. classification methods 

 
The accompanying chart shows a performance comparison of Accuracy metrics 

with CAEs suggested DCEC system. The proposed study employs an edge 

detection approach to increase the DCEC's accuracy. Different approaches are 

depicted on the X-axis, while accuracy values are represented on the Y-axis. As 

can be seen from the findings, the newly introduced DCEC model achieved greater 

accuracy results of 93.5 percent, whereas the existing CAEs produced only  90.5 
percent accuracy.    

 

 
Figure 5: Precision results Comparison of Various Classifiers 

 

The suggested DCEC's efficiency is demonstrated in the above figure by 

comparing it to existing CAE approaches in terms of accuracy. Noise reduction is 

used as a pre-processing step in the proposed work, which improves accuracy. 

Different approaches are displayed in the X-axis, while accuracy values are 

represented in the Y-axis. As can be seen from the findings, the newly introduced 
DCEC model provided precision results of 93 percent, whereas existing CAEs only 

produced 90.5 percent.      
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Figure: 6. Recall results vs. classification methods 

 

Figure 6 compares the recall of the present classifier CAE's suggested DCEC 
scheme to that of the existing classifier. Clustering in CNNs BY is used in the 

proposed study, which boosts the recall rate. The X-axis in the graph above 

represents different approaches, while the Y-axis represents recall levels. As can 

be seen from the data, the newly introduced DCEC model has a greater recall rate 

of 92 percent, whereas the existing CAEs only have an 84 percent recall rate.                               

  

 
Figure: 7. F-measure results   vs. classification methods 

 

The performance comparison for F-measure metrics with the classifiers CAEs 

suggested DCEC methods is shown in the graph above. Different approaches are 

depicted on the X-axis, while F-measure values are represented on the Y-axis. As 

can be seen from the findings, the newly introduced DCEC model provided f-
measure values of 90% whereas CAEs only produced 84 percent.        

 

Conclusion and Future Work     

 

ADs are chronic neurodegenerative disease where early diagnosis assists in 
considerably reducing risks of further deteriorations. This work modelled 

automated classifications of ADs. T5he model uses a median filtering based pre-

processing to remove the unwanted noise in the image. Edge detection is 
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proposed using canny edge detection operator. Finally the image is fed into the 

Deep Clustering with CAEs  for classifying ADs  and  NCs. Experimental results 

show that this proposed model provides better results in terms of precisions, 

recalls, accuracies and f-measures. This work does not implemented for other 
brain related diseases diagnosis and this could be considered in future work. 
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