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Malaria, a dangerous disease caused by Plasmodium, which is spread by being 
bitten by infected mosquitoes (Female Anopheles). It is crucial to diagnose 
malaria pathogens quickly and accurately at the right time. Traditional 
microscopy is commonly used in developing countries to diagnose malaria 
parasites, where pathologists examine the slide under a light microscope. 
However, in the case of traditional microscopy, requires more time and careful 
attention. Here, we have proposed a method to diagnose malaria based on 
computer vision. As a pre-processing stage, SAMF (Systematically Applied Mean 
Filter) algorithm is proposed that removes impulse noise from the corrupted 
malaria-infected images. Otsu method is used to obtain the binary version of 
images for cropping blood cells from complete image. 17 texture and color 
features were extracted from these cropped cells and these features were used 
to train Cubic SVM (Support Vector Machine) classifier. Hence a precise malaria 
diagnosis system was developed for detecting Plasmodium parasites, 
identifying their life stages and species using images of thin blood smears. A 
total of 348 images from CDC (Centre for Disease Control and Prevention) 
database were used to train and test the performance of the system. 
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1   Introduction 
 

The most common type of cells in human body is erythrocytes, which is supply oxygen to all body tissues. 
Abnormal erythrocytes can change their physical properties or shorten their lifespan, and may also lead to 
malaria. As per the "World Malaria Report 2019" issued by the “W.H.O.”, an estimated 200 million people were 
infected and 400,000 died (Gonz´alez et al., 2015). Malaria is produced by a parasite in the blood or liver. 
Different types of Plasmodium parasites that cause malaria in humans are Plasmodium falciparum, 
Plasmodium ovale, Plasmodium vivax and Plasmodium malariae. These Plasmodium species infect 
erythrocytes and go through different life phases; early trophozoites, mature trophozoites, gametocytes and 
schizoites. Fig.1 shows some sample images of different species along with different stages of Plasmodium. 

Appearances of malaria parasites at different stages and species are described in table 1, which were 
observed under a microscope (Lee & Chen, 2014). Red blood cells infected by parasites do not swell, and 
usually more than one type of parasite can be seen in the cells. Microscopic diagnosis has several advantages: 
it can distinguish species, can check the stage of parasites, and quantify parasitemia (Lee & Chen, 2014). In 
addition, it is highly sensitive and specific for detecting Plasmodium species at various stages. The 
classification of parasites and their types is very useful for studying the characteristics of malaria, as well as 
for prevention and diagnosis. However, this is a tedious and laborious task, and the knowledge and expertise 
of trained professionals play a big role in the precision of diagnosis (Elsalamony, 2016). Therefore, it is very 
vital to design a computerized automatic system to detect the type of parasite and phases. Segmentation of the 
infected erythrocytes and then removal of parasites (type and stage) from infected erythrocytes is required 
for the development of a computerized disease detection system. 
 

Stages 
Species 

Ring Stage Trophozoite Schizont Gametocyte 
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Figure 1. Four Plasmodium species during four phases of development (Fatima & Farid, 2020) 
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Table 1  
Different stages of the malaria parasite exhibiting different morphological characteristics 

 

 
 
Literature review 

 
There have been several feasibility studies on automating traditional microscopes, and this section reviews 
some of them. The importance of many features in the classification of erythrocytes infected with malaria was 
indicated by (Devi et al., 2018). To categorize the erythrocytes, a classification model based on ANN-GA was 
developed. Various classification algorithms such as Support vector machine (SVM), K-nearest neighbor 
(KNN), and Naive Bayes method are evaluated using 6 sets of features (morphological features, texture 
features, and intensity features). From experimental results it is proved that the f6 feature set (combination of 
morphological attributes, texture attributes and intensity, classified by ANOVA) is better than other feature 
sets. In addition, ANNGA of feature set f6 is used to classify erythrocytes. 

Fatima & Farid (2020), proposed a method for removing noise and improving image quality by employing 
bilateral filtering. Malaria parasites are detected in individual cells using morphological imaging methods and 
adaptive thresholds. Compared with competing methods, it achieves a recognition accuracy of over 91%. The 
Scale Invariant Feature Transform (SIFT) was used to extract features, and the Support Vector Machine (SVM) 
was used to classify them, by (Gezahegn et al., 2018). The overall performances of the investigation are, 
76.67% specificity, 80% sensitivity and 78.89% accuracy. 

Somasekar & Reddy (2015), suggested a technique for edge segmentation of malaria cells on blood images. 
The author compares the suggested method with seven other customary edge segmentation approaches and 
concludes that the suggested method is effective in segmenting erythrocytes which are infected by parasite. 
The segmentation along the edge of the erythrocytes infected with the malaria parasite was developed using 
microscopic images to assist the detection procedure (Okhabska et al., 2022). Color space conversion and 
gamma alignment can decrease color effects and correct variances in image brightness. Infected red blood 
cells extracted with Fuzzy C means clustering were used for further processing. The suggested execution time 
is longer than traditional edge segmentation methods. 

In paper Mas et al. (2015), suggested a new image processing technique depending on locating cell 
movement and checking whether this movement is spatially dependent. The suggested theory depends on the 
analysis of the time variation of each pixel. This cell-to-cell activity occurred, indicating the presence of 
Plasmodium in the cell. 
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In paper Arco et al. (2015), a unique approach to automatically compute malaria parasites is suggested and 
assessed, with the use of a database which includes 475 photographs with various concentrations of malaria 
parasitic cells. This approach will examine information with the aid of utilizing typical procedures of image 
processing including histogram equalization, thresholding, morphological operations and connected 
component analysis for parasite concentration approximation. 

In the literature Tomari et al. (2014), first extracts the red blood cell area from the background, uses the 
global threshold technique, and applies it to the color image of the green channel. Then uses the morphology 
filter and the marking of the connected components to remove the noise and holes from erythrocytes. These 
are extracted based on their geometric characteristics. Finally, an artificial neural network (ANN) 
classification algorithm is applied to classify erythrocytes as normal or abnormal. In detecting and counting 
the number of cells in the overlapping area, the suggested technique is unreliable.  

In Das (2013), erythrocytes were segmented by marker-controlled watershed transformation, and then a 
total of 96 features were extracted, which describe the shape, size, and texture of erythrocytes related to 
infected and uninfected cells. As a feature selection and classification stage, Bayesian learning and support 
vector machine (SVM) were used. Other Plasmodium species, such as Plasmodium ovale and Plasmodium 
malariae, are not classified. 

Tek et al. (2009), suggested a new parasite finding algorithm based on KNN RL1 distance classifier, which 
has some general descriptors. The author also suggested and compared three different classification 
algorithms which are used to identify different species and life cycles, and concluded that an ANN classifier 
with 20 categories can identify all three. In this work, the author used a limited set of data. 

Sio et al. (2007), developed MalariaCount software, which can automatically generate parasitemia based 
on Giemsa-stained blood smear images. The stability and potential use of MalariaCount was verified in normal 
and drug-treated artificially inseminated cultures of P.falciparum. This work provides inaccurate parasitemia 
results for blood smears containing poorly colored, overlapping blood cells. 

In Fatima & Farid (2020), depending on the use of circular Hough transform (CHT), watershed tools and 
morphology and neural networks to detect their shapes, the author proposed a method to identify healthy and 
unhealthy erythrocytes (elliptic cytosis, microcells, Sickle cell and shapeless cells).  

Lee & Chen (2014), uses individual cell images extracted from blood smear microscopic images to classify 
red blood cells. They divided the entire collection of elements into two groups according to their 
characteristics: shapes and textures. They are used to process individual feature groups. Hybrid neural 
network architecture, including parallel and cascaded topologies, is used to classify red blood cells. 

Rakshit & Bhowmik (2013), introduced the use of various instruments and imaging methods to correctly 
identify abnormalities in normal red blood cell parameters in anemia blood samples. Pre-processing is done 
using Weiner filter and the edges of the corpuscles are found using Sobel Edge detection method. Then, using 
the characteristics of the area, develop metrics to determine abnormal body shape to diagnose disease. 

Khashman (2008), introduced an intelligent system that can simulate human visual inspection and the 
classification of three types of blood cells. The proposed system consists of two stages: the image pre-
processing stage, in which the global average is used to extract the characteristics of blood cells, and the 
arbitration of the neural network i.e., the stage of training first and then classification. It is rotation invariant. 
Using a faster system can further reduce the time required. Further work includes expanding the blood cell 
database. 

An automated malaria parasite and infected erythrocytes segmentation (MPIE) is presented in (Tsai, 
2015). MPIE consists of 3 stages: pre-treatment (mean filtration and gamma equalization), object extraction 
(Sobel operation), detection and segmentation of infected RBCs and parasites. If the overlapped RBCs are 
classified as a region on the blood smear image, the MPIE method cannot give good results in separating the 
overlapped red blood cells.  

Hung et al. (2015), developed a MP detector to accurately separate infected red blood cells and parasites 
from smear images. Investigational outcomes illustrate that the MP detector is superior to Malaria-Count in 
segmenting infected red blood cells and parasites. The weighted Sobel operation can offer sharper and finer 
object outlines during process of segmentation. However, if the overlapping RBCs are grouped in the same 
image area and the overlapping boundary is very blurred, the MP detector cannot separate them well. 

Srivastava et al. (2015), develops SightDxP1 device which diagnose malaria and report parasitemia with 
only two species: P.vivax and P.falciparum. It consider P.ovale and P.falciparum species under P.vivax species.  
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Ghosh et al. (2017), uses a set of 4 related attributes of digital images to recognize different areas in the 
image. The various attributes of the recognition area are utilized to quantify erythrocytes (healthy and 
diseased) existing in the image. Regardless of the stage and species classification, red blood cell problems and 
overlapping red blood cells are partially visible. 

The algorithm proposed in Delahunt et al. (2015), distinguishes hemozoin from non-haemozoin objects in 
the dark field (DF) of the image. Hemozoin was not detected in the parasites of the ring phase for less than 6 
hours. 

In the hemozoin is significantly different from the hemoglobin in the thin, unstained blood smear on the 
slide, which reduces the time required to stain the malaria sample. The spectral image was taken by means of 
a single LED lightened microscope equipped with a CMOS camera. The red blood cells were successfully 
divided using PCA. 

Buggenthin et al. (2013), proposed a fully automated imaging pipeline that enables reliable but time-
saving segmentation and analysis of ellipsoidal cells using high-throughput bright field microscopes. The 
process consists of two stages: (i) Image acquisition is accustomed to achieve the best quality of image in 
bright field for automatic processing. (ii) The combination of high-performance image processing algorithms 
reliably recognizes individual cells in each image. The proposed procedure does not support large-scale cell 
division. 

In an automatic technique for detecting and classifying the species of malaria parasites in thick blood 
smears was introduced. The technique depends on digital image analysis and includes a motor-powered stage 
unit. The parasite species can be accurately classified as Pf or Pv using this analysis program, which is based 
on the chromatin size distribution. The image analysis unit comprises of 5 levels: image acquisition, pre-
processing, image segmentation, feature extraction (chromatin size) and classification. 

The diagnostic procedure in (Purwar, 2011) is divided into 2 parts; listing and identification. The image-
based technology described here is intended to automate the process of recording and identification, the main 
advantage is to allow uncontrolled diagnosis and high sensitivity, thereby reducing false negatives, and if the 
platelet count is high, it will lead to incorrect counts of infected red blood cells.  

Zuluaga et al. (2010), compared different haematology analyzer for malaria diagnosis such as Cell Dyn, 
Coulter Analyzer and XE – 2100. Author focuses to develop new haematology analyzer which are simple, 
robust and inexpensive. 

The article summarizes and criticizes the research of computer vision and image analysis for the automatic 
detection of malaria in thin blood smears, providing its essential supporting functions. Ross et al. (2006), 
developed a method for detecting Plasmodium in liquid blood smears and identifying malaria species. 
Morphological and an innovative method (particle size measurement) of selecting a threshold is used to 
identify erythrocytes and any parasites that may be present. The proposed method fails the detection of mixed 
infections. 

Chen et al. (2014), developed an automated technique for segmentation and classification of abnormal 
RBCs in blood smears of hemolytic anemia. First, a process based on 8 linked chain codes is used to separate 
the overlapping RBCs in the blood smear. Second, it detects normal and abnormal red blood cells using 
directional information from chain codes. Finally, hemolytic anemia is divided into 4 subtypes (hereditary 
elliptocytosis, sickle cell anemia, thalassemia, and glucose 6-phosphate dehydrogenase), including three new 
features, including different chain codes value, red blood cell irregularity and variability in eight directions. 

Prasad et al. (2012), developed a assessment support system for diagnosing malaria by analyzing color 
images. The algorithm identifies suspicious areas and identifies parasites in images from all the observations. 
The partial images demonstrating all the parasites are combined into a combined image, which can be sent 
through a communication link to achieve inaccessible skilled opinions for precise detection and cure.   

Banoth et al. (2016), advised a new application of high-throughput microfluidic microscopy to distinguish 
a source sample detector method based on light absorbance for the analysis of high-throughput single cells. 
The technology can be used to examine the chemical structure and morphological properties of RBCs at the 
same time. 

It is proposed by the Eluru et al. (2015), a high-throughput method (800 cells/s) for determining cell 
deformation based on the single cell. The method includes acquiring images of the cells from the flow 
deformed in the guidance of the shear gradient produced by fluid rolling from microfluidic channels. The 
deformation index of such cells might be calculated by executing morphological procedures on these images. 
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Moon et al. (2013), used malaria-infected red blood cells to identify them by sidewise shear interferometry 
and statistical sampling. Disposable glass plates were used to obtain a shearing interferogram. The gradient 
complex amplitude statistics of the cell were determined using Fourier analysis of interferograms. From this 
complex information, 6 features were extracted. The differentiation of cells occurs through gradient stages. 
The author did not pay attention to the classification of stages and types. 

Anand et al. (2012), suggests using digital holographic interference microscopy (DHIM) and numerical 
methods to automatically identify red blood cells infected with malaria. It is recognized by comparing its 
shape with healthy red blood cells. To distinguish between healthy and diseased cells, the correlation function 
is applied. 

Lee & Lu (2011), reported that healthy RBCs and malaria-infected RBCs exhibit different spectra in elastic 
light scattering forward and backward directions. The backscatter of undiluted samples is a potential tool for 
non-invasive malaria diagnosis. 

Gonzalez et al. (2015), suggested a system for evaluating the morphology of RBC in sickle cell anaemia 
samples that employs ellipse correction and algorithms to find noteworthy points. A system for effectively 
recognizing convex or concave points of interest in a contour is also included. 

Xiong et al. (2010), proposed a consolidated area classification algorithm and quantified the distribution 
and accumulation of cells from the perspective of individual populations. It gives the measure of Goodness of 
Working Areas (GWA). This method combines erosion-based method and watershed technique to break up 
clumped cells. 

This paper is organized as follows: Introduction to Malaria and its diagnosis is given in section 1. Section 2 
gives review of literature. Methodology along with Systematically Applied Mean Filter and finding the 4-stage 
algorithm to get maximum accuracy with low computational complexity are described in section 3. Section 4 
presents the system tests and results obtained. Section 5 validates precise malaria diagnosis systems by 
comparing it with existing method based on accuracy and finally conclusions are drawn in section 6. 
 
 

2   Materials and Methods 
 

Figure 2. Illustrates the proposed precise malaria diagnosis system which is made up of five major blocks for 
analyzing microscopic images. 
 

 
Figure 2. Block diagram of the proposed precise malaria diagnosis system 
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Image acquisition 
 
Most malaria screening studies focus on thin images of blood smears; therefore, few studies use thick blood 
smear images. The image is usually taken using a charge-coupled device camera (CCD) coupled to the 
microscope. In this study, blood smear images, freely available on the Disease Control and Prevention (CDC), 
United States website were used.  
 
Pre-processing 
 
Complete diagnosis depends on image quality; therefore, any decrease in image quality can lead to poor 
disease diagnosis. Images are damaged mainly due to the noise that often occurs in the image acquisition 
stage. The commonly encountered noise in microscopic images is in the form of randomly spread black and 
white dots, called Salt & Pepper noise or impulse noise. In the presence of such corruption, it is difficult to 
identify the elements of the real image or to distinguish the infected area. A Systematically Applied Mean Filter 
(SAMF) is suggested in paper. This filter removes the impulse noise. The SAMF filter has been examined over 
highly corrupted malaria-infected blood images. The comparative results in indicate a notable improvement in 
image quality especially for high densities of noise. 
 
Erythrocytes and plasmodium parasite cropping 
 
The vital step in image processing and computer vision is segmentation. It is a procedure of dividing an image 
into a series of separate non-overlapping areas, which collectively form the entire image. The most important 
and difficult phase is to accurately isolate the blood smear image into red blood cells, white blood cells, 
plasmodium, etc. The segmentation of parasites and normal erythrocytes from the background is determined 
by the grouping of blood cells (infected and non-infected) in the image. Correct segmentation may effectively 
detect and classify malaria parasites. The review found that most researchers are using Otsu's algorithm to 
segment erythrocytes and malaria parasites. Several blood cell segmentation strategies have been proposed in 
recent studies. Table 2. summarizes the different segmentation approaches utilized by different studies. 

 
Table 2  

Techniques for segmentation 
 

Reference papers Techniques for Segmentation 
Devi et al. [4], Lorenzo-Ginori et al. [40], Hartati et 
al. [41], Varma et al. [42], Mas et al. [8], Arco et al. 
[9], Tsai et al. [16], Hung et al. [17], Gosh et al. [19], 
Tomari et al. [10], Lee et al. [2], Ross et al. [27] 

Otsu Thresholding. 

Nag et al. [43], Sadiq et al. [44] K-means clustering algorithm 
Sadiq et al. [44] Canny edge detection. 
Pragya et al. [45], Purwar et al. [24] Chanvese algorithm. 
Tek et al. [12], Sio et al. [13] Morphological Top Hat method. 
Manning et al. [46], Kanojia et al. [47], Devi et al. 
[48], Buggenthin et al. [22] 

Otsu followed by Watershed segmentation. 

 
From above survey, in this study we used 6 algorithms for cropping blood cells from smear images as: 

 Canny Edge Detector Algorithm; 
 Chanvese; 
 K-Means Clustering; 
 Otsu; 
 Otsu Followed by Watershed; 
 Morphological Top Hat. 
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Features extraction 
 
This is a big step towards the processing of most images for computer vision solutions, as it symbolizes the 
changeover from image to numerical data presentation. Other stain components and parasites are flexible 
objects of varying sizes and shapes. Color data is significant, but not enough to discriminate objects of 
different colors from different types of malaria parasites. A group of features that distinguish between normal 
features and infected cells is called a feature set. Many studies have found the texture and geometric 
characteristics to describe different stages of malaria. The different features used by researchers are 
summarized in table 3. 

 
Table 3 

Various Features used by different researchers in various studies 
 

References Features set 
Devi et al. [4], Hartati et al. [41], Sadiq et al. [44], 
Kanojia et al. [47], Devi et al. [50] 

Gray Level Co-occurrence Matrix (GLCM). 

Devi et al. [4], Madhu G. [51], Sadiq et al. [44], 
Kanojia et al. [47], Tomari et al. [10], Das D.K. [11] 

Hu moments. 

Devi et al. [4], Sadiq et al. [44], Devi et al. [50], Das 
D.K. [11] 

Linear Binary Pattern (LBP). 

Nag et al. [43], Pragya et al. [45], Manning et al. [46], 
Hartati et al. [41], Kanojia et al. [47], Ghosh et al. 
[52], Delahunt et al. [20], Tomari et al. [10], Lee et 
al. [2], Das et al. [11], Tek et al. [12], Ross N. E. [27] 

Shape Features. 

Nag et al. [43], Lorenzo-Ginori et al. [40], Pragya et 
al. [45], Manning et al. [46], Kanojia et al. [47], Devi 
et al. [48], Ghosh et al. [52], Delahunt et al. [20], Lee 
et al. [2], Tek et al. [12], Ross N. E. [27] 

Texture and Colour Descriptors. 

 
Using image segmentation, blood cells were cropped and following features were extracted: 

• Texture and Color – 17 Features 
3 Kurtosis of RGB, 3 Kurtosis of HSV, 3 Skewness of RGB, mean of RGB, mean of HSV, Average gray level, 
Standard deviation, Smoothness, Third moment, Uniformity and Entropy. 

• Shape – 16 Features 
Form factor, Roundness, Aspect ratio, Compactness, mean area, mean eccentricity, mean Euler number, 
mean extent, mean perimeter, mean convex area, mean filled area, mean solidity, mean major axis, 
mean minor axis, mean diameter and N (no. of connected objects). 

• GLCM – 4 features 
Contrast, correlation, energy and Homogeneity 

• Hu moments – 7 features 
7 values that are invariant to object scale, position and orientation 

 LBP – 59 features. 

Classification 
 
A decent feature extraction and segmentation procedure significantly simplify the development of 
classification. The classification procedure in automatic malaria diagnosis is usually used for two reasons: to 
determine erythrocyte infection and to classify the phase and type of malaria parasite. Table 3.3 includes the 
several classifiers that have been employed by different studies to classify infected cells, life stages, and 
species. 
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Table 4 
Classification techniques used to classify infected erythrocytes 

 
Reference papers Techniques of Classification 

Madhu G. [51] Decision Tree 
Nag et al. [43], Lorenzo-Ginori et al. [40], Das D. K. 
[11] 

Naive Bayes 

Kaur et al. [53], Nag et al. [43], Lorenzo-Ginori et al. 
[40], Pragya et al. [45], Hartati et al. [41], Gezahegn 
et al. [6], Sadiq et al. [44], Devi et al. [48], Das D. K. 
[11], Nanoti et al. [54]. 

Support Vector Machine. 

Lorenzo-Ginori et al. [40], Devi et al. [48], Teket al. 
[12], Nanoti et al. [54], Devi et al. [50], Malihi et al. 
[55]. 

K Nearest Neighbour 

Sadiq et al. [44] Boosted Tree 
Lorenzo-Ginori et al. [40], Ghosh et al. [52] Bagged Tree 
Devi et al. [4], Manning et al. [46], Kanojiaet al. [47], 
Devi et al. [48], Tomari et al. [10], Lee et al. [2], Ross 
N. E. [27], Gitonga et al. [56], Memeu D. M. [57] 
Memeu et al. [58]. 

Artificial Neural Network. 

 
In this study we compared results of 13 classifiers and select the classifier which gives best accuracy. 
Following is the list of 13 classifiers: 

 Fine Tree. 
 Medium Tree. 
 Coarse Tree. 
 Kernel Naive Bayes. 
 Linear Support Vector Machine. 
 Quadratic Support Vector Machine. 
 Cubic Support Vector Machine. 
 Fine K Nearest Neighbour. 
 Medium K Nearest Neighbour. 
 Coarse K Nearest Neighbour. 
 Ensemble Boosted Tree. 
 Ensemble Bagged Tree.  

 Artificial Neural Network. 

 

3   Results and Discussions 
 

Experimentation has been done the standard database available at Centre for Disease Control and Prevention 
(CDC), United States. The experiments were conducted with the help of Intel 7th generation i5-7200 central 
processing unit, having clock speed of 2.50 GHz and 8GB DDR4 RAM using MATLAB R2018a environment. 
Here we calculated accuracy and computational time complexity of overall system. CDC database has 17 
response classes (16 infected and 1 non-infected). We had selected SAMF as a filter to remove impulse noise 
in pre-processing stage. We had taken various combinations of 6 cropping algorithms mentioned in section 
3.3, 5 feature sets mentioned in section 3.4 and 13 classification algorithms mentioned in section 3.5, to get a 
combination of 4 stage system that gives highest accuracy. For classification we used 5-fold cross validation 
method. Table 4.1 gives the value of Accuracy for above mentioned combinations. 
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Table 5 
Accuracy for SAMF, 6 cropping algorithms, 5 Feature extraction methods and 13 classifiers 

 

 

From above table 5, we can write the summary table 4.2 for CDC dataset which gives us the combination of 4 
stage system with highest accuracy and less time complexity.  

 

 

 

 

 

 

 

 

 

 

 

Cropping 
Algorithms 

Features 
Accuracy for different classifiers 

1 2 3 4 5 6 7 8 9 10 11 12 13 
Canny Edge 
Detector 
  
  
  
  

GLCM 84 82.3 80.9 74.8 78.4 84.2 72.2 93.4 84 80.8 84 89.6 80.4 
Hu_Moment 79.3 79.7 80 65.3 80.2 80.1 35 83 80.2 80.2 80.8 82.9 80.3 
LBP 76.9 81 82.1 42.2 82.9 83.5 82.5 71.6 79.8 81.6 82.4 83.3 82.7 
Shape 77.5 81 80.3 60 80.2 81.6 80.6 78.4 80.9 80.2 81.4 82.3 81.6 

Texture+Colour 88.5 85.6 83.8 72.7 88 93.1 94.1 95 85.7 80.6 87.6 93.8 87.1 

Chanvese  
  
  
  
  

GLCM 84.7 85 85.2 81 85.6 87 73.6 93.5 85.6 84.4 86.2 90.2 84.6 
Hu_Moment 83.2 84.4 84.2 63 84.5 61.1 15.4 91.7 83.6 84.4 85.5 86.3 84.4 
LBP 78.9 83 83.2 57.4 86.3 86.2 86 76.2 84.2 84.4 86 86.2 86.8 
Shape 90.1 88.3 85.6 82.7 89.9 93.6 93.7 95 88.1 84.4 91.5 94.6 84.6 
Texture+Colour 90.9 88.6 85.4 82.2 89.7 93.7 94.2 95.1 55.4 84.4 91.8 95.1 88.5 

K-Means 
Clustering  
  
  
  
  

GLCM 84.3 83.1 81.6 75.6 82 86 76.9 93.1 85 82.4 84.1 90.2 84.1 
Hu_Moment 80.6 81.4 81.8 61.4 81.8 52.3 6.2 87 81.2 81.8 81.9 83.6 81.8 
LBP 78.1 82.8 83.5 33.9 83.9 84.1 83.2 71.1 81.3 82.6 83.7 84.3 83.4 
Shape 81.9 83.4 82.6 68.2 82.3 84.6 84.7 82.4 82.6 82.3 83.7 86.4 82.9 

Texture+Colour 89.3 87.1 85.4 70.5 87.9 93.4 94.3 93.8 86.9 82.3 88 94 85.7 

Otsu 
  
  
  
  

GLCM 87.7 86.4 85.5 78.3 85.7 89 65.8 94.9 88.6 86.3 87.3 92.6 86 
Hu_Moment 84.8 85.3 85.6 64.1 85.6 25.4 7 89.9 85.6 85.6 85.7 86.8 85.6 
LBP 84.2 86.4 86.8 41.7 87.3 88 87.4 74.1 83.4 87 87.1 87.6 86.9 
Shape 87.4 87.6 86.2 75.4 87.4 89.3 89 87.2 88 86.8 87.9 89.9 87.5 
Texture+Colour 91.8 90 88.6 74.6 90.9 95.6 96.5 96.4 90.7 86.5 91.1 96.4 90.4 

Otsu Followed 
by Watershed 
  
  
  
  

GLCM 88.2 88.2 87.6 83.1 87.6 88.8 18.5 88.3 88.6 87.8 88.3 89.8 87.9 
Hu_Moment 86.5 87.2 87.1 77.8 87.1 14 2.6 82.1 87.1 87.1 87.3 87.7 87.1 
LBP 86.9 87.7 87.2 68 88.5 88.9 88.6 80.1 87.5 88.1 88.4 88.5 88.6 
Shape 87.1 87.3 87.1 73.5 87.8 88.3 88.7 85.3 87.8 87.5 87.6 89 87.5 

Texture+Colour 91.2 89.9 88.5 76 91.9 94.9 95.6 94.8 92.3 89 90.5 94.1 90.5 

Morphological 
Top Hat  
  
  
  
  

GLCM 73 72.9 70.3 63.2 70.7 76.1 71.8 87 74.1 71.7 74.1 82.5 70.9 
Hu_Moment 69.2 70.6 70.1 60.4 70.7 69.8 40.2 71.9 69.9 70.7 71.2 73.4 68.4 
LBP 66.1 72.4 72.7 18.2 73.5 73.9 72 56.8 71.3 72.1 72.8 73.3 72 
Shape 68.6 72 71.7 60.9 70.8 73.5 72.7 67.6 71.1 71.6 73 75.7 69.2 

Texture+Colour 79.6 75.9 74.9 51.4 77 84.7 86.1 87.8 76.4 71.1 77.1 87.5 71.8 
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Table 6  
Summary for CDC dataset to get 4 stage system with highest accuracy and less time complexity 

 

Filter 
Segmentat
ion 

Feature Classifier 
Accuracy 

Filter+ 
Cropping 
Time 

Feature 
Extraction 
Time 

Prediction 
time  

Total time 
required 
for 
predicting 
one image 

(%) (sec) (sec) (sec) (sec) 

SAMF 
Canny 
edge 
detector 

Texture+Colour Fine KNN 95 0.438541 0.0034904 0.0007565 0.442788 

SAMF Chanvese Texture+Colour Fine KNN 95.1 11.995889 0.0100713 0.0005372 12.006498 

SAMF Kmean Texture+Colour Cubic SVM 94.3 4.5762395 0.0046828 0.0050246 4.585947 

SAMF Otsu Texture+Colour Cubic SVM 96.5 0.4263418 0.0044274 0.0069430 0.437712 

SAMF Otsu+WSS Texture+Colour Cubic SVM 95.6 0.4550498 0.0035140 0.0095783 0.4681423 

SAMF Top Hat Texture+Colour Fine KNN 87.8 0.5244139 0.0036875 0.0007467 0.5288483 

 

From above summary, for CDC database, the combination of 4 stage system which give highest accuracy of 
96.50% with time required to predict one sample as 0.437712sec consist of: SAMF as filter, Otsu algorithm for 
erythrocytes and parasite cropping, 17 texture and color feature set and cubic SVM as classifier. 
 
System Design and Validation 
 
So, from table 6 we can draw conclusion that, to design precise malaria diagnosis system, we need to choose 
SAMF as filter, Otsu algorithm for erythrocytes and parasite cropping, 17 texture and color feature set and 
cubic SVM as classifier. 
The final block diagram of the precise malaria diagnosis system is shown in figure 3. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Block diagram of precise malaria diagnosis system 
 

We have validated our precise malaria diagnosis systems by comparing it with existing method based on 
accuracy.  For validation, we have used 5-fold cross validation technique on CDC database. 
 
 
 
 
 
 
 
 
 
 

SAMF 
Cell Cropping using 

Otsu algorithm 

17 Texture and color 

feature extractor 

Cubic SVM as 

Classifier 

Test Image 
Output 

Class 
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Table 7  
Sensitivity/Recall, Specificity, Precision, F1-score and Accuracy for each class as well as their average values. 

 

Class TP TN FP FN 
Sensitivity/ 
Recall (%) 

Specificity 
(%) 

Precision 
(%)  

F1-
score 
(%)  

Accuracy 
(%) 

F1 187 4764 26 22 89.47 99.46 87.79 88.63 99.04 
F2 60 4912 12 15 80.00 99.76 83.33 81.63 99.46 
F3 48 4922 6 23 67.61 99.88 88.89 76.80 99.42 
F4 19 4979 0 1 95.00 100.00 100.00 97.44 99.98 
M1 11 4987 0 1 91.67 100.00 100.00 95.65 99.98 
M2 27 4946 13 13 67.50 99.74 67.50 67.50 99.48 
M3 14 4980 3 2 87.50 99.94 82.35 84.85 99.90 
M4 33 4955 1 10 76.74 99.98 97.06 85.71 99.78 
O1 18 4969 3 9 66.67 99.94 85.71 75.00 99.76 
O2 26 4963 1 9 74.29 99.98 96.30 83.87 99.80 
O3 19 4978 1 1 95.00 99.98 95.00 95.00 99.96 
O4 20 4971 1 7 74.07 99.98 95.24 83.33 99.84 
V1 46 4925 14 14 76.67 99.72 76.67 76.67 99.44 
V2 6 4991 0 2 75.00 100.00 100.00 85.71 99.96 
V3 26 4959 7 7 78.79 99.86 78.79 78.79 99.72 
V4 21 4974 2 2 91.30 99.96 91.30 91.30 99.92 
NI 4241 632 87 39 99.09 87.90 97.99 98.54 97.48 

 
Average 81.55 99.18 89.64 85.08 99.58 

 
Where,  F1:  Ring-form trophozoites of P. falciparum. 
  F2:  Older trophozoites of P. falciparum. 
  F3:  Gametocytes of P. falciparum. 
  F4:  Schizonts of P. falciparum. 
  M1: Ring-form trophozoites of P. malariae. 
  M2: Older trophozoites of P. malariae. 
  M3:  Gametocytes of P. malariae. 
  M4: Schizonts of P. malariae. 
  O1: Ring-form trophozoites of P. ovale  

O2: Older trophozoites of P. ovale. 
  O3:  Gametocytes of P. ovale. 
  O4: Schizonts of P. ovale. 
  V1: Ring-form trophozoites of P. vivax.  

V2: Older trophozoites of P. vivax. 
  V3:  Gametocytes of P. vivax. 
  V4: Schizonts of P. vivax 
 
Also, Overall accuracy can be calculated from total true positive (TTP), total true negative (TTN), total false 
positive (TFP) and total false negative (TFN). These values are calculated from confusion matrix of 17 classes 
and have values as: 
 
TTP = 581 TTN = 4241 TFP = 105 TFN = 72   
Therefore, 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑇𝑃 + 𝑇𝑇𝑁

𝑇𝑇𝑃 + 𝑇𝑇𝑁 + 𝑇𝐹𝑃 + 𝑇𝐹𝑁
 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
581 + 4241

581 + 4241 + 107 + 72
= 0.965 
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% 𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟗𝟔. 𝟓𝟎% 
 
Following table 8 give the validation of precise malaria diagnosis systems with existing methods. 

 
Table 8 

Validation of precise malaria diagnosis systems with existing methods 
 

Ref. No. Title Year  Accuracy 

12 
“Malaria Detection and Classification Using Machine 
Learning Algorithms” [12] 

2018 78.89% 

14 
“Automatic Identification of Malaria Using Image 
Processing and Artificial Neural Network” [2] 

2018 78.00% 

16 
“Automatic System for Plasmodium Species 
Identification from Microscopic Images of Blood-
Smear Samples” [15] 

2017 
72.73% (from 

confusion matrix) 

43 
“Detection and Classification of Malaria in Thin Blood 
Slide Images” [44] 

2017 94.97% 

44 
“Detection of malaria parasite species and life cycle 
stages using microscopic images of thin blood smear” 
[45] 

2016 90.17% 

45 
“kNN Classification based Erythrocyte Separation in 
Microscopic Images of Thin Blood Smear” [46] 

2016 94.20% 

46 
“Determination of Plasmodium Parasite Life Stages 
and Species in Images of Thin Blood Smears Using 
Artificial Neural Network” [47] 

2014 

Stages Accuracy: 
90.34% 

Species Accuracy: 
95.85% 

47 
“A Rapid Malaria Diagnostic Method Based on 
Automatic Detection and Classification of Plasmodium 
Parasites in Stained Thin Blood Smear Images” [48] 

2014 

Stages Accuracy: 
90.34% 

Species Accuracy: 
95.85% 

48 
“Malaria Parasite Detection in Giemsa–Stained Blood 
Cell Images” [49] 

2013 91% 

49 
“Detection of plasmodium parasites from images of 
thin blood smears” [50] 

2013 95.00% 

50 
“Blood Parasite Identification using Feature Based 
Recognition” [51] 

2011 68.96% 

51 
“An Image Processing Approach for Accurate 
Determination of Parasitemia in Peripheral Blood 
Smear Images” [52] 

2011 
 From confusion 
matrix 96.05% 

52 
“An Efficient Algorithm for Automatic Malaria 
Detection in Microscopic Blood Images” [53] 

2012 
 From confusion 
matrix 96.05% 

  
Design of precise malaria diagnosis system using 
microscopic imaging. 

2022 

Average Accuracy: 
99.58% 

Overall Accuracy: 
96.5% 

 

From above analysis we can say that the precise malaria diagnosis system gives an Average accuracy of 
99.58% and Overall accuracy of 96.5% which is greater than the accuracy obtained for CDC database by 
existing methods listed in table 5.2. 
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4   Conclusion 
 

In   SAMF algorithm is proposed that removes impulse noise from the corrupted malaria-infected images. The 
suggested SAMF can be used as a reliable pre-processing method for disease detection in microscopic medical 
images. Otsu method is used to obtain the binary version of images for cropping blood cells from complete 
image. 17 texture and color features were extracted from these cropped cells and these features were used to 
train Cubic SVM classifier.  Hence, using images of thin blood smears, a precise malaria diagnosis system was 
developed for detecting Plasmodium parasites, distinguishing their life stages, and species.  To train and test 
the system, a total of 348 images from the CDC database were used. In recognizing the presence of 
Plasmodium parasites in thin blood smear images, the system had an average accuracy of 99.58% and an 
overall accuracy of 96.5% with prediction time of 0.437712sec/sample. Also, we have validated the results by 
comparing with existing methods. Patients in rural areas can be benefited from a precise malaria diagnosis 
method. When compared to the manual microscopic diagnosis technique, the proposed technology detects 
malaria parasites faster. 
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