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Abstract---Coronavirus disease (COVID-19) is an infectious disease 

caused by the SARS-CoV-2 virus. Most people infected with the virus 

will experience mild to moderate respiratory illness and recover 

without requiring special treatment. However, some will become 

seriously ill and require medical attention. Older people and those 

with underlying medical conditions like cardiovascular disease, 
diabetes, chronic respiratory disease, or cancer are more likely to 

develop serious illness. Supervised machine learning models for 

COVID-19 infection were developed in this work with learning 

algorithms which include support vector machine, naive Bayes, 

random Forest, GNB using epidemiology labeled dataset for positive 
and negative COVID-19 cases of Mexico. The correlation coefficient 

analysis between various dependent and independent features was 

carried out to determine a strength relationship between each 

dependent feature and independent feature of the dataset prior to 

developing the models. The 80% of the training dataset were used for 

training the models while the remaining 20% were used for testing the 
models. The result of the performance evaluation of the models 

showed that GNB prediction model has the highest accuracy of 98% 

compared to other existing ML techniques. 
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Introduction  

 

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a virus, 

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first 
known case was identified in Wuhan, China, in December 2019.[1] The disease 

spread worldwide, leading to the COVID-19 pandemic[2]. Symptoms of COVID-19 

are variable, but often include fever,[3] cough, headache,[14] fatigue, breathing 

difficulties, loss of smell, and loss of taste.[5][6][7] Symptoms may begin one to 

fourteen days after exposure to the virus. At least a third of people who are 

infected do not develop noticeable symptoms.[8] Of those people who develop 
symptoms noticeable enough to be classed as patients, most (81%) develop mild 

to moderate symptoms (up to mild pneumonia), while 14% develop severe 

symptoms (dyspnea, hypoxia, or more than 50% lung involvement on imaging), 

and 5% develop critical symptoms (respiratory failure, shock, or multiorgan 

dysfunction).[9] Older people are at a higher risk of developing severe symptoms. 
Some people continue to experience a range of effects (long COVID) for months 

after recovery, and damage to organs has been observed.[10] Multi-year studies 

are underway to further investigate the long-term effects of the disease. The 

confirmed and death cases for top 15 countries  shown in figure. 

 

 
Figure 1. The confirmed and death cases for top 15 countries 

 

  
Figure 2. COVID-19 sounds taxonomy 
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Related Works 

 

Early detection and diagnosis using AI techniques help to prevent the spread and 
to combat the COVID-19 pandemic using different data such as CT scans, X-ray, 

clinical data, and blood sample data. Sun et al. [12] developed a prediction model 

using the support vector machine (SVM) to predict the severe cases of COVID-19 

patients. In the study, they used the clinical and laboratory features that are 

significantly associated with these cases. Using 336 cases of COVID-19 patients, 

26 severe/critical cases and 310 noncritical, they found that the main features to 
discriminate the mild and severe cases are age, growth hormone secretagogues 

(GHSs), immune feature cluster of differentiation 3 (CD3) percentage, and total 

protein. They found that the proposed model was effective and robust in 

predicting patients in severe conditions with up to 0.775 accuracy. 

 
Another research conducted by Yao et al. [13] also applied the SVM model to 

classify the COVID-19 patients according to the severity of the symptoms. 'ey 

applied SVM for the binary class label on a total of 137 records including urine 

and blood test results and combining both severely ill patients and patients with 

mild symptoms. 'e results showed that around 32 factors have high correlations 

with severe COVID-19, with an accuracy of 0.815. It is worth mentioning that, 
amongst all factors, age and gender had mostly affected the classification of cases 

between severe and mild. Patients aged around 65 had more severe cases than 

others. Moreover, male patients were at a higher risk of developing severe COVID-

19 symptoms. In terms of the urine and blood test samples, blood test result 

features show more significant differences between severe and mild cases than 
urine test result features. 

 

Hu et al. [14] used the logistic regression (LR) model to identify the COVID-19 

patients’ severity. They used a dataset containing demographic and clinical data 

for 115 COVID-19 patients under the nonsevere condition and 68 COVID-19 

patients under the severe condition. Four features have been selected as the most 
significant features to discriminate the mild and severe cases: age, high-

sensitivity C-reactive protein level, lymphocyte count, and d-dimer level. 'is model 

was evaluated, and the results showed that the prediction was effective with area 

under the receiver operating characteristic (AUROC) of 0.881, sensitivity of 0.839, 

and specificity of 0.794, respectively. 
 

Proposed Model 

 

Fig.1 Shows covid 19 prediction model. The proposed Covid 19 prediction model 

consist of five different steps such as data collection, data pre-processing, future 

extraction, classification, and performance evaluation. we prepared three classes 
of chest X-ray images dataset COVID-19 patients, normal people, and pneumonia 

patients. It contains 520 images (120 COVID-19 images, 200 pneumonia images 

and 200 healthy images). COVID-19 is a new disease, so, the number of COVID-

19 chest x-ray images is limited. The datasets were collected from Kaggle website. 

Then, the datasets are divided into 80% for training and 20% to test the 
classifiers. Fig. 2 shows an example of chest X-ray image Datasets. The dataset is 

already preprocessed by and resizing it to 64×128 pixels so that it is ready for 

training and testing our model. After pre-processing, features are extracted from 
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images by using Histogram of oriented gradients. The basic advantages are 

describing the shape and contour properties of an image. Support vector machine, 

naive Bayes, random Forest, GNB are used for disease classification. 

 

 
Figure 3. Covid 19 Prediction Model 

 

 
Figure 4. Covid 19 X ray Images 

 

Dataset Description 
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Experimental Setup 

 

The supervised machine learning algorithms were executed using a python 
programming language in window operating system environment deployed HP 

Branded computer system (Laptop), Corei5 with 8 GB of Ram and 2.8 GHz 

processor speed. All the necessary libraries were installed on python notebook 

and used for the data analysis including correlation analysis and development of 

the models. 

 

 
Figure 5. Scatterplot correlation coefficient of the feature of the dataset 

 

Confusion Matrix 

 

A confusion matrix is an extremely useful tool to observe in which way the model 

is wrong. It is a matrix that compares the number of predictions for each class 

that are correct and those that are incorrect. In a confusion matrix, there are 4 
numbers to pay attention to. 

 

• True positives: The number of positive observations the model correctly 

predicted as positive. 

• False-positive: The number of negative observations the model incorrectly 

predicted as positive. 

• True negative: The number of negative observations the model correctly 

predicted as negative. 

• False-negative: The number of positive observations the model incorrectly 

predicted as negative. 
 

The performance of the proposed Covid 19 prediction model can be evaluated 

using following performance metrics such as accuracy, precision, Recall, F1 

Score, and Specificity. 

 

Accuracy=(TP+TN)/(TP+FP+FN+TN) ...............................................................(1) 
Precision=TP/(TP+FP) ...................................................................................(2) 

Recall = TP/(TP+FN) .....................................................................................(3) 
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F1 Score = 2*(Recall * Precision) / (Recall + Precision) .................................(4) 

Specificity = TN/(TN+FP) ..............................................................................(5) 

 

Table 1 
Prediction of Covid-19 

 

ML Algorithm Accuracy Precision Specificity F1 Score 

SVM 94 85 87 87 

NB 95.5 86 89 89 

RF 97 87 86 89.9 

GNB 98 92 91 90 

 

 
Figure 6. Covid 19 Prediction 

 

Conclusion 

 
Coronaviruses are important human and animal pathogens. At the end of 2019, a 

novel coronavirus was identified as the cause of a cluster of pneumonia cases in 

Wuhan, a city in the Hubei Province of China. It rapidly spread, resulting in an 

epidemic throughout China, followed by a global pandemic. In February 2020, the 

World Health Organization designated the disease COVID-19, which stands for 

coronavirus disease 2019. The virus that causes COVID-19 is designated severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2); previously, it was 

referred to as 2019-nCoV. Supervised ML models for COVID-19 infection were 

developed in this work with a support vector machine, naive Bayes, random 

Forest, GNB ML algorithms using an epidemiology labeled dataset of positive and 

negative COVID-19 cases in Mexico. The models were trained with 80% training 
data and tested with the remaining 20% of the data. The model developed with 

decision tree happened to be the best model among all models developed in terms 

of accuracy with 98%.  
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