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Abstract---Automated bioelectric signal analysis has an important 
application in the wisdom medical care. In this work, we focus on 

ECG-signal and address a novel approach for cardiac arrhythmia 

diseases classification. We designed a novel analysis framework which 

extract different feature transformations from ECG signals. And we 

trained the ANN model for multi-feature to obtain the prediction. 

Finally, we tested our approach on the public database of MIT-BIH 
arrhythmia. And the results of experiments on the database 

demonstrate our model has better classification performance than 

other approaches. 
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Introduction  

 
An electrocardiogram (ECG) as a cardiac activity record provides important 

information about the state of the heart [1]. ECG arrhythmia detection is 

necessary for early diagnosis of heart disease patients. On the one hand, it is very 

difficult for a doctor to analyze an electrocardiogram with a long recording time 

for a limited time [1]. On the other hand, people are also almost unable to 

recognize the morphological changes of ECG signals without tool support. 
Therefore, an effective computer-aided diagnosis system is needed to solve this 

problem. Most ECG classification methods are mainly based on one-dimensional 

ECG data. These methods usually need to extract the waveform’s characteristics, 

the interval of adjacent wave, and the amplitude and period of each wave as 

input. The main difference between them is the selection of the classifier [2,3]. 
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ECG Signal  

 

Data  from  the  MIT-BIH  arrhythmia  database,  which  was  provided  by  the  

Massachusetts  Institute  of  Technology  (MIT)  and  the  Boston  Hospital  (BIH)  
in  1987 (http://www.physionet.org/physiobank/database/mitdb/), was utilised 

in most of the research studies. The database is taken for one of the mainstream 

databases in discovering and clustering arrhythmias and has been utilised in 

great number for algorithm verification. An  annotation  file  with  each  recording  

is presented  by  the  MIT-BIH  arrhythmia  database,  preparing  the  reference  

for  each heartbeat  e.g.,  the  category  and  the  heartbeat  locations.  The 
category annotation is utilised as the criterion for the classified results [6,7,8,9]. 

 

Research Motivation 

 

Previously, numerous automatic ECG data classification approaches using 
techniques such as hidden Markov models [4], wavelet transforms [5], support 

vector machine [6], Artificial Neural Network [7] etc. were developed. Feature 

extraction as well as signal pre-processing was a crucial requirement for these 

techniques to be applied. Extracting the features required the involvement of a 

medical expert and was done using hand-crafted methods. Therefore, these 

techniques became time-consuming, expensive and susceptible to the loss of data 
in the feature extraction phase. Additionally, these techniques faced a lot of 

significant challenges due to the morphological features of the signal having the 

nature of being highly individual and variable i.e. same symptoms of arrhythmia 

may display different morphologies of the signal in varying circumstances. Hence, 

a good classification performance could not be achieved when exposed to new 
ECG data [10, 11]. 

 

QRS Detection  

 

The presence of a heartbeat and its occurrence time is basic information required 

in all types of ECG signal processing. As the QRS complex is that waveform that 
is most easily discerned from the ECG, beat detection is synonymous to the 

detection of QRS complexes [12, 13]. The design of a QRS detector is of crucial 

importance because poor detection performance may propagate to subsequent 

processing steps and, consequently, limit the overall performance of the system. 

Beats that remain undetected constitute a more severe error than do false 
detections; the former type of error can be difficult to correct at a later stage in 

the chain of processing algorithms, whereas, hopefully, false detections can be 

eliminated by, for example, performing classification of QRS morphologies 

[14,15,16]. 

 

Proposed Methodology- Material And Methods 
 

Signal filtering Methods - Hilbert transform 
 

Instantaneous frequency is defined mainly the Hilbert Transformation (HT), and 

time-frequency techniques. The IMFs have a vertically symmetric and narrow 
band form, that allow the second step of the HHT to be applied the Hilbert 

transform of each IMF [17,18,19]. As explained below, the Hilbert Transform 
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obtains the best fit of a sinusoid to each IMF at every point in time, identifying an 

instantaneous frequency (IF), along with its associated instantaneous amplitude 

(IA). The IF and IA provide a time-frequency decomposition of the data. The 

transform is defined as the convolution of a signal [20,21,22]. 
 

 
Fig. 1 A plot of ECG(t), representing a part of an ECG-signal. 

 

Z (t) = ECG(t) + i · H(ECG(t)) 

 

A parametric plot of z(t), that is, a plot of ECG(t) against H(ECG(t)) reveals 

interesting things about the ECG(t). In the work, we have shown that if the QRS 

complex is high enough, it will always produce a closed loop around the origin in 
the complex plane, distinguishable from the rest of the graph. Also, we have 

justified this using the fact that the QRS complex resembles a deformed sine 

wave. By looking at analytic sine waves and deformed sine waves we have 

established that all type of sine waves, if expanded to analytic signals, form loops 

enclosing the origin in the complex plane. Thus, the QRS complex, which is a 

deformed sine wave, also produces enclosed loops in the complex plane [23, 24]. 
Mathematical modelling of discrete level function for ECG signal Using HT 

ECGDTFT=U(ω).  (-i.sgn(ω)). 
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ECG(t) Hilbert Transformation five level Function in terms of time, N number of 

number of linear shapes, discrete-time Fourier transform (DTFT) U(ω) and j 

Transformation filtration level.  

 
Signal classification method- layered architecture (ANN) 

 

Neural Network Algorithms – Artificial Neural Networks arguably works close 

enough to the human brain. Conceptually artificial neural networks are inspired 

by neural networks in the brain but the actual implementation in machine 

learning is way far from reality. ANN take in multiple inputs and produce a single 
output. Point to note ANN’s are inspired by the animal brain, but nowhere close to 

biological neural networks. 

 

Proposed Algorithm 

 
Computation ANN Input: ECG signals, Classification rate, Hidden layers 

networks. 

Computation ANN Output: ECG trained artificial neural network. 

Step 1. Data collection  

Define the data sets class per second ECG signal collected. Its numerical 

approach assign training weight factor with respect to define samples. 
 

𝐻 = 𝐽𝑘
𝑇  𝐽𝑘 

𝑔 = 𝐽𝑘
𝑇 𝑒 

Where, 

H and g is ECG signal data collection variable and Jk is a define ECG data based 

Jacobian matrix. 

 
Step 2. Data Preprocessing and Feature selection  

To determine weight parameters of inputs with each input ECG sample generate 

different number of neural network in hidden layers. Also these ECG signal 

network multiplied by different number of like as +1 and -1. 

Step 3.  ECG signals some of all of each ANN weighted inputs.  

In these forward propagation steps gives a total summation of all types of ECG 
signal class weight inputs, now gives some mathematical equation given blow as- 

 

𝑊𝑘+1 =  𝑊𝑘 − [𝐽𝐾
𝑇𝐽𝑘 + µ𝐼]

−1
𝐽𝐾

𝑇𝑒  

 

Where, 

 𝑊𝑘=     ECG signal current weight 

 𝑊𝑘+1 =     Next weight 
I      =      the identity matrix 

𝑒𝑘 =      Last error 

And         μ =          Combination coefficient  
 
Step 4.  Generate Computation outputs. 

The computation of evaluation output establishment best selection of Neural 

network generate by passing that the total some of activation function class. 
Step 5. Error Occurrence 

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
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The classification system modelling observation of first order derivative error 

define different performance function of neural network now shows some 

mathematical MAE (Mean absolute error) and mean square error.    

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐴𝑡 − �̂�𝑡|

𝑁

𝑡=1

 

  

𝑀𝑆𝐸 =   
1

𝑁
∑ 𝑒𝑡

2

𝑁

𝑡=1

 

Where,  
N = number of test samples 
At = actual value  

and Ât = forecasted value  

 

 
Fig. 2. Flow chart of proposed Methodology 

 

Result and Analysis 
 

The proposed Hilbert transform with adaptive thresholding technique is tested on 

nineteen recorded ECG signals from database according to the method presented. 

The performance of the proposed method is evaluated with sensitivity (Se), 

Positive predictivity (P+) and detection error rate (DER). The proposed method 
detected 44325 beats (DB) from a total of 44329 annotation true beats (TB). It 

detected true positive of 44207, false-negative beats of 122 and 118 false-positive 

beats. 

 

Signal Denoising 
 

a) Traditional signal Denoising using DWT (Discrete wavelet transform)  
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Fig. 3. Normal Signal Decomposition dwt different level signal coefficient like d1, 

d2, d3, d4, d5 and a5. 
 

 
Fig. 4. Normal Signal Denoised signal Thresholding 

 

 
Fig. 5. Normal Signal Energy loss estimation 
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Fig. 6. Bradycardia signal Decomposition dwt different level signal coefficient like 

d1, d2, d3, d4, d5 and a5 
 

 
Fig. 7. Tradycardia signal Decomposition dwt different level signal coefficient like 

d1, d2, d3, d4, d5 and a5 
 

b) Proposed signal Estimation using HT 

 

 
Fig. 8. Normal Signal PQRS detection and filtration without signal energy loss 
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Fig. 9. Bradycardia signal PQRS detection and filtration without signal energy loss 

 

 
Fig. 10. Tradycardia signal PQRS detection and filtration without signal energy 

loss 

 

 
Fig. 11. QRS detection and classification window MATLAB 2015a software, 8Gb 

RAM (intel Processor) in normal signal 
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Fig. 12. Performance evaluation parameters in normal signal 

 

 
Fig. 13. QRS detection and classification window MATLAB 2015a software, 8Gb 

RAM (intel Processor) in bradycardia signal 

 

 
Fig. 14. Performance evaluation parameters in bradycardia signal 
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Fig. 15. QRS detection and classification window MATLAB 2015a software, 8Gb 

RAM (intel Processor) in tradycardia signal 
 

 
Fig. 16. Performance evaluation parameters in tradycardia signal 

 

PARAMETERS  Normal signal Bradycardia 

signal 

Tradycardia 

signal 

ACC 96.5091 95.8715 98.1387 

SEN 94.1644 94.7404 96.6317 

SPE 97.7693 97.9687 99.6500 

PRE 96.8676 97.1829 99.1593 

REC 95.0244 94.1717 97.3067 

Table 1.1 Performance Evaluation Parameters Comparison 
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Fig. 17. Performance evaluation parameters comparison 

 

Conclusion  

 

In this paper a Layer -based ECG classification algorithm was proposed which 

achieves superior classification performance compared to previous works. In 
addition, as opposed to many previous deep-learning based algorithms, it has low 

computational costs and meets timing requirements for continuous execution on 

wearable devices with limited processing power. Future directions include 

exploring other techniques to further increase the classification performance, 

studying other features in addition to wavelet, and improvements on single-lead 

ECG processing. 
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