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Abstract---A precise seizure detection system allows epileptic patients 
to receive early warnings before a seizure occurs. It is critical for 

people who are drug-resistant. To find the very minimal time before 

seizure onset, traditional seizure prediction techniques rely on 

variables collected from electroencephalography (EEG) recordings and 

classification algorithms. Such methods cannot achieve high-accuracy 
prediction due to the information loss of hand-crafted features and the 

limited classification capabilities of regression and other algorithms. 

Kernels are employed in the early and late stages of the CNN RNN 

architecture with VGG 16 in the convolution and max-pooling layers, 

respectively. The suggested hybrid model is tested using the CHB-MIT 

scalp EEG datasets. The total sensitivity, false prediction rate, and 
area under the receiver operating characteristic have all yielded 

positive results. 

 

Keywords---deep learning, wearable device, seizure prediction, CNN, 

RNN, VGG16, CHB-MIT scalp EEG dataset. 
 

 

Introduction  

 

A chronic as well as non-contagious brain disease is Epilepsy that affects around 

50 million individuals worldwide. Almost all of the patients are from low- and 
middle-income countries. On the other hand, 75% of them do not receive the care 

they require. The symptoms of this disease are recurrent and only last a few 
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minutes. Seizures of involuntary movement involving a the entire body or a 

section of it. It's also sometimes accompanied by a loss of appetite. Consciousness 

and control of bowel or bladder function.Functional and structural neuroimaging 
modalities are two key types of screening approaches in the treatment of epileptic 

seizures. Functional neuroimaging provides physicians and neurologists with 

crucial information on brain function during epileptic seizures. On the other 

hand, structural MRI (sMRI), diffusion tensor imaging (DTI) are two of the most 

important neuroimaging techniques in structural format. EEG models are  most 

favoured among clinicians, according to research on epileptic seizure diagnosis. 
The diagram below in Figure 1 depicts the categories of Seizures.  

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
Figure 1. Categories of Seizure 
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Medical professionals rely on visual inspection of EEG plots to detect seizures. 

Because this method extracts enough time, dependable automatic detection 

methods must be developed. Given its current demonstrated reliability and 

excellent performance, deep learning is a realistic alternative. Convolutional 
neural networks are used in this publication to study deep learning. By acting 

directly on the raw EEG data, such networks do not necessitate feature extraction 

prior to detection, which speeds up the detection process. EEG is a sort of brain 

recording that can be classified into two categories: scalp EEG and non-scalp 

EEG. Intracranial EEG is a type of EEG that is recorded inside the skull. The EEG 

of the scalp is recorded by connecting an electrode to the scalp. Intracranial EEG 
can be examined by implanting electrodes in the brain during a procedure or 

surgery. Many variables interfere with scalp EEG. Filtering or noise from seizures 

can help with seizure identification. The scalp and the skull However, scalp EEG 

is a better choice because it is easier to monitor than intracranial EEG a more 

typical sort of signal used to diagnose and treat intracranial EEG is better for 
epilepsy than intracranial EEG. As a result, the EEG dataset in this study is 

made up of scalp EEGs. Despite the fact that deep learning approaches produce 

promising results in many applications, The method splits an intensity image 

generated by EEG data into two categories: epileptic and category of healthy. The 

learning of pattern is based on intensity pictures, which collect data from all of 

the electrodes used. 
 

Related Work 

 

There has been a lot of previous work in the field of EEG signal identification. 

Almost all of the work is around manually extracting signal features by dividing 
the signal into frequency, temporal, and wavelet-based domain components. 

There hasn't been much research into using raw EEG signals on a CNN (without 

feature extraction or handpicking). The authors developed an FPGA-based 

automated seizure detection system using the CHB-MIT database. An ant colony 

optimization technique is combined with a rule-based classifier was employed as 

the classifier. After testing on a different dataset, they were able to obtain 98.9% 
accuracy. The dataset used was CHB-MIT. The time it took to detect whether a 

seizure was about to happen affected their detection accuracy (delay). 

 

A new study demonstrated that deep learning (DL) for epilepsy detection, which 

automatically encodes EEG patterns connected to seizures, is significantly more 
successful than standard feature selection and classification methods. In one of 

the earliest deep learning experiments on epilepsy diagnosis, a convolutional 

neural network (CNN) was used for feature extraction in an image-based 

representation of EEG signals, followed by Long Short Memory units (LSTM) for 

classification. The technique was tested for subject-specific accuracy using the 

CHBMIT dataset. According to the linked literature, training CNN models needs 
skilled neurologists manually labelling a huge amount of EEG data. As a result, 

as highlighted by the majority of the authors, the major issues limiting the 

performance of these deep-learning seizure detection methods are the amount of 

training data, which may not be sufficient, and the feature space of seizures, 

which can vary significantly across different patient EEG recordings and even 
within the same patient. Transfer-learning systems are now under examination, 

despite their apparent potential in addressing the problem of a lack of data for 



 

 

9625 

epileptic seizure detection. In the realm of seizure detection, neural networks have 

recently gained more attention. CNNs have the ability to learn nonlinear local 

features with increasing complexity that are successful. The complexity of 
processing grows as it passes from input. Originally, CNNs were referred to as a 

collection of convolutional and convolutional neural networks.  

 

The original CNN's stacking layers were then transformed into a larger 

architecture known as Alex Net, CNN's unique functionality fundamental 

features. The Inception-V1 architecture (GoogLeNet) was the first to be 
introduced, and it comprises processing stages that memorise spatial patterns to 

convey channel correlation. With fewer network parameters, the architecture 

allowed for the learning of more pattern features. The Xception architecture, 

which is similar in idea, then merges the coded features with a point-wise 

convolution. It is unique in that it does not employ layer non-linearity. This study 
aims to explore if an original CNN design built on separable depth-wise layers can 

detect epilepsy in EEG data. In contrast to earlier CNNs, this one employs 

convolution as the first layer to generate a frequency component representation of 

the raw signal This is compatible with feature extraction from signal 

decomposition in filter banks. This design is examined here to discriminate 

between intervals in EEG data, which is relevant to cross subject modelling. 
Cross-subject modelling, as opposed to patient-specific models, can dramatically 

expand the algorithm's applicability by allowing it to interpret data from unknown 

subjects. The CHB-MIT and Ubonn databases, both of which are freely available, 

were used to test this CNN architecture. It achieved high performance, with 92.82 

% (5 patients in CHB-MIT) and 99.70 %. 
 

Background 

 

Deep Neural Networks 

 

The algorithm called back propagation is used by deep neural networks (deep 
learning). They look for complicated patterns in data. Multilayer neural networks 

with an unsupervised learning strategy for the first layer are known as deep 

neural networks. As a result, the model's depth and complexity are reduced by 

getting features on its own. The CNN outperformed the multilayer perceptron and 

other machine learning models used in the picture analysis. Kernels are the 
building blocks of CNNs to produce and output, convolve with the input image 

features. Feature maps are the results. The weights used in the kernel's 

convolution with the picture are the same as those used in the kernel's 

convolution with the entire input image. When compared to fully-connected 

neural networks, this leads in a large reduction in parameters while keeping the 

fundamental characteristics. To reduce data dimensionality, CNNs use sub-
sampling or pooling layers, which take the maximum or average of image feature 

sub-spaces. Fully-connected layers, often called as dense neurons, may also be 

included in the architecture. 

 

Convolutional neural network 
   

The purpose of a CNN is to learn the right representations of the incoming data 

attributes. Weight distribution and grouping are the two key differences between 
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a CNN and an MLP. Convolution nuclei are utilized to produce distinct feature 

maps. Each next is connected to a function map neuron in the following layer. 

Furthermore, the nucleus is shared by all spatial positions of the inputs in order 

to generate the function diagram. For classification, one or more complete bound 
layers are employed for multiple Convolution and grouping layers. A collection of 

n cores 𝑊 = 𝑤1,𝑤2,𝑤3,… .𝑤𝑛, and their biases 𝐵 = 𝑏1,𝑏2,𝑏3,… . 𝑏𝑛, are converted  as 

inputs at each CNN layer. A new 𝑦𝑧 function map is generated via convolution 

between the values of data and each core.𝑦𝑧1 = 𝜎(𝑤𝑧1 − 1) ∗ (𝑦1 − 1) + (𝑏𝑧1 − 1) 
During the CNN learning phase, a tiny window travels across the inputs, allowing 

the bias and weight values to be modified. To learn properties and recognize data, 

fully linked feed-forward neural networks can be employed. Given the large values 

of input involved with photographs, in where every pixel is a unique vector, a 
large number of neurons, also in a shallow architecture, will be required. Different 

stages, including as convolution, maximum grouping, and flattening, are 

frequently used in this network. The diagram below in Figure.2 depicts the layers 

available in CNN. 

 

 
Figure 2. Layers of CNN 

 

• Convolution layer: the characteristics and patterns are derived from the data. 

• Grouping: It minimizes the dimensionality of every feature map but retains 

the information which is important. 

• Flatten: To insert data into the next layer, flatten it into a one-dimensional 
matrix. To make a single lengthy and flatten the output of the Convolutional 

layers with a feature vector. 

• Fully Connected: These form of layers associates with each neuron to other 

neuron in the next layer. 

 

Wearable seizure detection EMG based device 

 
The wearable devices used to aid mild or chronic seizure. The gadget was put on 

the brachial biceps muscle to measure surface EMG signals. This small gadget is 

easily concealed beneath the patient's clothing The location was chosen based on 

previous experience the number of seizures that the patient has expressed. The 

wearable gadget is affixed to a hypoallergenic hydrogel patch with three implanted 
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surface EMG electrodes that is self-adhesive. This device was created specifically 

for it. The separation between the recording electrodes was 20 millimeters. The 

wearable device was equipped with a lithium polymer battery. The sampling rate 
was 1,024 Hz. A slightly altered rendition of the method for detecting seizures was 

integrated into the device. In a nutshell, the electrophysiologic biomarker. The 

early phase of GTCS is marked by an increase in amplitude and frequency. 

EMG signal oscillations of high frequency (>150 Hz).  

 

 
Figure 3. Wearable device for Seizure detection 

 
The wearable devices listed above in Figure 3 may be comfortably worn from 

hours to days. From the figure 3 depicted above A denotes the wearable device, B, 

C denotes wearable device connected to a self adhesive patch having electrodes. D 

denotes remote control of the wearable device. 

 

Methodology 
 

CHB-MIT Scalp EEG Database 

 

The CHB-MIT scalp EEG database is a collection of recorded seizures from 

intractable seizure patients. The data of EEG is collected and Each recording has 

a multi resolution and numerous recordings. Among the twenty patients For each 
example, the number of recordings is between the ages of 10 and 45. There are 

660 files in total. At least one seizure was recorded in 139 of them. The duration 

is lengthy, most files are one hour long. In the recording, the electrodes were 

placed one of the standard EEG signal recording systems. As a result, the EEG 

raw signal files have 21 channels are labelled. 
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Data Preprocessing 

 

Before executing feature extraction or classification activities, data processing is 

required. The EEG data recorded in general are redundant and contain unwanted 
noise and distortions. To make the data appropriate for further processing, these 

uncertainties must be filtered out. Because of preprocessing, EEG signals will 

only contain useful signal-related information, in combination with external noise 

(typically caused by electrode movement), contaminate actual EEG recordings, 

lowering signal quality and affecting classification accuracy. This stage turns the 

EEG signal data into a two-dimensional table format to aid processing and 
provide crucial information for seizure detection. Various feature selection models 

are employed to process the incoming data. This research used a supervised, 

preprocessed, restructured dataset with class features and probable class values. 

 

Extracting Features 
 

To minimise feature values, relevant features from a specific region of the input 

signal are eliminated at this step. Raw EEG signals have a wide range of signal 

properties, including quality and length. They also experience discrepancies in the 

EEG readings due to motion artefacts and background noise. To solve this 

challenge, feature extraction algorithms are employed to choose only the features 
that are required. The EEG signal data's data dimensionality is likewise reduced 

using DL techniques. DL-based models are used to extract features. 

 

Detection  

 
The hybrid CNN-RNN network is utilized for detection, and it is developed with a 

convolutional stack comparable to VGG16 but with a few small variations in the 

layer structure. Three layers make up the hybrid CNN-RNN architecture: a 

transcription layer, recurrent layers, and a convolutional layer The VGG16 

architecture for convolutional layers excludes fully-connected layers from the 

system architecture design. The recurrent layers then transform these properties 
into a labelling sequence that distinguishes different forms of EEG data. 

 

VGG 16 architecture 

 

On the ImageNet dataset, VGG16 was shown to be the best performing model. 
Let's have a look at the architecture of this setup. A fixed size 224 by 224 image 

with three channels – R, G, and B – is regarded the input to any of the network 

configurations. The only pre-processing done is to normalise each pixel's RGB 

values. Every pixel is subtracted from the mean value to achieve this. Signals are 

transmitted via a first stack of two convolution layers with a very small receptive 

size of 3 × 3 before being activated by ReLUs. There are 64 filters in each of these 
two layers. The padding is 1 pixel, while the convolution stride is fixed at 1 pixel.  

 

The spatial resolution is preserved in this arrangement, and the output activation 

map is the same size as the input image dimensions. The activation maps are 

then run via spatial max pooling with a stride of 2 pixels over a 2 x 2-pixel 
window. The size of the activations is reduced by half. In the suggested hybrid 

architect's primary layers, convolutional layers combine CNN and RNN to extract 
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features associated to epileptic seizures. The convolutional layer's performance is 

also passed on to the RNN layers, which are used to distinguish between different 

signal patterns. Convolutional layers outperformed RNNs in detecting local and 
regional trends in this study. The architecture of VGG16 is given below in Figure 

4. 

 

 
Figure 3. VGG 16 Architecture[11] 

 

Additionally, the CNN layers' convolution operation allows the RNN to operate 

faster, allowing it to recognize more different patterns. To restore the system's 

accuracy and efficiency, the suggested solution blends in features with CNN-RNN. 

EEG data is used to detect epileptic seizures. The three convolution layers 
discussed above make up the CNN-RNN architecture. To reduce the 

dimensionality of the obtained features, use one maximum pooling layer for 

feature extraction. Vectors with features, as well as the collected attributes, are 

converted to FC using a fully connected (FC) layer. The LSTM model is used to 

extract RNN features, which are then combined with CNN layers and hand-crafted 

features. Last but not least, the FC layers are used for data classification. 
 

Simulation Results 

 

We simulated the works that attained state-of-the-art performance after analysing 

it using traditional criteria. This study looks at the various metrics for evaluation. 
We used 20% of each participant's samples for testing and the rest of the samples 

to train the model. The average and standard deviation of individual statistic are 

generated in a proper sequence using ten independent runs with various 

initializers. 

 

Metrics 
 

The four criteria used are mentioned as follows to evaluate the performance. 

Accuracy is termed as the percentage of correctly identified samples divided by 

entire samples. 
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Accuracy =
𝑇𝑅+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 

 
The fraction of entire samples labeled as Category-A that genuinely correspond to 

that category is defined as precision. The smaller the system's False Alarm Rate, 

the greater the Precision (FAR). 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

The recall rate is the proportion of all Category-A samples that are ultimately 

categorised as A. The system's capacity to identify anomalies is reflected in the 
recall rate. 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

True Positive, False Positive, True Negative, and False Negative are represented by 

TP, FP, TN, and FN, respectively. Seven of the patients had exceptional Sensitivity 

and AUC values, with 99 % sensitivity, while subject chb01 has the best results, 

with 100 % sensitivity and AUC. The Table 1 below depicts the performance of the 

dataset for the hybrid method with giving values of Sensitivity and AUC as given 
below. 

Table 1 

Performance of CHB-MIT dataset 

  

CHB MIT 

Dataset 

CNN+STFT CNN+ FFT 
(CNN+RNN+VGG16

) 

SEN 
% 

AUC 
SEN 
% 

AUC SEN % AUC 

Chb-01 86.7 - - 0.945 100 1.00 

Chb-05 81.0 - - 0.987 99.8 0.99 

Chb-06 81.0 - - 0.935 99.9 0.97 

Chb-08 - - - 0.922 99.9 1.00 

Chb-10 33.4 - - 0.856 98.9 0.99 

Chb-14 80.1 - - - 99.0 0.99 

Chb-22 - - - 0.878 99.7 0.99 

 

From the table 1 given above the sensitivity and AUC values of our proposed 

models have outperformed the compared models like CNN+STFT and CNN+FFT. 

In the first category of Chb-01 our model has achieved the maximum sensitivity of 

100% which is a overwhelming performance and the other models too have given 
the performance which has depicted satisfied results. The Figure 3 below depicts 

the ROC curve for the seven patients with one model reaching a maximum AUC of 

1.00 for Chb01 and CHb08 respectively 
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Figure 3. ROC curves from CHB-MIT dataset 

 
Our model has strong ability to differentiate samples of the datasets, as shown in 

Fig. 3 Our model has achieved great capacity for the list of cases given, as seen 

the curves. The values of ROC also have given phenomenal performance values in 

the proposed model. 

 
Conclusion 

 

This study describes the CNN RNN architecture with VGG 16 for seizure 

detection. The CNN model is fed raw EEG data as input instead of more generally 

recognised as the variables of frequency. The suggested design takes advantage of 

the Redundancy in the time axis of an EEG signal while conserving information 
for early-stage in the channel axis processing, keeping in mind the signal's unique 

features. Experiments on commonly used benchmark datasets show that the 

suggested architecture has a enhanced sensitivity, tremendous AUC score, and 

FPR. Furthermore, employing raw signals lowered data processing complexity, 

resulting in shorter execution times, lower power consumption, and more silicon 
space in the upcoming hardware module. 
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