
How to Cite:

Srivastava, S., Tiwari, A., & Singh, R. (2022). An implementation of modified blowfish using random

number generator for quantum computers. International Journal of Health Sciences, 6(S1), 12496–
12504. https://doi.org/10.53730/ijhs.v6nS1.8121

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 18 March 2022, Manuscript revised: 9 April 2022, Accepted for publication: 27 May 2022

12496

An implementation of modified blowfish using

random number generator for quantum
computers

Shipra Srivastava

Research Scholar (CSE), Dr. K N Modi University, Newai, Rajasthan, India

Corresponding author email: shiprasrivastava2000@gmail.com

Dr. Anoop Tiwari

Professor, Department of CSE, Dr. K N Modi University, Newai, Rajasthan, India

Dr. Ramveer Singh

Professor, Departmet of IT, Greater Noida Institute of Technology, Greater Noida,

UP, India

Abstract---Classical computers are quite safe from attacks by

implementing traditional cryptographic techniques and algorithms but
in future as quantum computers will come in full fledge, our current

cryptographic algorithms will become vulnerable. In this paper

authors have presented a modified blowfish scheme named as pseudo
random generated blowfish encryption algorithm which can provide

security to our data quantum computers also. Analysis of algorithm is

done on classical computer as well as on quantum simulators (IBM
qx) and result of comparison is also presented. The theoretical

security measures are also discussed in this paper.

Keywords---Blowfish Algorithm, Cryptograph, PRNG, Symmetric and
Asymmetric algorithms, quantum simulator.

Introduction

Blowfish is the symmetric key encryption technique which was designed by Bruce

Scheneir in 1993 [13,17]. It was an alternative of data encryption standard

technique and was very effective against cryptanalysis. The security of currently
used cryptographic algorithm is dependent on discrete logarithmic problem, which

can be overcome by integer factorization problem. Quantum computers can solve

this problem in fraction of seconds. So there is a threat to all currently existing
cryptographic algorithms. In practical blowfish encryption standard is almost

impossible to break [21]. But due to vulnerability of currently existing algorithms

we proposed a modified blowfish algorithm which uses pseudo random number

https://doi.org/10.53730/ijhs.v6nS1.8121
mailto:shiprasrivastava2000@gmail.com

12497

generator. In our PRNG blowfish approach, key is generated using random number

which provides better security in comparison to traditional blowfish [22,23].

The Accenture report claims that by 2028 quantum computers will be able to
implement Shor’s algorithm. Thus, by 2028 we are able to break many of the

classical cryptosystems. Practically there are so many challenges with in

availability of quantum computers such as environmental factors associated with
existence of qubits and management of quantum systems. As an alternative

quantum simulator permits the study of quantum system in programmable

fashion[8]. Companies like Atom computing, Google, IBM are providing online
simulators to the researchers IBM was the first company which offers universal

quantum computing systems via IBM Q network [9,10].The proposed algorithm is

designed for quantum computers and result is analyzed in IBM qx simulator.

Preliminaries

Data encryption plays an eminent role in cryptographic process

Cryptography

Cryptography (or cryptology; from Greek κρσπτός, kryptos, "hidden, secret"; and
γράφω, gráphō, "I write", or -λογία, -logia, respectively) is the practice and study of

hiding information. There are two types of cryptosystems: asymmetric key

cryptosystem and symmetric key cryptosystem [12].

Asymmetric key cryptosystem

In asymmetric key cryptosystems two different keys are used for encryption and

decryption process. One key is known as public key, which is known to public

and other is the private key, which is kept by the owner only. The reason of being
called asymmetric is the use of two different keys for encryption and decryption

process.RSA, Elgamal etc are the examples of asymmetric key encryption

algorithm.

Symmetric key cryptosystem

In symmetric key cryptosystem same key is used for encryption as well as for

decryption process. Some of the most popular examples of modern symmetric key

cryptosystems are DES, AES, IDEA, RC5, two fish, Blowfish and many others. All
symmetric key cryptosystems rely on sharing of secret keys between the

communicating parties.

Traditional Blowfish Algorithm

Blowfish’s Algorithm is symmetric key encryption technique which is based on
fiestel network. In fiestel cipher, both encryption and decryption process have

very similar operations. Since blowfish was an alternative of data encryption

standard hence it provides better security with no effective cryptanalysis
[15].Blowfish is a block cipher which uses block size of 64 bits, key size of

variable length from 32 bit to 448 bits and iterates 16 times. There are two

components in the process of Blowfish Algorithm: data encryption and key

 12498

expansion [6]. The key expansion process starts with the initialization of four S

boxes each having 512 entries of 32 bit each and P-array which includes the use
of several sub-keys. There are total eighteen sub-keys of size 32 bit each in the P

array: blowfish algorithm encrypts data iterating a 16-rounds of operation and

each round is classified into data-dependent substitution and key-dependent
permutation [16].

Obtained data of size 32-bit is then transferred to section 2 for the F function

which in turn converts it into segment of 32-bit(L) which is XOR'ed with other
segment of 32 bit (R) . The L and R segments are then interchanged for

subsequent Blowfish Algorithm iterations. Figure 1 shows the structure of

traditional blowfish algorithm.

Figure 1: Traditional Blowfish algorithm

Blowfish Encryption Algorithm

Figure 2 illustrates the entire process of encryption. The process starts with
generation of 18 sub keys {P[0], P[1],……P[17]} The same sub keys are needed for

both encryption as well as for decryption process. All eighteen sub keys are stored

in the P-array and each array is of size 32 bit. The entries in the P-array are

initialized with the value of pi. After that each sub key is changed with respect to
input keys [15]. The obtained P-array stores 18 sub keys which is used for entire

encryption and decryption process. Four S-boxes are used and initialized with

256 entries per S-boxes. Then Encryption process starts which consists of two
parts : rounds and post-processing. Encryption consists of 16 rounds taking plain

text from previous round and corresponding sub keys. The output got after 16

rounds is processed and we get our final cipher text as output [16].

12499

 Figure 2: Blowfish encryption process

Pseudo random number generator

Applications in cryptography use random numbers for generation of encryption

keys, it creates initial parameter values and introduce random numbers into
protocol. Generally random numbers are generated using Pseudorandom number

generator (PRNG) [1, 2].

PRNG uses an algorithm, which use mathematical formula for producing
sequences of random numbers, the numbers are deterministic in nature, that is

sequence of given numbers can be reproduce later, if we know the starting point

in sequence. PRNG is periodic in nature, it means sequence will at last repeat

itself [3]. There are various application where many random numbers are required
such as simulation.

We categorized computer generated random number into two types on the basis of

how they are generated.
1. True Random Number

2. Pseudo Random Number

A computer system could use a seed value and procedure or algorithm to a

generate a number that can be based on fact predictable [3]. In python we can

generate random number by using following command:-

1. Import Random
2. randomlist = random.sample(range(0-511),14)
3. Print (randomlist)

64- bit plaintext

Round -0 P(0)

P(1)

P(15)

P(i)

Round -1

Round -i

Round -15

Post processing

64 – bit cipher text

 12500

This code generates 14 random numbers in the range from 0 to 511.

Our approach

In our approach, we will encourage the user to use data blowfish with more

efficiency and security. We emphasis on secrecy of key as we know that key
always play very important role in cryptograph [7]y. In traditional blowfish, the

key size is of 32 bit and data block size is of 64 bit. Blowfish follows the block

cipher mode encryption and decryption. In this paper, we will show how secret
keys are generated using pseudo random number generator which will work as a

secret key in Data Blowfish for each block of message.

In Traditional Blowfish:

PT = {m1, m2,, mn} (64- bit block of message)
K = {K} (32- bit Key)

Key Generation:

• Eighteen sub keys {P[0], P[1], P[2],.…,P[17]} are needed

 for both encryption as well as decryption process and the
 same sub keys are used for both the processes.

• These eighteen sub keys are stored in a P-array and each

 array is having each P-array 32-bit entry.

• The eighteen –array are initialized with the first 18 digits of

 pi. Now each of sub keys are changed w.r.t the input key as:

 P[0] = "243f6a88"

 P[1] = "85a308d3"
 .

 .

 .
 P[17] = "8979fb1b"

• Now each of the sub key is changed with respect to the input

 key as:
 P[0] = P[0] XOR 1st 32-bits of input key

 P[1] = P[1] XOR 2nd 32-bits of input key

 P[i] = P[i] XOR (i+1)th 32-bits of input key
 (roll over to 1st 32-bits depending on the key length)

 .

 .
 .

 P[17] = P[17] XOR 18th 32-bits of input key

 (roll over to 1st 32-bits depending on key length)

12501

For Encryption-Decryption:

Ci = EK {mi}

Cipher Text C = {C1, C2,, Cn}
 And mi = DK {Ci}

Plain Text M = {m1, m2,, mn}

As per traditional Blowfish, Encryption process follows the feistel structure (16-

rounds) and make a new key for each round by the permutation on bits of key k .

Same key k applies on each block of message m using shifting property for
encryption and decryption.

PRNG Blowfish Approach:

M = {m1, m2, m3,, mn} (64- bit block of message)

K = {K} (32- bit Key)

Key Generation:

Figure 3 shows the process of new generated key by Pseudo random number
generator [5,6].

F {K and Rn} = [K_new (X)]_P)
Where Rn is generated by Pseudo Random Number Generator (PRNG) and [1 ≤ Rn

≤ (256 = 4294967295)].

[K_new (X)]_P) = [K_new (X)]_1) to [K_new (X)]_n)

 Figure 3: Process of new generated key of PRNG Blowfish

Function F:

Step 1- Input the value of initial key K of 32-bit.

Step 2- Input the generated random number Rn , generated by

 PRNG*. (*PRNG Property- 256 no., random number
 generator)

Step 3- Convert Rn into 32- bit binary number.

Step 4- Now, we have
 Key K = {Kb1, Kb2, Kb3,, Kb32}

 And Rn ={Rb1, Rb2, Rb3,, Rb32}

 Where Kbr is the bit of Key and
 Rbr is the bit of Random number.

PRNG

 Initial Key

New Generated

Key

Function (F)

 12502

 Here r =1, 2, 3...............32.

Step 5- Apply above conditions on K and Rn.
 IF Rbr and Kbr is the same then new Kbr is invert of

 Kbr (convert 1 to 0 or 0 to 1) of corresponding Kbr.

 ANDIF Rbr and Kbr is not same, then Retain the same
 (1 to 1 or 0 to 0) of corresponding Kbr.

Step 6- [K_new (X)]_P) = Result of step 5.

Using this function F every time we get the result [K_new (X)]_P) for each block of

message. For each block of M we generate a new no. nj and implement function F.

Finally get a new key for every block of message [4].

For Encryption/Decryption:

In encryption phase, PRNG Blowfish takes a message block mn and a new

generated key [K_new (X)],P), implement encryption process as per traditional

Blowfish [19,20].
 Decryption Process is the inverse step of encryption process. In

decryption, we also use the same key which is used in encryption.

Ci = E_([K_new (X)]_P)) {mi} an

mi = D_([K_new (X)]_P)) {Ci}, where 1≤ i ≤ n.

Cipher Text C = {C1, C2,, Cn} and
Plain Text M = {m1, m2,, mn}.

Comparison of encryption-decryption time in classical computer and

quantum computers

Table 1 shows the comparative analysis of encryption/decryption time and total

execution time (in seconds) of PRNG blowfish algorithm on classical computer and
on quantum simulators (IBM qx).We can compare that on the same input

encryption/ decryption time is less in quantum computers but total execution

time is comparatively more in quantum computers in comparison to classical
computers [14].

Table 1

Comparison of encryption-decryption time (in Sec.) and total execution time (in
Sec.) of PRNG Blowfish

Parameters Classical

computer

Quantum

computer

Comparison

Encryption

time

0.0000990320695

5641508

0.000012508

10455530882

Encryption time is less in

quantum computers

Decryption
Time

0.0000628470443
1891441e

0.000124402
9845111072

Decryption time is less in
quantum computers

Total

execution time

0.0002301380736

7533445

0.000663508

0208070576

Total execution time is

less in classical

computers

12503

Conclusion

We have examined PRNG Blowfish symmetric key algorithm, It is successful in
secure key generation for quantum computers. There are two cases:

Case I: If we take single key in place of n keys then n Knew(X) is K. It is

successfully implemented in quantum simulators and is need of the future.
Case II: If Knew(X1) = Knew (X2) = Knew (Xn) then proposed approach will work

like blowfish.

Our section 4 completely advocates the plausibility of ORDES. It is successful and
needful for current communication scenario.

References

1. A.M. Eskicioglu, “Protecting Intellectual Property in Digital Multimedia

Networks,” IEEE Computer, July 2003, pp. 39-45.

2. B. Jun and P. Kocher. The Intel Random Number Generator. Cryptography

Research Inc. white paper, Apr. 1999.

3. C. Petrie and J. Connelly. A Noise-based IC Random Number Generator for

Applications in Cryptography. IEEE TCAS II, 46(1):56– 62, Jan. 2000

4. CNET News.com, Users take crack at 56-bit crypto. Available on-line at

http://news.com.com/2100-1023-278658.html?legacy=cnet, 1997.

5. D.B. Ojha, Ramveer Singh, Ajay Sharma, Awakash Mishra and Swati garg

“An Innovative Approach to Enhance the Security of Data Encryption

Scheme” International Journal of Computer Theory and Engineering, Vol.

2,No. 3, June, 2010,1793-8201

6. Elminaam, Diaa Salama Abd, Hatem Mohamed Abdual-Kader, and Mohiy

Mohamed Hadhoud. "Evaluating the performance of symmetric encryption

algorithms." IJ Network Security 10.3 (2010): 216-222.

7. Gallagher, Patrick. "Digital signature standard (DSS)." Federal Information

Processing Standards Publications, volume FIPS (2013): 186-3.

8. Irfan Ahmad, Karunakar Pothuganti, Analysis of different convolution neural

network models to diagnose Alzheimer’s disease, Materials Today:

Proceedings, 2020, ISSN 2214-

7853,https://doi.org/10.1016/j.matpr.2020.09.625.

9. Kaur, Randeep, and Supriya Kinger. "Analysis of security algorithms in cloud

computing." International Journal of Application or Innovation in Engineering

and Management 3.3 (2014): 171-6.

10. Kunz-Jacques, S., Muller, F.: New Improvements of Davies-Murphy

Cryptanalysis.In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 425–

442. Springer, Heidelberg (2005)

11. Mahajan, Prerna, and Abhishek Sachdeva. "A Study of Encryption Algorithms

AES, DES and RSA for security." Global Journal of Computer Science and

Technology (2013).

12. Mandal, Akash Kumar, Chandra Parakash, and Archana Tiwari.

"Performance evaluation of cryptographic algorithms: DES and AES."

 12504

Electrical, Electronics and Computer Science (SCEECS), 2012 IEEE Students'

Conference on. IEEE, 2012.

13. N. V. Ganapathi Raju, A. Radhanand, K. N. Balaji Kumar, G. Pradeep Reddy,

and P. Sampath Krishna Reddy, “Machine learning based power saving

mechanism for fridge: An experimental study using GISMO III board,” Mater.

Today Proc., vol. 33, pp. 4819– 4822, 2020, doi:

10.1016/j.matpr.2020.08.387.

14. Nadeem, Aamer, and M. Younus Javed. "A performance comparison of data

encryption algorithms." Information and communication

15. Nie, Tingyuan, and Teng Zhang. "A study of DES and Blowfish encryption

algorithm." Tencon 2009-2009 IEEE Region 10 Conference. IEEE, 2009.

16. P. Kohlbrenner and K. Gaj. An embedded true random number generator for

fpgas. In FPGA ’04: Proceeding of the 2004 ACM/SIGDA 12th international

symposium on Field programmable gate arrays, pages 71–78. ACM Press,

2004.

17. P.C. van Oorschot, A.J. Menezes, and S.A. Vanstone, “Handbook of Applied

Cryptography,” CRC Press, Inc., 1997.

18. R. B. P. Dept. The Evaluation of Randomness of RPG100 by Using NIST and

DIEHARD Tests. Technical report, FDK Corporation, 2003.

19. Ramveer Singh et. al. /, An Ordeal Random Data Encryption Scheme (Ordes),

International Journal of Engineering Science and Technology Vol. 2(11),

2010, 6349-6360.

20. Sebastien Kunz-Jacques, Frederic Muller, New Improvements of Davies-

Murphy Cryptanalysis, Advances in Cryptology, proceedings of ASIACRYPT

2005, Lecture Notes in Computer Science 3788, pp. 425–442, Springer, 2005.

21. Stallings, William, and Mohit P. Tahiliani. Cryptography and network

security: principles and practice. Vol. 6. London: Pearson, 2014.

22. Tirthani, Neha, and R. Ganesan. "Data Security in Cloud Architecture Based

on Diffie Hellman and Elliptical Curve Cryptography."

23. Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography”

IEEE transactions on Information Theoty, 22, 644-654.

