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Abstract---A simple mathematical model for the temperature 

evolution in the cornea exposed to short-pulsed Ho: YAG laser under 

Laser Thermo Keratoplasty (LTK) treatment is developed by 

incorporating the heat flux phase-lag in the Fourier’s heat transfer 

model and laser source term is described by Lambert Beer’s law. An 

analytical solution to the mathematical model is obtained using the 
Laplace transformation technique. The computational results for the 

temperature profile and the temperature variation with time are 

presented through the graphs. The effect of some typical parameters: 

the heat flux phase-lag, convection coefficient and 

thermal conductivity on the temperature distribution and temperature 

variations are illustrated and discussed.    
 

Keywords---temperature, laser, cornea, LTK, laplace transformation 

technique, hyperbolic model. 
 

 

Introduction 

     

Laser thermo keratoplasty (LTK), a corneal refractive surgery technique, is 
directed towards altering the corneal curvature using laser energy to heat the 

peripheral corneal collagen. The laser heating results in the shrinkage of the 

peripheral and paracentral stromal collagen, which causes flattening of the 

peripheral cornea, and steepening of the central cornea leading to an increase in 

the corneal curvature and an improvement in corneal refractive power without 

any cutting or removal of the tissue. LTK eye surgery has been plagued, however, 
by the regression of the refractive effect. Thus, the results of LTK surgery are not 

permanent. Also, it is not the preferred choice for clinical treatment of hyperopia 

due to its low predictability and repeatability in producing reliable results. There 
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is a need to introduce some modifications in the procedure to improve LTK which 

may minimize or counteract the regression of the refractive effect. A thermal 

refractive surgical procedure that aims to reshape the cornea without the collagen 

fibres necrosis and with the minimal thermal damage to adjacent tissue may 

result in a better refractive correction technique with long-term stability. 
 

An understanding of the response of stromal collagen to laser heat enriched 

through the experimental investigations and theoretical studies of the 

thermomechanical behaviour of the cornea subjected to LTK surgery  to improve 

its predictability and repeatability may contribute to the design and development 

of a more effective LTK treatment procedure. In addition to numerous 
experimental studies of the temperature rise in the corneal tissue during LTK 

surgery, several mathematical models for the temperature profiles in the eye 

subjected to laser irradiation have been developed and simulated. 

 

Mainster [1] and Peppers et al., [2] modeled the cornea as a semi-space region 
where heat transfer during laser irradiation was assumed to be one dimensional. 

They used Beer’s law to model the laser energy absorbed inside the cornea. Zhou 

et al., [3] and Mainster et al., [4] calculated the temperature distribution using the 

finite difference method and considered the cornea as a finite cylinder during 

treatment of LTK. Brinkmann et al., [5] also developed a cylindrical model and 

solve it using the finite difference method. This model has been used by 
Brinkmann and his co- workers to understand the thermal responses of the 

human cornea during LTK treatment under various conditions [6-9]. The cornea 

was modeled as a rectangular strip of finite thickness by [10]. Analytical 

expressions were obtained for the corneal temperature during LTK for various 

conditions, and computational results were obtained and presented through the 
graphs. Recently, Podol’stev and Zheltov [11] developed a model of the human eye 

as a multi-layered cylinder to understand the heat transfer process during LTK. 

      

Most of the above researches had been concerned with the thermal analysis of 

corneal temperature during laser irradiation, and many of them applied the 

classical Fourier’s heat conduction model to evaluate the thermal behaviour of the 
corneal tissue. Although Fourier’s heat conduction model does 

not give bad results in most of the engineering problems,  some experimental 

results showed that Penne’s bioheat transfer (Parabolic model) provides non-

physical results such as those involving extremely short times or high heat flux 

[12-13]. In this case, thermal waves do not propagate at an infinite 
speed. Jaunich et al., [14] solved the problem of the bioheat transfer of short 

pulses of laser irradiation on body tissues numerically. Gheitaghy et al., [15] 

developed the hyperbolic model for the heat transfer in a non-perfused 

homogeneous transparent cornea under ultrashort pulsed laser irradiation in 

the LTK treatment. The model was solved by exploiting the mathematical analogy 

between thermal and electrical systems. They concluded that the hyperbolic wave 
model predicts a higher temperature than that predicted by Fourier’s model. 

       

The present work is concerned with the development of a mathematical model for 

the temperature evolution in the corneal tissue subjected to the ultrashort pulsed 

laser irradiation under the LTK surgery by incorporating the relaxation time of 
heat flux in the Fourier’s law of heat conduction and using Beer’s law for the laser 
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heat source. An analytical solution to the mathematical model was obtained in 

infinite series form using the Laplace transform technique. The computational 

results for the corneal temperature variation with time and temperature 

distribution were presented through graphs and the effects of some model 
parameters on the temperature variation and distribution have been illustrated 

and discussed. 

 

Physical model and mathematical formulation 

 

The cornea is modelled as homogeneous non-perfused tissue a finite domain that 
is exposed to a short-laser heat pulse at its anterior surface the front surface (Left 

boundary of Fig.1) as in the LTK surgery. The energy of the laser beam which is 

incident at the centre of the cornea is assumed to be absorbed in the stroma. 

One-dimensional heat transfer is assumed. 

 

 
Fig. 1.  Schematic diagram of the cornea modeled as finite domain exposed to Ho: 

YAG short Pulse laser  

 

The heat transfer in living biological tissues is governed by Penne’s Eq. [16], 
  

𝜌𝑐
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
 = −𝛻. 𝑞 + 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇𝑏 −  𝑇) + 𝑞𝑚𝑏 + 𝑄(𝑥, 𝑡)                                                            (𝟷) 

 

where, 𝑞(𝑊𝑚−2)   is the heat flux,  𝜌𝑏(𝐾𝑔 𝑚
−3) the blood density, 𝑐𝑏(𝐽𝐾𝑔

−𝟷℃−𝟷) the 

blood specific heat, 𝜔𝑏(𝑠
−𝟷) the volumetric blood perfusion rate per unit volume, 

𝑇𝑏(℃) the blood temperature, 𝑇 (℃) the tissue temperature, 𝑞𝑚𝑏(𝑊𝑚−3) the heat 

generation due to metabolism, 𝜌(𝐾𝑔 𝑚−3) the tissue density, 𝑐 ( 𝐽𝐾𝑔−𝟷℃−𝟷) the 

tissue-specific heat and 𝑄(𝑥, 𝑡)(𝑊𝑚−3) the heat generated to laser energy.   Due to a 

small amount of metabolic heat compared to the heat generated from laser 

accidents, it could be neglected [17]. Also, the blood perfusion rate at the selected 
region is almost zero because the corneal tissue is avascular. 

 

Therefore                𝑞𝑚𝑏  =  𝟶,      𝜔𝑏 =  𝟶,     
 
Now, Eq. (1) reduces to the following form: 

 

                                  𝜌𝑐
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
 = −𝛻. 𝑞 +  𝑄(𝑥, 𝑡)                                                                              (2) 

 

The Fourier’s law of heat conduction, which is a simple linear empirical relation 

between the heat flux vector and the temperature gradient is given by 

 

 

 

                                     

                                    

                                           

            Laser Pulse           

                                                                                                    

 

                                          

                                            𝑥                                                 𝑥 = L 

                                 𝑥 = 0 
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                                   𝑞(𝑥, 𝑡) = −𝑘 
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
                                                           (3) 

 

where, 𝑘 (𝑊𝑚−𝟷℃−𝟷)is the corneal tissue thermal conductivity. 
Adding relaxation time of heat flux,  𝜏𝑞 in variable t in term 𝑞(𝑥, 𝑡) of Fourier‘s law 

(3), we obtain: 
 

                        𝑞 (𝑥, t + 𝜏𝑞) = − 𝑘 
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
                                     (𝟦)     

 

 

 

Using the first-order approximation of Taylor’s series expansion of 𝑞 (𝑥, t + 𝜏𝑞), the 

following Eq. is obtained: 

 

                                 𝑞(𝑥, 𝑡) + 𝜏𝑞
𝜕𝑞(𝑥,𝑡)

𝜕t
 = − 𝑘 

𝜕𝑇(𝑥,𝑡)

𝜕𝑥
                                                          (𝟧)                                                    

                                                                                                                                           

On solving Equations (2) and (𝟧), we get a hyperbolic model of heat transfer in 

the corneal tissue. 

 

 

                             𝜏𝑞
𝜕𝟤𝑇(𝑥,𝑡)

𝜕𝑡𝟤
 +

𝜕𝑇(𝑥,𝑡)

𝜕𝑡
= 𝛼

𝜕𝟤𝑇(𝑥,𝑡)

𝜕𝑥𝟤
 +

𝟷

𝜌𝑐
[𝑄 + 𝜏𝑞

𝜕𝑄(𝑥,𝑡)

𝜕𝑡
]                         (6) 

 

where, 𝛼 =
𝑘

𝜌𝑐
  is the thermal diffusivity of the corneal tissue. 

The laser heat source is modelled by Beer-Lambert law   

   

                                      𝑄(𝑥, 𝑡) =  𝛪(𝑡)(𝟷 − 𝚁) 𝜇 𝑒−𝜇𝑥 
 

where, 𝚁 is Fresnel surface reflectance, μ(𝑚−𝟷) the absorption coefficient of the 

corneal tissue, 𝐼(𝑡) (𝑊𝑚−2) the laser intensity. The laser heat source 𝑄(𝑥, 𝑡) is 

assumed to be Gaussian and has been separated into variables in time and 

space. The appropriate physically realistic and mathematically consistent 
conditions for the problem under consideration are as follows: 

 

Initial conditions 
 

    𝑇(𝑥, 𝑡)| 𝑡  = 𝟢  = 𝑇𝟢,          
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
   |

 𝑡  = 𝟢 
= 𝟢,                                              𝟩(𝑎, 𝑏) 

Boundary conditions 

 

              −𝑘  
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
   |

 𝑥 = 𝟢 
=  ℎ(𝑇 − 𝑇𝟢) +  𝜎𝜖(𝑇𝟦 − 𝑇𝟢

𝟦) +  𝙴,                                                   (𝟾)   

                

                       
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
   |

 𝑥 = 𝙻 
=  𝟢,                                                                             

                       (𝟿)                                      
 

where, 𝙴(𝑊𝑚−2)  is the evaporative heat loss, 𝞂(𝑊𝑚−2𝐾−𝟦) the Stefan Boltzmann 

constant h (𝑚−2𝐾−𝟷)  the convection coefficient and 𝜀  the emissivity of the cornea.  The 
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boundary condition  (𝟾) represents that the heat loss at the anterior surface of the 

cornea occurs due to convection, emission and evaporation. The boundary 

condition (𝟿) represents that the posterior surface of the cornea is thermally 

insulated. 

 
Non-dimensionalization 

 

To non-dimensionalize the governing equation (6) the following scheme is 

introduced: 

 

X = 
𝜔𝑥

𝟤𝛼
 ,    𝜏 = 

𝑡

𝟤𝜏𝑞
,    𝜓 =

𝑄𝜏𝑞

𝜌𝑐𝑇𝟢
,   𝜃 = 

𝑇

𝑇𝟢 
, 

 
The normalized form of Eqn. (6) is given by 

 

      
𝜕𝟤𝜃

𝜕𝜏𝟤
  + 𝟤

𝜕𝜃

𝜕𝜏
 =   

𝜕𝟤𝜃

𝜕X𝟤
  +   𝟦𝜓𝟢 𝜂(𝜏)  𝑒

−𝛽X    +   𝟤
𝜕𝜓𝟢𝜂(𝜏)𝑒

−𝛽X

𝜕𝜏
                                                    (𝟷𝟶) 

 

where   𝛹 (X, 𝜏) = 𝜓𝟢 𝜂(𝜏) 𝑒
−𝛽X ,    𝜓𝟢 = 

𝛽 𝛪𝑟(𝟷−𝚁)

𝟤𝜔𝜌𝑐𝑇𝟢
 ,   𝛽 = 𝟤 𝜔𝜏𝑞 𝜇 

and 𝜂(𝜏) is the dimensionless rate of energy absorbed in the tissue, the laser heat 

source term is expressed in terms of arbitrary reference laser intensity 𝐼𝑟 as  𝛪(𝜏)   
=  𝛪𝑟  𝜂(𝜏)         
 
The normalized forms of the initial and boundary conditions are 

 

    𝜃(X, 𝜏)|  𝜏  = 𝟢 = 𝟷,      
𝜕𝜃(X,𝜏)

𝜕𝜏
   |

 𝜏 = 𝟢 
= 𝟢,                                                       𝟷𝟷(𝑎, 𝑏)          

 

     −𝐵
𝜕𝜃

𝜕X
|
 X = 𝟢 

=  𝐹 (𝜃 − 𝟷) + 𝐻(�̃�𝟤 + 𝟷)(�̃� + 𝟷) (𝜃 − 𝟷)  +  𝐺,      

           
𝜕𝜃

𝜕X
|
 X = 𝐿′ 

=  𝟢,      where   𝐿′  =   
𝜔𝙻

𝟤𝛼
                                                   𝟷𝟤(𝑎, 𝑏) 

 

where   𝐹 =  
ℎ𝑇𝟢

 𝛪𝑟
,     𝐻 = 

 𝜎𝜖𝑇𝟢
𝟦

 𝛪𝑟
 ,   𝐺 =  

𝙴

 𝛪𝑟
 ,  𝐵 =  

𝜔𝜌𝑐𝑇𝟢

 𝟤𝛪𝑟
     

 

Taking the Laplace transform of Eq. (10) and using initial conditions 11(a, b), we 

get the equation: 
  

    
𝑑2𝜃(X,𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑X2
 − 𝑢(𝑢 +  2) 𝜃(X, 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −(𝑢 +  2) − 2 𝜓𝟢𝑒

−𝛽X 𝜂(𝑢)̅̅ ̅̅ ̅̅ (𝑢 +  2)                          (13)     

where                             𝜃(X, 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ =    𝐿[𝜃(𝑋, 𝜏)] 

                             𝜂(𝑢)̅̅ ̅̅ ̅̅   =    𝐿[𝜂(𝜏)] 
The Laplace transformation of boundary conditions 12(a, b) results in the 

following equation: 

 

 −𝐵
𝜕�̅�

𝜕X
|
 X = 𝟢 

=  𝐹 (�̅� −
𝟷

𝑢
)  + 𝐻(�̃�𝟤 + 𝟷)(�̃� + 𝟷) (�̅� −

𝟷

𝑢
)  +  

𝐺

𝑢
 ,     

   

      
𝜕�̅�

𝜕X
|
 X = 𝐿′ 

= 𝟢,    where   𝐿′  =   
𝜔𝙻

𝟤𝛼
                                                                 1𝟦 (𝑎, 𝑏)       
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The solution of ordinary differential Eq. (13) subject to the boundary conditions 

𝟷𝟦 (𝑎, 𝑏) is given below: 

 

𝜃(X, 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ =  𝐴𝟷(𝑢) 𝑒
𝜆X + 𝐴2(𝑢) 𝑒

−𝜆X +  A(𝑢) 𝑒−𝛽X +  
𝟷

𝑢
                                          (𝟷𝟧)        

 

where,  𝜆2 =  𝑢(𝑢 +  2), U =  𝐵 𝜆 + (𝐹 + 𝑹),  V =  𝐵 𝜆 − (𝐹 + 𝑹),  𝑹 = 𝐻(�̃�𝟤 + 𝟷)(�̃� + 𝟷) 

                                                                                                                                                                                                    

                    𝐴(𝑢) = −2𝜓𝟢𝜂(𝑢)̅̅ ̅̅ ̅̅  
(𝑢 + 2)

((𝛽2−𝜆2) ) 
, 

                𝐴𝟷(𝑢) =
𝐺 𝑒𝜆𝐿

′
 

𝑢(V 𝑒𝜆𝐿
′
−U 𝑒−𝜆𝐿

′
)
 −

A 𝑒𝜆𝐿
′
(𝐵𝛽−𝐹−𝑹 )

(V 𝑒𝜆𝐿
′
−U 𝑒−𝜆𝐿

′
)
−

AU𝛽 𝑒−𝛽𝐿
′

𝜆(V 𝑒𝜆𝐿
′
−U 𝑒−𝜆𝐿

′
)
, 

 

                𝐴2(𝑢) =  
𝐴𝛽 𝑒−𝛽𝐿

′
 

𝜆 𝑒𝜆𝐿
′   −

𝐴𝑈𝛽 𝑒−𝛽𝐿
′
 𝑒−𝜆𝐿

′

𝜆 𝑒𝜆𝐿
′
(V 𝑒𝜆𝐿

′
−U 𝑒−𝜆𝐿

′
)
 +

𝐺 𝑒−𝜆𝐿
′

𝑢(V 𝑒𝜆𝐿
′
−U 𝑒−𝜆𝐿

′
)
  +

A 𝑒−𝜆𝐿
′
(𝐵𝛽−𝐹−𝑹 )

(V 𝑒𝜆𝐿
′
−U 𝑒−𝜆𝐿

′
)
 ,              

 

For taking the inverse Laplace transform of Eq. (15) and to find the solution in the 

time domain, we expand the terms  𝐴𝟷(𝑢) 𝑒
𝜆𝑋 and 𝐴2(𝑢) 𝑒

−𝜆𝑋  in Binomial series 
 

𝐴𝟷(𝑢) 𝑒
𝜆𝑋 =  𝐴 U𝛽 𝑒−𝛽𝐿

′
 𝑒

−𝜆(𝐿′−𝑋)

𝜆  + 𝐴 U𝛽 𝑒−𝛽𝐿
′
∑

𝑒
−𝜆((𝟷−2𝑛)𝐿′−𝑋)

𝜆

∞
𝑛=𝟶  −

𝐺

𝐵𝑢
 ∑

𝑒𝜆(2𝑛𝐿
′+𝑋)

𝜆

∞
𝑛=𝟶  

                           +
A(𝐵𝛽−𝐹−𝑹 )

𝐵
 ∑

𝑒𝜆(2𝑛𝐿
′+𝑋)

𝜆

∞
𝑛=𝟶                          

𝐴2(𝑢) 𝑒
−𝜆𝑋 = −

𝐺

𝐵𝑢
∑

𝑒𝜆(2𝑛𝐿
′+2𝐿′−𝑋)

𝜆

∞
𝑛=𝟶 +

A(𝐵𝛽−𝐹−𝑹 )

𝐵
∑

𝑒𝜆(2𝑛𝐿
′+2𝐿′−𝑋)

𝜆

∞
𝑛=𝟶      

                               + 𝐴 𝛽 𝑒−𝛽𝐿
′
∑

𝑒𝜆(2𝑛𝐿
′+𝐿′−𝑋)

𝜆

∞
𝑛=𝟶                       

 

The inverse Laplace transform of Eq. (𝟷𝟧)  is obtained by using the Binomial 

series of the terms 𝐴𝟷(𝑢) 𝑒
𝜆𝑋 and 𝐴2(𝑢) 𝑒

−𝜆𝑋, we get the solution: 

 

𝜃(X, 𝜏) =  𝑒−𝛽X 𝜓𝟢𝑓𝐻 + 𝜓𝟢 𝛽 𝑒
−𝛽𝐿′ℎ𝑖(𝐿

′ − 𝑋   𝜏) +  𝜓𝟢 𝛽 𝑒
−𝛽𝐿′ ∑ ℎ𝑖((𝟷 − 2𝑛)𝐿′ − 𝑋  𝜏)∞

𝑛=𝟶 −

                   
𝐺

𝐵
∑ ℎ(−(2𝑛𝐿′ + 𝑋)  𝜏)∞
𝑛=𝟶 + 𝜓𝟢

(𝐵𝛽−𝐹−𝑹 )

𝐵
∑ ℎ𝑖(−(2𝑛𝐿

′ + 𝑋)   𝜏)∞
𝑛=𝟶 +

                   𝜓𝟢
(𝐵𝛽−𝐹−𝑹 )

𝐵
∑ ℎ𝑖(−(2𝐿

′ + 2𝑛𝐿′ − 𝑋)   𝜏) +  𝜓𝟢 𝛽 𝑒
−𝛽𝐿′∞

𝑛=𝟶 ∑ ℎ𝑖(−(𝐿
′ + 2𝑛𝐿′ −∞

𝑛=𝟶

                   𝑋)   𝜏) −  
𝐺

𝐵
∑ ℎ(−(2𝐿′ + 2𝑛𝐿′ − 𝑋)  𝜏)∞
𝑛=𝟶 +  𝟷 

where                     

           ℎ𝑖(𝑝, 𝜏)  =  {
𝟶                                         𝑓𝑜𝑟             𝑝 ≥ 𝜏 ≥ 𝟶

∫ 𝑒−𝑣
𝜏

𝑝
𝐼𝟶[(𝑣

2 − 𝑝2)]
𝟷

2𝑓𝐻(𝜏 − 𝑣) 𝑑𝑣  𝑓𝑜𝑟        𝜏 >   𝑝                        
 

             ℎ(𝑝, 𝜏)  =  {
𝟶                                         𝑓𝑜𝑟             𝑝 ≥ 𝜏 ≥ 𝟶

∫ 𝑒−(𝜏−𝑣)
𝜏

𝟶
𝐼𝟶[(𝜏 − 𝑣)2 − 𝑝2]

𝟷

2 𝑑𝑣  𝑓𝑜𝑟        𝜏 >   𝑝                        
 

 

𝑓𝐻(𝜏) =  
𝛾𝑝
2𝑒𝛾𝑚𝜏 − 𝛾𝑚

2 𝑒−𝛾𝑝𝜏 − 4𝛾

𝛾𝛾𝑚𝛾𝑝 
 

                                                         𝛾  = [𝟷 + 𝛽2]
𝟷

2 

                                                        𝛾𝑝 =  𝛾 + 𝟷 

                                                               𝛾𝑚 
=  𝛾 –  𝟷 
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Results & Discussion 

 

The computational results of the hyperbolic model for the temperature profile and 

temperature variation with time in the corneal tissue irradiated by Ho: YAG laser 
under LTK treatment is obtained using the values of typical parameters given in 

the table and presented through the graphs.  

                                                    

Table 1. Parameters used in Computations 

 

  Parameter   Symbol    Magnitude      Dimension 

Corneal  density         ρ                     1062       𝐾𝑔 𝑚−3 

Corneal thermal 

conductivity 

        k         0.556       𝑊𝑚−1℃−1 

Fresnel surface 

reflectance                               

        R         2.4%          - 

 Absorption coefficient                                             μ         2000        𝑚−1 

Thermal            

diffusivity                                          

        𝛼         0.001452        𝑐𝑚2𝑠−1 

Emissivity of cornea        𝜀             0.975         _ 

Stefan Boltzmann 

constant 

       𝜎           5.67 × 10−8      W𝑚−2𝐾−4 

Wavelength        λ             1.85 − 2.1       𝜇𝑚 

Specific heat        c           3830      J 𝐾𝑔−1𝐾−1 

Initial temperature        𝑇0                  35      ℃ 

Evaporative heat loss        E             40      W 𝑚−2 

Phase - lag in heat flux        𝜏𝑞              1      sec. 

Thickness of cornea        L           0.55      Mm 

Reference laser intensity        𝐼𝑟              2 × 104       𝑊𝑚−2 

Convection coefficient        h           20      𝑊 𝑚−2𝐾−1 

Pulse duration        𝑡𝑖           200       𝜇 s 

 

The temperature rises with time in the corneal tissue subjected to the ultra-short 
pulsed laser irradiation under LTK surgery during the very short heating phase is 

almost spontaneous and it is difficult to represent the temperature response of 

the cornea by graphs. The computational results of this hyperbolic model for the 

temperature as a function of space and time variables are presented only for the 

cooling phase. 

       
A comparison of the corneal temperatures variation with time predicted by the 

parabolic model and the hyperbolic model is illustrated in Fig.2. The temperature 

response predicted by Fourier’s Model (parabolic model) decreases with time 

rapidly whereas the temperature predicted by the hyperbolic model decreases 

with time slowly. Most of the time, the temperature predicted by the hyperbolic 
model is higher than that predicted by the parabolic model. 
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Fig.2. Comparison of the dimensionless temperature variations with time 

predicted by Fourier’s  model and hyperbolic model at x = 0.5 mm depth of the 
corneal tissue during pulsed Ho: YAG laser irradiation 

          

The effect of convection coefficient on the parabolic and hyperbolic temperature 

variations at different depths is shown in Fig.3 (a) and 3(b), respectively. It is 

observed that the convection coefficient does not have a significant effect on the 

temperature variations. The effect of the convection coefficient on the hyperbolic 
temperature variation is slightly more than that on the temperature parabolic 

variation. The effect of convection coefficient on the temperature variation gets on 

decreasing along with the corneal depth, and it is negligible away from the 

anterior corneal surface. 

 

 
Fig.3 (a).   The effect of convection coefficient on the temperature variation with 

time predicted by the parabolic model at different depths during the cooling phase 

when laser energy is not applied 
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Fig.3(b).  The effect of convection coefficient on the temperature variation with 

time predicted by the hyperbolic model at different depths during the cooling 

phase when laser energy is not applied 

 
The temperature in the cornea far from its anterior surface increases linearly with 

time in contrast to the temperature decrease with time at or near the anterior 

surface during the time under consideration. This occurs due to the diffusion of 

laser heat energy inwards in the corneal tissue. The effect of relaxation time on 

the temperature variation at the anterior corneal surface predicted by the 

hyperbolic model is illustrated in Fig.4. It is evident from the Fig. that an increase 
in relaxation time decreases the temperature. However, these temperature 

distributions become similar in the steady-state. If the heating duration is shorter 

than the phase lag time, the thermal waves can be generated and predict the 

maximum temperature. 

 
Fig.4.  The effect of relaxation time on the temperature variation with time at the 

anterior surface of the cornea 
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The influence of temperature-dependent conductivity on the temperature 

variation with time predicted by the hyperbolic model at different depths of the 

cornea is presented in Fig.5. The temperature-dependent thermal conductivity of 

the homogeneous cornea has been assumed as given shown below: 

                                                                     

k =  0.556 + 0.0031(𝑇 − 𝑇𝟢) 
 

 
Fig.5.   Effect of temperature-dependent conductivity on hyperbolic temperature 

variation with time: Continuous lines represent   k =  0.556 𝑊𝑚−1℃−1, dashed 

lines represent    k =  0.556 + 0.0031(𝑇 − 𝑇𝟢) 
 

It is observed from the curves in Fig.(5) That the thermal conductivity has little 
effect on the temperature variation with time after laser heating. By assuming the 

linear increase of thermal conductivity with temperature, the conduction of laser 

energy in the surface layers as a better result, cooling increases. On the other 

hand, the diffusion of energy in the inner layer increases the temperature. 

        
In Fig. 6 the curves show the distribution of dimensionless temperature along 

with the dimensionless corneal depth following each laser pulse of the treatment. 

It is seen that the temperature in the epithelium layer of the cornea estimated by 

the hyperbolic model lies in the range of 85℃-94℃. Whereas the stromal 

temperature estimated is seen to lie in the range 68℃-90℃. The temperature in 

the endothelial layer is predicted to lie between 60℃ and 73℃. The temperature in 
the layers of the corneal tissue increases with the number of pulses under LTK 

treatment. 
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Fig.6.  Dimensionless temperature profiles after each laser pulse, predicted by the 

hyperbolic model 

 
The dimensionless corneal temperature distributions at different times t = 2, 4, 6, 

8 and 10 sec. are depicted in Fig.7. The vertical solid lines separate the plotted 

area into epithelium, stroma and endothelium. The upper (65.7𝟿℃) and lower 

(55.4𝟶℃) threshold limits for corneal shrinkage to occur are denoted by the solid 
horizontal lines. During the course of laser irradiation, the temperature at the 

majority of the stroma is found to lie between 55.4𝟶℃ and 65.7𝟿℃. At the 

epithelium, the temperature ranges from 65.4𝟶℃ to 75.𝟷𝟶℃. Comparing this to 

the temperature produced when using a continuous-wave laser, it seems that the 

continuous wave laser avoids the problem of over-heating. Similar to continuous 

wave laser heating, no endothelial cell damages are found when the pulsed laser 
is used. 

 

 
Fig.7.  The dimensionless temperature profiles at various time levels 
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Fig.8 depicts the effect of the relaxation time on the dimensionless corneal 

temperature profile. It is observed from Fig. 7 that an increase in the relaxation 

time of heat flux reduces the temperature and that the wavefront is more 

observable in the case of larger 𝜏𝑞 . Since 𝜏𝑞  is normally interpreted as the non-

zero time that accounts for the effect of "thermal inertia", 𝜏𝑞 is responsible for the 

delay in establishing heat flux and associated conduction through the medium.  

 

 
Fig.8.  The effect of relaxation time on the corneal temperature profile at the time 

𝜏 =  0.05 
 

Conclusion 

      

The hyperbolic heat conduction model is used to describe the temperature 

changes in the human cornea exposed to short-pulsed Ho: YAG laser heating 

under LTK surgery and to investigate the effects of the phase-lag in the heat-flux 
on the corneal temperature distribution and temperature variation with time in 

this study.  As observed, from the computational results the temperature in the 

epithelium layer lies between 85℃ and 94℃, the stromal temperature lies between 

68℃ and 90℃ and the temperature in the endothelium lies between 60℃ and 

73℃. An increase in the heat flux phase-lag causes a rise in the corneal 
temperature. There is a need to validate the reliability of the present results by 

comparing these analytical results with the experimental data. Once the model is 

validated, it may be used for the design and development of better laser surgery to 

treat hyperopia. 

 
Acknowledgement  

 

The financial assistance for this work received through award no. 09/1230 

(0001)/2018-EMR-I from the Council of Scientific and Industrial Research, New 

Delhi is gratefully acknowledged. 
 

References  

 

1. M.A. Mainster (1979) Ophthalmic applications of infrared lasers-thermal 

considerations. Invest. Ophthalmology Visual Sci. 18 (4): 414– 420 

0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

Dimensionless Depth ( X )

D
im

en
si

o
n

le
ss

  
C

o
rn

ea
l 

T
em

p
er

at
u

re
 (

 
 

)

 

 


q
 = 0


q
 = 1


q
 = 5



 

 

12917 

2. N.A. Peppers et al., (1969) Corneal damage threshold for CO2 laser 

irradiation. Appl. Opt. 8 (2): 377–381 

3. Z. Zhou et al. (1992) Thermal modeling of laser photothermal keratoplasty 

(LPTK). in: J.M. Parel (Ed.), Ophthalmic Technologies II, Proceedings of the 
SPIE, 1644: 61– 71 

4. M.A. Mainster et al. (1970) Corneal thermal response to the CO2 laser. Appl. 

Opt. 9 (3): 665– 667 

5. R. Brinkmann et al. (1994) Investigations on laser thermo keratoplasty in: 

S.T. Melamed (Ed.). Laser Applications in Ophthalmology, Proceedings of the 

SPIE, 2079: 120–130  
6. R. Brinkmann et al. (1996) Corneal collagen denaturation in 

Laserthermokeratoplasty in: S.L. Jacques (Ed.). Laser-Tissue InteractionVII, 

Proceedings of the SPIE, 2681: 56–62  

7. R. Brinkmann, N. Koop, K. Kamm, G. Geerling, J. Kampmeier, R. Birngruber, 

(1996) Laser Thermo keratoplasty by means of a continuously emitting laser 
diode in the mid-IR, in R. Birngruber, A.F. Fercher, P. Sourdille (Eds.). Lasers 

in Ophthalmology IV, Proceedings of the SPIE, 2930: 66–74  

8. R. Brinkmann et al. (1997) Laser thermo keratoplasty analysis of in vitro 

results and refractive changes achieved in a first clinical study in G. 

Altshuler, R. Birngruber, M.D. Fante, R. Hibst, H. Hoenigsmann, N. 

Krasner,F. Laffitte (Eds.). Medical Applications of Lasers in Dermatology, 
Ophthalmology, Dentistry and Endoscopy, Proceedings of the SPIE, 3192: 

180–186  

9. R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber 

(2000) Influence of temperature and time on thermally induced forces in 

corneal collagen and the effect on  laser thermo keratoplasty. J. Cataract 
Refractive Surg. 26 (5): 744–754  

10. F. Manns et al. (2002) Calculation of corneal temperature and shrinkage 

during laser Thermo keratoplasty (LTK) Ophthalmic Technologies XII, 

Proceedings of the SPIE,4611: 101–109  

11. A.S. Podol’stev and G.I. Zheltov (2007) Photo destructive effect of IR laser 

radiation on the Cornea. Geometrical Appl. Opt. 102 (1): 142–146  
12. M. J. Maurer, and H. A. Thompson (1973) Non-Fourier effects at high heat 

flux. ASME  Journal of Heat Transfer”, Series C, 95: 284–286  

13. M. Chester (1963) Second sound in solids Physical Review, 131: 2013–2015 

14. M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo (2008) Bio-heat transfer 

analysis during  short-pulsed laser irradiation of tissues. Int. J. Heat Mass 
Transfer 51: 5511- 5521  

15. Amir Mirza Gheitaghy, Behrouz Takabi & Mansour  Alizadeh (2014) Modeling 

of    ultrashort pulsed laser irradiation in the cornea based on parabolic and 

hyperbolic heat equations using an electrical analogy. International Journal 

of Modern Physics C 25:  No.9, 1450039-1-1450039-17 

16. Pennes, H.H. (1948). Analysis of tissue and arterial blood temperature in the 
resting forearm. J. Appl. Physiol., 1, 93-122     

17. F. K. Storm and D. L. Morton (1983) Localized hyperthermia in the treatment 

of cancer. CA-Cancer J. Clin. 33: 44  
                 

 


